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LOCAL-GLOBAL PRINCIPLE FOR WITT EQUIVALENCE

OF FUNCTION FIELDS OVER GLOBAL FIELDS

BY

PRZEMYSŁAW KOPROWSKI (Katowice)

Abstract. We examine the conditions for two algebraic function fields over global
fields to be Witt equivalent. We develop a criterion solving the problem which is analogous
to the local-global principle for Witt equivalence of global fields obtained by R. Perlis,
K. Szymiczek, P. E. Conner and R. Litherland [12]. Subsequently, we derive some imme-
diate consequences of this result. In particular we show that Witt equivalence of algebraic
function fields (that have rational places) over global fields implies Witt equivalence of
their fields of constants. We also discuss the converse of this implication.

Two fields K and L are said to beWitt equivalent when their Witt rings
are isomorphic. The classification of fields with respect to Witt equivalence
is a natural problem in the algebraic theory of quadratic forms. For fields
with a finite number of square classes the classification is complete when the
number of square classes does not exceed 32 (see [2]) while for fields with
infinite groups of square classes a definitive solution of the problem has been
achieved for the global fields of number theory (see [12]) and the algebraic
function fields over real closed fields (see [9]).

In this paper we investigate the case of algebraic function fields with
global fields of constants. Our approach to classification of Witt rings of func-
tion fields is parallel to that of [12] and [9]. In the first section we introduce
the notion of quaternion-symbol equivalence and present the main result of
this note (Theorem 1.3). This theorem establishes a local-global principle
for Witt equivalence of function fields analogous to the local-global principle
for global fields presented in [12]. Namely, we show that two function fields
are Witt equivalent if and only if they are quaternion-symbol equivalent iff
they are uniformly locally Witt equivalent. The proof occupies the entire
second section. Finally, in the last section we derive some consequences of
our result. In particular we show that Witt equivalence of function fields
implies Witt equivalence of their fields of constants (see 3.2), and we show
two partial converses. The first of them says that Witt equivalence of global
fields implies local Witt equivalence of the rational function fields over them
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(see 3.6), while the second one gives additional sufficient conditions for Witt
equivalence of the fields of constants to imply Witt equivalence of algebraic
function fields (see 3.7 and 3.9). Those conditions are also of local nature.
Throughout this note we use the letters K,L to denote algebraic (in-

cluding possibly rational) function fields with fields of constants k and l
respectively. Next, we use the symbol Ω(K) to denote the set of all places
of the field K trivial on its field of constants. The completion of the field K
with respect to a place p ∈ Ω(K) will be denoted by Kp and its residue field
by K(p). Finally f(p) is the image of an element f ∈ Op in the residue field.
By abuse of notation, we use the same symbol f for both an element of a

field and the square class containing this element; analogously, 〈f1, . . . , fn〉
will denote both a quadratic form and its class in the Witt ring; and finally,( f,g
K

)
means (depending on the context) either a quaternion algebra or its

class in the Brauer group.
In addition, we use standard notation and terminology for quadratic

forms, valuations and function fields as described in [3, 10]. In particular,
following [10], by a local field we understand a field complete with respect
to a discrete valuation (i.e. we do not require its residue field to be finite).
A smooth introduction to the theory of quadratic forms and Witt equiv-

alence can be found in [18].

1. Local-global principle. We need to introduce some local conditions
for Witt equivalence which are similar to the conditions defining the Hilbert-
symbol equivalence between global fields k and l. Recall that the latter is
a pair of maps (t, T ) in which t : k∗/k∗2 → l∗/l∗2 is an isomorphism of
square-class groups, and T : Ω(k)→ Ω(l) is a bijection between the sets of
all places of the two fields preserving Hilbert symbols in the sense that

(a, b)p = 1 ⇔ (ta, tb)Tp = 1

for all square classes a, b ∈ k∗/k∗2 and all places p of k.
When K and L are algebraic function fields the Hilbert symbols have to

be replaced with quaternion algebras over the completions of K and L and
so we are led to the following definition.

Definition 1.1. We say that the function fieldsK and L are quaternion-
symbol equivalent when there exists a pair (t, T ) of maps in which

• t : K∗/K∗2 → L∗/L∗2 is an isomorphism of square-class groups,
• T : Ω(K)→ Ω(L) is a bijection,

preserving the splitting of local quaternion symbols in the sense that
(
f, g

Kp

)
= 1 ⇔

(
tf, tg

LTp

)
= 1

for all square classes f, g ∈ K∗/K∗2 and all places p of K.
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Following [15], we say that two fields are locally Witt equivalent if their
places can be paired so that the corresponding completions are Witt equiv-
alent. We also say that two fields K,L are uniformly locally Witt equivalent
if they are locally Witt equivalent and all those local isomorphisms of Witt
rings arise from one fixed isomorphism of the Witt rings of the fields K
and L:

Definition 1.2. Fields K,L are said to be uniformly locally Witt equiv-
alent if there exist

• a strong Witt isomorphism i :WK →WL,
• a bijection T : Ω(K)→ Ω(L),
• a set {ip :WKp →WLTp : p ∈ Ω(K)} of ring isomorphisms

so that for every p ∈ Ω(K) the following diagram commutes:

WK WL

WKp WLTp

θp
��

i //

θTp

��ip
//

where the θ’s are the canonical epimorphisms.

The main result of this paper is the following local-global principle for
Witt equivalence of function fields:

Theorem 1.3. Let k, l be two fields satisfying :

(A1) char k 6= 2 6= char l.
(A2) For any finite extensions k′ ⊇ k, l′ ⊇ l,

card(k′
∗
/k′
∗2
) ≥ 4 and card(l′

∗
/l′
∗2
) ≥ 4.

Let K := k(X) and L := l(X) denote the rational function fields over k and
l respectively. The following conditions are equivalent :

(1.3.1) K and L are Witt equivalent.
(1.3.2) K and L are uniformly locally Witt equivalent.
(1.3.3) K and L are quaternion-symbol equivalent.

Moreover , the equivalence of (1.3.1) and (1.3.2) also holds when K and L
are algebraic function fields with fields of constants k and l respectively.

Before we proceed to the proof let us present some basic examples of
fields satisfying (A1)–(A2):

• global fields of characteristic 6= 2,
• p-adic local fields,
• rational function fields (of an arbitrary number of variables) over fields

satisfying (A1)–(A2),
• algebraic function fields over fields satisfying (A1)–(A2).
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The above theorem is analogous to the result of [12], where it is proved
that two global fields (in particular, algebraic function fields over finite fields)
are Witt equivalent if and only if they are locally Witt equivalent if and only
if they are Hilbert-symbol equivalent.

2. Proof of Theorem 1.3

Step 1. The implication (1.3.2)⇒(1.3.1) is trivial. We show (1.3.1)⇒
(1.3.2). The set-up of this proof is somehow analogous to [14, Proposition
4.1]. Unfortunately we cannot in general claim OL(H,S) to be unexcep-
tional, thus our proof branches off.

Assume that K,L are algebraic function fields with fields of constants
k, l respectively. Let T := K∗ ∩K∗2p and S := t(T ). Combining [14, Lemma
(2.1)(3)] and [14, Remark (2.2)] we see that (1 + p)K∗2 = T . We have

K∗/T = K∗/(K∗ ∩K∗2p ) ∼= (K∗ ·K∗2p )/K∗2p ∼= K∗p/K∗2p ;
here cardK∗p/K

∗2
p = 2 · cardK(p)∗/K(p)∗2 and by (A2) this is at least 8.

Therefore

[K∗ : T ] = [L∗ : S] ≥ 8.
Observe that the proof of [14, Lemma (3.2)(1)] remains valid also in our
case. Hence BK(T ) = ±T . Now, [14, Lemma (3.1)(3)] provides us with the
equality BL(S) = t(BK(T )) = ±S, and so

[L∗ : BL(S)] ≥ 4.
Therefore, for H := BL(S) there exists (by [1, Theorem (2.16)]) a group
Ĥ ⊂ L∗ such that: [Ĥ : BL(S)] ≤ 2, the ring OL(Ĥ,S) is an S-compatible
valuation ring and UOL(Ĥ,S) · S ⊆ Ĥ. Since [L

∗ : BL(S)] ≥ 4, we have
[L∗ : Ĥ] ≥ 2, and so Ĥ 6= L∗. Now, UOL(Ĥ,S) ⊂ Ĥ 6= L

∗, thus OL(Ĥ,S) is a
proper valuation ring. Let q denote the place of L associated with OL(Ĥ,S).
The place q is S-compatible, and so 1 + q ⊆ S. Hence (1 + q) · L∗2 ⊆ S.

Consider the mappings

WK WL

WKp WLq

θp
��

i //

θq
��

where the θ’s are the canonical homomorphisms. Now, [14, Lemma (2.1)] im-
plies that ker θp is generated by {〈1,−a〉 : a ∈ K∗ ∩K∗2p }={〈1,−a〉 : a∈T }.
Thus i(ker θp) is generated by {〈t1, t(−a)〉 : a ∈ T } = {〈1,−b〉 : b ∈ S}. But
ker θq is generated by {〈1,−c〉 : c ∈ (1 + q) · L∗2}. Finally,

ker θq ⊆ i(ker θp).
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The same argument applied to i−1 and q provides us with a place p′ ∈
Ω(K) such that ker θp′ ⊆ i−1(ker θq). Consequently,

ker θp′ ⊆ i−1(ker θq) ⊆ ker θp.
Now [14, Lemma (2.3)(2)] implies p = p′, so all the above inclusions are in
fact equalities, thus

i(ker θp) = ker θq.

Therefore we conclude that there exists an isomorphism ip : WKp → WLq

completing the above diagram. This means that K and L are uniformly
locally Witt equivalent.

Step 2. From now on K = k(X) and L = l(X) are rational function
fields. We shall prove (1.3.3)⇒(1.3.1). To this end we need the following
lemma, which generalizes the theorem on nondegeneracy of Hilbert symbols
(cf. [10, Theorem 2.16, p. 158]) to our case.

Lemma 2.1. Let k be a field satisfying (A1)–(A2) and let K = k(X)
denote the rational function field over k. For an arbitrary element c ∈
K \ {0}, if all the algebras

( z,c
Kp

)
split for z ∈ K and p ∈ Ω(K), then c

is a square in K.

Proof. Choose a square-free polynomial c0 ∈ k[X] such that the classes
of c and c0 in K

∗/K∗2 are equal. Assume first that deg c0 > 0. Fix p ∈ Ω(K)
such that p | c0. Since k is not quadratically closed by (A2), [9, Lemma 2.5]
implies that there exists z ∈ K such that

( z,c0
Kp

)(
=
( z,c
Kp

))
does not split—a

contradiction.

Hence, deg c0 = 0. Now, for any place p of degree 1, c0 is a square in
K(p) = k by [9, Lemma 2.4]. Thus c ∈ K∗2.
We are now ready to prove the implication (1.3.3)⇒(1.3.1). Let the pair

(T, t) denote the quaternion-symbol equivalence of the fields K and L.

We claim that 1 ∈ DK〈f, g〉 if and only if 1 ∈ DL〈tf, tg〉 for any f, g ∈
K∗/K∗2. Indeed, assume that for some f, g we have 1 ∈ DK〈f, g〉. Then the
algebra

(f,g
K

)
splits, so all the algebras

( f,g
Kp

)
split, where p runs over all places

of K. By the definition of quaternion-symbol equivalence, all the algebras( tf,tg
LTp

)
split. This means that the forms 〈tf, tg〉 and 〈1, tftg〉 are equivalent

over all LTp. But T is a bijection of the sets of places of K and L, hence Tp

runs over all places of L. Therefore, by [8, (iv), p. 469], 〈tf, tg〉 ≃ 〈1, tftg〉
over L. In other words 1 ∈ DL〈tf, tg〉, which proves our claim.
Next we show that t(−1) = −1. Let c := t(−1). For any x ∈ K and

p ∈ Ω(K) the algebra
(x,−x
Kp

)
splits. Thus in the Brauer group Br(LTp) we

have

1 =

(
tx, ctx

LTp

)
=

(
tx,−tx
LTp

)
·
(
tx,−c
LTp

)
=

(
tx,−c
LT p

)
.
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So −c splits all the quaternion algebras
(z,c

q

)
for all z ∈ L∗/L∗2 and q ∈

Ω(L). Hence, by Lemma 2.1 it is a square. Consequently, t is a Harrison
isomorphism, and so the fields in question are Witt equivalent by Harrison’s
criterion (see [12]).

Step 3. It remains to prove the implication (1.3.2)⇒(1.3.3). Fix any place
p ∈ Ω(K) and let f, g ∈ K∗/K∗2 be two square classes such that

( f,g
Kp

)
splits.

Then θp〈〈f, g〉〉 = 0, hence also ip ◦θp〈〈f, g〉〉 = 0. By the assumption (1.3.2)
we have θTp◦i〈〈f, g〉〉 = 0. Moreover, i is a strong isomorphism of Witt rings,
hence θTp〈〈tf, tg〉〉 = 0. Consequently, the algebra

( tf,tg
LTp

)
splits. Using the

same reasoning for inverse maps one shows that if
( tf,tg
LTp

)
splits, then

( f,g
Kp

)

splits as well. Consequently, the pair (T, t) constitutes a quaternion-symbol
equivalence.

3. Some consequences. The following lemma generalizes, to the case
of arbitrary local fields, a fact which is well known for local fields with finite
residue fields. Unfortunately the proof given for p-adic fields in [10] does not
hold in the general case. Hence we feel obliged to state this result explicitly.

Lemma 3.1. Let E,F be two local fields with respect to nondyadic places
p and q. Then E,F are Witt equivalent if and only if E(p) and E(q) are
Witt equivalent.

Proof. By [13, Corollary 2.6, Chapter 6] we have

WE ∼=W (E(p))[T ]/(T 2 − 〈1〉) ∼=W (F (q))[T ]/(T 2 − 〈1〉) ∼=WF.
Hence if the residue fields are Witt equivalent then so are the local fields.

We will show the opposite implication. Assume that E,F are Witt equiv-
alent and let t:E∗/E∗2 → F ∗/F ∗2 denote an associated Harrison map. We
claim that there is p ∈ E∗/E∗2 such that ordp p ≡ ordp tp ≡ 1 (mod2). In-
deed, if we suppose that there is no such p, then from the surjectivity of t we
can find u ∈ E∗/E∗2 such that ordp u ≡ 0 (mod2) and ordp tu ≡ 1 (mod2).
Now, take any p ∈ E∗/E∗2 with ordp p ≡ 1 (mod2). Then ordq tp ≡ 0
(mod2), hence ordp up ≡ ordq t(up) ≡ 1 (mod2), which leads to a contra-
diction. Thus, we have proved our claim.

Fix an element p ∈ E∗/E∗2 such that ordp p ≡ ordq tp ≡ 1 (mod2).
Let A be a basis of the F2-linear space E(p)

∗/E(p)∗2. Observe that −1 ∈
E(p)∗2 ⇔ −1 ∈ F (q)∗2. If any (hence both) of these are not satisfied let
us assume that −1 ∈ A. Now we can find an F2-linear homomorphism
t′:E(p)∗/E(p)∗2 → F (q)∗/F (q)∗2 which takes the following values at the
elements of the basis A:

t′(u(p)) :=

{
(tu)(q) if ordp tu ≡ 0 (mod2),
(t(pu))(q) if ordp tu ≡ 1 (mod2).
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The mapping t′ is obviously injective. We claim that t′ is actually an isomor-
phism. Indeed, take any v(q) ∈ F (q)∗/F (q)∗2 and let w := t−1(v) ∈ E∗/E∗2.
We consider two cases. If ordpw ≡ 0 (mod2), then t′(w(p)) = v(q). If
ordpw ≡ 1 (mod2), then t′((pw)(p)) = (t(p · pw))(q) = (tw)(q) = v(q).
Hence, we have proved our claim.

We will show that t′ is a Harrison map. The condition t′(−1) = −1 is ob-
vious. Assume that 1∈DE(p)〈u(p), v(p)〉 for some u(p), v(p)∈E(p)∗/E(p)∗2.
Hence 1 ∈ DE〈u, v〉. We need to consider three cases.
If ordq tu ≡ ordq tv ≡ 0 (mod2), then t′(u(p)) = (tu)(q) and t′(v(p)) =

(tv)(q). Since t is a Harrison map, we have 1 ∈ DF 〈tu, tv〉, and consequently
1 ∈ DF (q)〈t′(u(p)), t′(v(p))〉.
Suppose now that ordq tu ≡ 1 (mod2) and ordq tv ≡ 0 (mod2) (the

case ordq tu ≡ 0 (mod2) and ordq tv ≡ 1 (mod2) is totally analogous).
Since 1 ∈ DF 〈tu, tv〉, [9, Lemma 2.4] implies that tv = 1 ∈ F ∗/F ∗2. Thus
v = 1 ∈ E∗/E∗2, hence t′(v(p)) = 1. Consequently, 1 is represented over
F (q) by the form 〈t′(u(p)), t′(v(p))〉.
Finally assume that ordq tu ≡ ordq tv ≡ 1 (mod2). Again 1 ∈ DF 〈tu, tv〉,

hence tu = −tv. Finally, 1 ∈ DF (q)〈t′(u(p)), t′(v(p))〉 = DF (q)〈t′(u(p)),
−t′(u(p))〉, and thus t′ is a Harrison map. By Harrison’s criterion, E(p), F (q)
are Witt equivalent.

Proposition 3.2. Let k, l be two global fields of characteristic 6= 2 and
let K,L denote algebraic function fields with fields of constants k, l. Assume
that both K and L have rational places. If K,L are Witt equivalent then so
are k, l.

Proof. By Theorem 1.3 the fields K and L are uniformly locally Witt
equivalent. Let T : Ω(K) → Ω(L) denote the corresponding bijection of
the sets of places. The previous lemma shows that the global fields K(p)
and L(Tp) are Witt equivalent. Let us consider two cases. First assume
that k is a number field. Since k = K(p) for a rational place p and it is
Witt equivalent to L(Tp) ⊇ l, it follows that l is also a number field by [15,
Theorem (1.5)(i)]. Since the degree over Q is an invariant of Witt equivalence
of number fields (see [15, Corollary (1.6)(i)]), it follows that [l : Q] divides
[k : Q]. By symmetry, [k : Q] divides [l : Q]. Consequently, L(Tp) = l and
Wk ∼=Wl.
Now assume that both k and l are global function fields. By [15, Theo-

rem (1.3)] it is enough to verify that both fields have equal levels, which is
straightforward.

The above proposition together with the fact that Q and Q(i) are the
lonely global fields (cf. [12]) allows us to derive an analog of [9, Corollary
5.3].
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Corollary 3.3. For any global field k 6= Q (resp. k 6= Q(
√
−1)), the

rational function fields Q(X) and k(X) (resp. Q(
√
−1)(X) and k(X)) are

not Witt equivalent.

The rest of this article will be devoted to developing two partial converses
of Proposition 3.2.

Lemma 3.4. Let k, l be two Witt equivalent global fields. Then for every
proper field extension k′ ! k, k′ 6= Q(

√
−1), there exists an infinite family

{l′m}m∈N of fields l
′
m ⊃ l which are Witt equivalent to k′.

Proof. The proof runs similarly to the proofs in [15, 17], hence we only
sketch it here. The main ideas behind this proof are depicted in the diagram
(3.5). Let (T0, t0) denote a Hilbert-symbol equivalence of k and l (cf. [12]).
The field k is a solution over either Q, when the level s(k) 6= 1, or Q(

√
−1)

otherwise, of a finite system of prescriptions (see [6, Chapter IV] and [17, §2])
consisting of: all real primes of k, all dyadic ones and possibly (if s(k) = 2
and every dyadic completion has level 1) of one more prime, congruent to 3
(mod4). Then l is a solution over Q, or Q(

√
−1) respectively, of the system

of prescriptions obtained from the previous ones by replacing all completions
kp with lT0p.

(3.5)

{kP}P|p {lQ}Q|T0p

kp lT0p

k′ l′m

k l

Q

� � � � � � � � � � � � � � � � � � � � � � � � � �uuuuu� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � rrrrrr
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �ttttttt� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � qqqqqqqqKKKKKKK qqqqqqqq

Now, for every finite extension of any kp we can find a Witt equivalent
finite extension of lT0p. Thus, since k

′ is a solution over k of a finite system
T of prescriptions, we can construct any l′m as a solution of the finite system
of prescriptions (cf. [5, Satz 7 and Korollar on page 97]) obtained from T
by replacing extensions of kp with the Witt equivalent extensions of lT0p. If
we take, in addition, a sequence of primes of l congruent to 1 (mod4) and
require that the first m − 1 of them split completely in l′m while the mth
does not split, then this requirement is describable in terms of prescriptions.
All the solutions l′m (m ∈ N) are distinct and Witt equivalent to k′.

Take now any place p of the rational function field k(X). Then there are
infinitely many extensions of l that are Witt equivalent to the residue field
of p and every such extension is the residue field for a place of l(X). Thus
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if we introduce an equivalence relation on Ω(k(X)) (respectively Ω(l(X)))
defined by the condition that two places p, q are related if their residue fields
are Witt equivalent, then every equivalence class of this relation is infinite
(and countable). Moreover for every such class A ⊂ Ω(k(X)) there is a
unique class B ⊂ Ω(l(X)) such that all residue fields of places from A are
Witt equivalent to residue fields of places from B. So we can find a bijection
Ω(k(X))→ Ω(l(X)) that factors through this equivalence relation. Finally,
we have proved the following partial converse of 3.2.

Corollary 3.6. Let k, l be two global fields of characteristic 6= 2 and
let K = k(X) and L = l(X) be the rational function fields over k, l. If k, l
are Witt equivalent then K,L are locally Witt equivalent.

In order to get the (partial) converse of 3.2 incorporating algebraic func-
tion fields we must introduce a more geometrical point of view. Recall that
a curve X over a field k is called geometrically integral if X×k kalg is integral
(cf. e.g. [7, Chapter II.3]). Here kalg denotes the algebraic closure of k.

Proposition 3.7. Let k, l be two Witt equivalent number fields and let
(T0, t0) denote an associated Hilbert-symbol equivalence. Let further X and
Y be two smooth, projective, geometrically integral curves over k and l re-
spectively and assume that both have rational points. Denote by K and L the
fields of rational functions over X and Y respectively. Finally, assume that
the 2-torsion subgroups 2X(J(X)) and 2X(J(Y )) of the Tate–Shafarevich
groups of the Jacobians of X and Y are trivial. If there exists an isomor-
phism t : K∗/K∗2 → L∗/L∗2 extending t0 (i.e. t|k∗/k∗2 = t0) such that

(3.8) 1 =

(
f, g

Kν

)
⇔ 1 =

(
tf, tg

LT0ν

)
,

for all square classes f, g ∈ K∗/K∗2 and all places ν of k (here Kν , LT0ν
denote the function fields of X ×k kν , Y ×l lT0ν respectively) then the fields
K,L are Witt equivalent.

Proof. We have t(−1) = t0(−1) = −1. Moreover, if 1 ∈ DK〈f, g〉, then
for every place ν ∈ Ω(k) the algebra

( f,g
Kν

)
splits, and so do all the algebras( tf,tg

Lµ

)
for µ ∈ Ω(l). Hence, [11, Theorem 1.1] implies that 1 ∈ DL〈tf, tg〉.

By the Harrison criterion, K and L are Witt equivalent.

Corollary 3.9. Let K, L be two rational function fields over Witt
equivalent number fields k, l respectively. If there exists an extension (in the
sense of (3.8) of the previous proposition) of a Hilbert-symbol equivalence
(T0, t0) of k and l, then the fields K,L are Witt equivalent.

Remark 1. Notice that if f and g of the above proposition are constants
(i.e. f, g ∈ k) then

( f,g
Kν

)
= 1 if and only if

(f,g
kν

)
= 1, and so the condition

(3.8) reduces to the condition defining Hilbert-symbol equivalence.
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Remark 2. Although Corollary 3.9 follows immediately from the pre-
ceding Proposition 3.7 due to simplicity of the geometry of a projective line,
one can actually prove it directly using a simpler and totally nongeometrical
argument. Namely, replace [11, Theorem 1.1] with [4, Proposition 1.1] in the
proof.
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