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ON THE QUANTITATIVE FATOU PROPERTY

BY

A. KAMALY (Stockholm) and A. M. STOKOLOS (Storrs, CT)

Abstract. The result of this article together with [1] and [4] gives a full quantitative
description of a Fatou type property for functions from Hardy classes in the upper half
plane.

We define the Hardy class Hp(R2+) in the classical sense as the set of
functions F (z) holomorphic in R

2
+ such that

‖F‖p
Hp(R2+)

≡ sup
y>0

\
R

|F (x+ iy)|p dx <∞.

It is well known [5, p. 127] that every F ∈ Hp(R2+) has a.e. boundary value
limy→0+ F (x+ iy) = F (x) which is an L

p function with ‖F‖p = ‖F‖Hp(R2+).

Let us ask the following question:

Suppose that the function F (x) has a certain smoothness property in
Lp(R)-norm. What is a good/natural rate of a.e. convergence of F (x + iy)
towards F (x)?

For this we introduce the Lp-modulus of continuity of F ∈ Lp(R), 0 <
p <∞, by

ω(F, t)p = sup
|h|<t
‖∆hF‖Lp(R), ∆hF (x) = F (x+ h)− F (x).

By the modulus of continuity of an analytic function we will mean the
modulus of continuity of the boundary value.
Further, we consider continuous increasing subadditive functions ω(t) on

(0,∞) with limt→0+ ω(t) = 0; we define smoothness classes H
ω
p by

Hωp = {F ∈ H
p(R2+) : ω(F, t)p ≤ Cω(t)}.

Let ω(t) be a modulus of continuity such that

ω(t)/t ↑ ∞, t→ 0+.(1)

We define the Oskolkov sequence δk (see [2]) by

δ0 = 1, δk+1 = min

{

δ : max

(

ω(δ)

ω(δk)
;
δω(δk)

δkω(δ)

)

=
1

2

}

, k = 0, 1, . . .(2)
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Theorem I (A. A. Solyanik [4]). Let 0 < p < ∞ and F ∈ Hωp where
ω(δ) satisfies (1), and let w(t) be an increasing positive function such that
ω(t)/w(t) is also increasing and

∞
∑

k=1

(

ω(δk)

w(δk)

)p

<∞.(3)

Then for every F ∈ Hωp we have

F (x+ it)− F (x) = ox(w(t)) a.e., t→ 0+.(4)

Now it is natural to ask about the sharpness of the estimate (4). For
p ≥ 1 the answer is contained in [1, Theorem 2]. In Theorem II below we
extend the result of [1] to the remaining case 0 < p < 1.

Theorem II. Let 0 < p < 1, suppose the modulus of continuity ω(t)
satisfies (1) and the series in (3) diverges, i.e.

∞
∑

k=1

(

ω(δk)

w(δk)

)p

=∞.(5)

Then there exists an F ∈ Hωp such that for almost all x ∈ R,

lim sup
t→0+

|F (x+ it)− F (x)|

w(t)
=∞.(6)

Proof. In the following we denote generic constants that are independent
of the function (or the variable or sequence) involved by C with different
indices. Also, let

ψk :=

(

w(δk)

ω(δk)

)p

.

We note that the following two simplifications do not restrict generality (see
[1, pp. 248–249]).

(i) It is sufficient to prove the existence of some F ∈ Hωp with

lim sup
t→0+

|F (x+ it)− F (x)|

w(t)
> 0 a.e. on R(7)

instead of (6).

(ii) We may assume that

ψ2 = 1, ψk ≥ k + 1.(8)

Suppose that the numbers {δk} are defined by (2), and q is a fixed positive
integer which will be specified later. Define

rk = max{m ∈ Z : qmδk ≤ 1/ψk}, k = 1, 2, . . .(9)
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It is easy to verify (see e.g. [2]) that 2δk+1 ≤ δk and thus
∞
∑

k=1

δk <∞

while
∞
∑

k=1

rkδk =∞.(10)

Since it is easy to choose by induction an increasing sequence nj such that
∑

nj−1≤k<nj , rk≥j

rkδk ≥ 1,

there exists a subsequence of rk tending to infinity which still has the prop-
erty (10). We will assume that rk → ∞ itself, which does not restrict gen-
erality, as will be seen below.

For k ≥ 2 define intervals Ik = (αk;βk] ≡ (ak − δkψ
1/p
k ; bk + δkψ

1/p
k ],

where bk − ak = qrkδk, in the following way: Set α2 = 0 and αk+1 = βk
if βk < 1 and αk+1 = 0 otherwise. Let sm ↑ ∞ be such that αsm = 0 and
consider

Ek =

rk−1
⋃

ν=1

[ak + (νq − 1)δk; ak + (νq + 1)δk].

Then |Ek| = 2(rk − 1)δk. Set

K = {k ∈ Z+ : ψk ≤ k
2}.(11)

It follows from (10) that
∑

k∈K

rkδk =∞,(12)

hence
∑

k∈K

|Ek| =∞.

Let

L =

∞
⋃

m=1

Lm, Lm = {k ∈ K : s2m ≤ k < s2m+1}, E∗m =
⋃

k∈Lm

Ek.(13)

Then obviously either
∑

k∈L

|Ek| =∞(14)

or
∑

k 6∈L |Ek| =∞. Without loss of generality assume (14) and rewrite it as

∞
∑

m=1

|E∗m| =
∑

k∈L

|Ek| =∞.
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By the Borel–Cantelli-type lemma (see e.g. [5, p. 442]), there exist numbers
ξm such that

lim sup
m

E∗ξm ∪ E ≡
(

∞
⋂

j=1

∞
⋃

m=j

E∗ξm

)

∪E = R,(15)

where E∗ξm = E∗m − ξm are translates of E
∗
m and E is some set of measure

zero. Denote by τm the translation τm(·) ≡ (· − ξm) and define

Iτk = τm(Ik), s2m ≤ k < s2m+1.

Since now the distribution of Iτk is fixed we may denote it again by the same
letters, so Iτk = (αk;βk]. For x ∈ R we introduce Kx = {k ∈ L : I

τ
k ∋ x}. It

is easy to verify (see [1, p. 250, (28)]) the following important property of
Kx: there exists a k0 ≥ 1 such that for any x ∈ R,

l, k ∈ Kx, l > k ≥ k0 implies l ≥ 2k.(16)

Let us define a sequence {zj,k}
rk
j=1 of complex numbers by

zj,k = ak + jqδk − iδk, so ℜzj,k = ak + jqδk,(17)

and let v be the smallest positive integer such that 2vp > 1. For every k ∈ K
set

Fk(z) = w(δk)

rk
∑

j=1

(

δk
zj,k − z

)2v

, z ∈ C, ℑz > −δk.

We note that Fk restricted to the real line is bounded,

‖Fk‖∞ ≤ Cpw(δk)

rk
∑

j=1

δ2vk
(jqδk)2v

≤ Cpw(δk)(18)

and, therefore,

‖Fk‖
p
p ≤ ‖Fk‖

p
∞

\
x∈3Ik

dx+
\

x6∈3Ik

|Fk(x)|
p dx ≤ Cpω(δk)

p + . . .

since |Ik| < ψ−1k = o(1) (see (8)). Also\
x6∈3Ik

|Fk(x)|
p dx ≤ w(δk)

pδ2vpk

rk
∑

j=1

\
x6∈3Ik

dx

|zj,k − x|2vp

≤ Cpw(δk)
prkδ

2vp
k

\
x≥|Ik|

dx

(δ2k + x
2)vp

≤ Cpω(δk)
pψkrkδ

2vp
k |Ik|

1−2vp

≤ Cpω(δk)
pr1−2vpk = o(ω(δk)),

hence

‖Fk‖p ≤ Cpω(δk).(19)
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Further

|F ′k(x)| ≤ Cpw(δk)

rk
∑

j=1

δ2vk
(jqδk)2v+1

≤ Cp
w(δk)

q2v+1δk

∞
∑

j=1

j−(2v+1) ≤ Cp
w(δk)

δk

whence

‖F ′k‖∞ ≤ Cp
w(δk)

δk
.(20)

If x 6∈ Ik then

|Fk(x)| ≤ Cpw(δk)

rk
∑

j=1

δ2vk

(δk + jqδk + δkψ
1/p
k )
2v

≤ Cpw(δk)

∞
∑

j=1

(jq + ψ
1/p
k )
−2v ≤ Cpw(δk)(ψ

1/p
k )
1−2v

≤ Cpω(δk)(ψ
1/p
k )
2−2v = O(ω(δk))

and

‖FkχIck‖∞ ≤ Cpω(δk).(21)

Also

|F ′k(x)| ≤ Cpw(δk)

rk
∑

j=1

δ2vk

(δk + jqδk + δkψ
1/p
k )
2v+1

≤ Cp
w(δk)

δk

∞
∑

j=1

(jq + ψ
1/p
k )
−(2v+1)

≤ Cp
ω(δk)

δk
(ψ
1/p
k )
1−2v ≤ Cp

ω(δk)

δk

and

‖F ′kχIck‖∞ ≤ Cp
ω(δk)

δk
.(22)

Now define F =
∑

k∈L Fk. In view of (2) and (8) the estimates (18) and
(19) imply that F is bounded analytic in R

2
+ and belongs to H

p(R2+). We
show that F ∈ Hωp .

Choose δs+1 < h ≤ δs. Then

ω(F, h)pp ≤
∑

k≤s, k∈L

ω(Fk, h)
p
p + 2

∑

k>s, k∈L

‖Fk‖
p
p

≤
∑

k≤s, k∈L

ω(Fk, h)
p
p + Cpω(δs+1)

p

by (2) and (19). Now
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‖Fk(x+ h)− Fk(x)‖
p
p

≤
\

x∈5Ik

|Fk(x+ h)− Fk(x)|
p dx+

\
x6∈5Ik

|Fk(x+ h)− Fk(x)|
p dx ≡ I1 + I2.

By (20),

I1 ≤ h
p‖F ′k‖

p
∞

\
x∈5Ik

dx ≤ Cph
pw(δk)

pδ−pk ψ−1k = Cph
pω(δk)

pδ−pk .

Further,

I2 ≤ Cph
pw(δk)

pδ2vpk

rk
∑

j=1

\
x6∈5Ik

dx

|zj,k − x− ξj |(2v+1)p

with some 0 ≤ ξj < h ≤ δk. Since x+ ξj 6∈ 3Ik we have\
x6∈5Ik

dx

|zj,k − x− ξj |(2v+1)p
≤ Cp

\
|x|≥|Ik|

dx

|x|(2v+1)p
≤ Cpψ

(2v+1)p−1
k .

Hence

I2 ≤ Cpw(δk)
pδ2vpk hprkψ

(2v+1)p−1
k = Cph

pω(δk)
p

δpk
r
1−(2v+1)p
k ≤ Cph

pω(δk)
p

δpk

and thus ω(Fk, h)p ≤ Cphω(δk)δ
−1
k . Since

∑

k≤s, k∈L

ω(Fk, h)
p
p ≤ Cph

p
∑

k≤s

ω(δk)
pδ−pk ≤ Cph

pω(δs)
pδ−ps ≤ Cpω(h)

p

we obtain

ω(F, h)p ≤ Cpω(h),

i.e., F ∈ Hωp .

Next we examine the behavior of F (x + it) − F (x). Take t = δs with
s ∈ L. Then

|F (x+ it)− F (x)|

≥ |Fs(x+it)−Fs(x))|−
∑

k<s, k∈L

|Fk(x+it)−Fk(x)|−
∑

k>s, k∈L

|Fk(x+it)−Fk(x)|.

We discuss the contributions of these terms. First we have
∑

k<s, k∈L

|Fk(x+ it)− Fk(x)|

=
∑

k<s, k∈Kx

|Fk(x+ it)− Fk(x)|+
∑

k<s, k∈Kcx

|Fk(x+ it)− Fk(x)| ≡ Σ1 +Σ2
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where again Kcx = L \ Kx. Then, by (16) and (11),

Σ1 ≤
∑

k<s, k∈Kx

δs‖F
′
k‖∞ ≤ Cp,qδs

∑

k≤s/2

ω(δk)ψ
1/p
k δ−1k

≤ Cp,qδs
ω(δs)

δs
s2
∑

k≤s/2

2k−s ≤ Cp,qs
22−s/2ω(δs) = o(ω(δs))

and

Σ2 ≤
∑

k<s, k∈L

δs‖F
′
kχIck‖∞ ≤ Cp,qδs

∑

k<s

ω(δk)

δk
≤ Cp,qω(δs).

Combining these two estimates we have, for sufficiently large s,
∑

k<s, k∈L

|Fk(x+ it)− Fk(x)| ≤ Cp,qω(δs).(23)

Analogously, we decompose
∑

k>s, k∈L

|Fk(x+ it)− Fk(x)|

=
∑

k>s, k∈Kx

|Fk(x+ it)− Fk(x)|+
∑

k>s, k∈Kcx

|Fk(x+ it)− Fk(x)| ≡ Σ
1 +Σ2.

Then, by (16), (11), and (18),

Σ1 ≤ 2
∑

k>s, k∈Kx

‖Fk‖∞ ≤ Cp,q
∑

k≥2s

w(δk)

≤ Cp,qω(δs)
∑

k≥2s

2s−kk2/p ≤ Cp,qω(δs)s
22−s = o(ω(δs))

and by (21),

Σ2 ≤
∑

k>s, k∈Kcx

‖FkχIck‖∞ ≤ Cp,q
∑

k>s

ω(δk) ≤ Cp,qω(δs).

Thus, for sufficiently large s,
∑

k>s, k∈L

|Fk(x+ it)− Fk(x)| ≤ Cp,qω(δs)(24)

(recall that we have set t = δs, s ∈ L). Therefore, as a consequence of (23)
and (24), we have

|F (x+ it)− F (x)| ≥ |Fs(x+ it)− Fs(x)|+O(ω(δs)).(25)
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For x ∈ Es and j with |ℜzj,s − x| ≤ δs it follows that

|Fs(x+ it)− Fs(x)|

≥ w(δs)

(

δ2vs
|zj,s − x|2v

−
δ2vs

|zj,s − x− it|2v

−
∑

n 6=j

δ2vs
|zn,s − x|2v

−
∑

n 6=j

δ2vs
|zn,s − x− it|2v

)

≡ w(δs)(A−B − C −D).

But it is easy to see that A−B ≥ 1/4 and D ≤ C. Finally, by (17),

C ≤
∑

n 6=j

δ2vs
|ℜ(zn,s − x)|2v

≤
∑

n 6=j

δ2vs
(|ℜzn,s −ℜzj,s| − |ℜzj,s − x|)2v

≤
∑

n 6=j

δ2vs
(q|n− j|δs − δs)2v

≤ 2

∞
∑

n=1

δ2vs
|(qn− 1)δs|2v

≤ cq−2v.

Now choose q such that cq−2v ≤ 1/16. Then

|Fs(x+ it)− Fs(x)| ≥ w(δs)/8,

which together with (25) implies that for the given x,

|F (x+ it)− F (x)| ≥ 18w(δs) +O(ω(δs)) =
1
8w(t) + o(w(t))

from which (7) follows and Theorem II is proved.

Remark 1. Theorems I and II are the non-periodic versions of the re-
sults due to A. A. Solyanik [3, 4], which are extensions of Oskolkov’s results
[2] concerning Steklov means of periodic functions. The present construction
is much simpler than that in [4] due to an application of the Borel–Cantelli-
type lemma, which allows us to avoid tantalizing technical difficulties solved
by Solyanik in the periodic case.

Remark 2. One of the possible future directions for the above subject
could be multidimensional generalizations. However, Solyanik’s theorem has
a rather complex proof and the first step toward the multidimensional case
might be the investigation of the problem for real Hardy classes.
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