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THE SET FUNCTIONS T AND K AND IRREDUCIBLE CONTINUA

BY

LEOBARDO FERNÁNDEZ and SERGIO MACÍAS (México)

Abstract. We study the set functions T and K on irreducible continua. We present
several properties of these functions when defined on irreducible continua. In particular,
we characterize the class of irreducible continua for which these functions are continuous.
We also characterize the class of K-symmetric irreducible continua.

1. Introduction. The purpose of this paper is to study the set functions
T and K defined on irreducible continua. The paper consists of six sections.
After the section of definitions and notation, the third section gives general
properties of T and K, for example: (1) If X is an irreducible continuum,
then for each subcontinuum A of X, T (A) = K(A) (Corollary 3.10); (2) If
X is an irreducible continuum, then the image of each closed subset of X
under K is connected (Theorem 3.13). In the fourth section we characterize
the class of K-symmetric irreducible continua as those continua which are
indecomposable or 2-indecomposable (Theorem 4.6). In the fifth section we
present a different proof of a result, with respect to the set function T , by
R. W. FitzGerald [6, p. 169], which says that the finest monotone upper
semicontinuous decomposition G of a continuum X of type λ such that each
element of G is nowhere dense and X/G is an arc can be expressed in terms
of the set function T (Theorem 5.2); we also give the corresponding result
for the set function K (Theorem 5.3). In the sixth section, we characterize
the class of irreducible continua for which the set functions T and K are con-
tinuous as those continua which are continuously irreducible (Theorems 6.6
and 6.7, repectively).

F. B. Jones defined the set functions T and K in [12, Theorems 2 and
3] to study aposyndetic continua. In fact, he defined those functions only
for points (rather than subsets). Since then many properties related to these
functions have been studied. Also, these functions have been applied to study
continua. For example, C. L. Hagopian uses the set function K to study
plane continua ([9], [10] and [11]). E. Vought also uses K to study monotone
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decompositions of continua [25], and continua such that for each pair of
its points there exists an irreducible continuum between those two points
which is decomposable [26]. Regarding the set function T , for example,
D. P. Bellamy and J. J. Charatonik use T to study contractibility of continua
[1]. D. P. Bellamy and C. L. Hagopian use T to study continua which can
be mapped onto their cones [2]. The second named author uses T to study
symmetric products of continua [15].

2. Definitions and notation. Given a subset A of a metric space X
with metric d, we denote by Int(A) the interior of A and by Cl(A) the closure
of A. Also, given a positive number r, we denote by Vr(p) the open ball of
radius r about p, i.e., Vr(p) = {x ∈ X | d(x, p) < r}; and for a set A, Vr(A)
denotes the open ball of radius r about A. The set of positive integers is
denoted by N.

Given a metric space Z, a decomposition of Z is a family G of nonempty
and mutually disjoint subsets of Z such that

⋃
G = Z. A decomposition G

of a metric space Z is said to be upper semicontinuous if the quotient map
q : Z � Z/G is closed. The decomposition is continuous provided that the
quotient map q is both closed and open.

A continuum is a nonempty compact connected metric space. A contin-
uum X is aposyndetic if for each pair of points x1 and x2 of X, there exists
a subcontinuum W of X such that x1 ∈ IntX(W ) ⊂W ⊂ X \ {x2}.

Given a continuum X, we define the hyperspace of nonempty closed sub-
sets of X to be the set 2X = {A ⊆ X | A is nonempty and closed}, topol-
ogized with the Hausdorff metric, H, [16]. We also define the hyperspace of
subcontinua of X to be the set C(X) = {W ∈ 2X | W is connected}. On a
continuum X, the set function T is defined as follows: for each A ⊆ X,

T (A) = {x ∈ X | if W ∈ C(X) and x ∈ Int(W ), then W ∩A 6= ∅},
and the set function K is defined as follows: for each A ⊆ X,

K(A) =
⋂
{W ∈ C(X) | A ⊆ Int(W )}.

When we need to emphasize that the set functions T and K are defined
on the continuum X, we write TX and KX , respectively. Let L ∈ {T ,K}.
A continuum X is L-symmetric provided that for each pair of closed subsets
A and B of X, A ∩ L(B) = ∅ if and only if L(A) ∩ B = ∅. A continuum X
is point L-symmetric if for each pair of points p and q of X, p ∈ L({q}) if
and only if q ∈ L({p}). Given a continuum X, we say that L is continuous
if its restriction to 2X is continuous, i.e., L : 2X → 2X is continuous.

A continuum X is weakly irreducible provided that the complement of
each finite union of subcontinua of X has a finite number of components.
A continuum X is irreducible between two of its points if no proper subcon-
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tinuum of X contains both points. A continuum is irreducible if it is irre-
ducible between two of its points. A continuum X is of type λ provided that
X is irreducible and each indecomposable subcontinuum of X has empty
interior. By [24, Theorem 10, p. 15], a continuum X is of type λ if and only
if it admits a finest monotone upper semicontinuous decomposition G such
that each element of G is nowhere dense and X/G is an arc. Each element
of G is called a layer of X. Following [20], we say that a continuum X of
type λ for which G is continuous is a continuously irreducible continuum (see
also [19]).

A continuum X is n-indecomposable if (1) X is the union of n continua
none of which is a subset of the union of the others, and (2)X is not the union
of n + 1 such continua. P. M. Swingle proved that every n-indecomposable
continuum is the union of n indecomposable continua none of which is a
subset of the union of the others [23, Theorem 2]; and C. E. Burgess showed
that these n indecomposable continua are unique [3, Theorem 2].

3. The set functions T and K. We begin with a result about the set
function K:

3.1. Theorem. Let X be a continuum. Then K(A) =
⋃
{K({a}) |

a ∈ A} for each A ∈ C(X).

Proof. Since
⋃
{K({a}) | a ∈ A} ⊆ K(A), we only need to show the

opposite inclusion. Let z ∈ X\
⋃
{K({a}) | a ∈ A}. Then z ∈

⋂
{X\K({a}) |

a ∈ A}. Thus, for each a ∈ A, there exists a subcontinuum Ma of X such
that a ∈ Int(Ma) and z /∈ Ma. Then {Int(Ma)}a∈A is an open cover of A.
Since A is compact, there are a1, . . . , an ∈ A such that A ⊆

⋃n
i=1 Int(Mai).

Let M =
⋃n

i=1Mai . Then M is a subcontinuum of X such that A ⊆ Int(M)
and z /∈M . Hence, z ∈ X \ K(A).

3.2. Remark. Note that the result corresponding to Theorem 3.1 for
the set function T is not true. Let X be the suspension over the Cantor
set with vertices v1 and v2. If A is an arc in X having v1 and v2 as its end
points, then T (A) = X, meanwhile

⋃
{T ({a}) | a ∈ A} = A.

The proof of the following theorem may be found in [8, Theorem 160].

3.3. Theorem. If X is a point T -symmetric or a point K-symmetric
continuum, then T ({x}) = K({x}) for all x ∈ X.

As a consequence of Theorems 3.1 and 3.3, we have the following theo-
rem.

3.4. Theorem. If X is a point T -symmetric continuum, then K(A) =⋃
{T ({a}) | a ∈ A} for every A ∈ C(X).
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3.5. Corollary. If X is an aposyndetic point T -symmetric continuum,
then K(A) = A for all A ∈ C(X).

The following lemma is easy to establish. It is used in the proof of The-
orems 3.13 and 4.6.

3.6. Lemma. Let X be an indecomposable continuum. Then K(A) = X
for each A ∈ 2X .

3.7. Theorem. Let X be a weakly irreducible continuum. Then T (A) ⊆
K(A) for each A ∈ 2X .

Proof. Let A ∈ 2X and let x ∈ X \ K(A). Then there exists a subcon-
tinuum M of X such that A ⊆ Int(M) ⊆M and x /∈M . Since X is weakly
irreducible, X \M has finitely many components. Let C be the one contain-
ing x. Then Cl(C) is a subcontinuum of X containing x in its interior [16,
1.6.2] and Cl(C) ∩A = ∅. Therefore, x ∈ X \ T (A).

Since each irreducible continuum is weakly irreducible [16, 1.7.29] we
have the following corollary.

3.8. Corollary. Let X be an irreducible continuum. Then T (A) ⊆
K(A) for each A ∈ 2X .

The next theorem shows that the reverse inclusion to the one given in
Theorem 3.7 is true for subcontinua.

3.9. Theorem. Let X be a weakly irreducible continuum. Then T (A) =
K(A) for each A ∈ C(X).

Proof. Let A ∈ C(X) and let x ∈ X \ T (A). Then there exists a subcon-
tinuum W of X such that x ∈ Int(W ) ⊆ W ⊆ X \ A. Since X is weakly
irreducible and W is a subcontinuum of X, X \W has finitely many compo-
nents. Let M be the one containing A. Since M is connected and open in X,
Cl(M) is a subcontinuum of X such that A ⊆M ⊆ Cl(M) and x /∈ Cl(M).
Thus, x ∈ X \ K(A). This implies that K(A) ⊆ T (A). The other inclusion
follows from Theorem 3.7.

3.10. Corollary. If X is an irreducible continuum, then T (A) = K(A)
for each A ∈ C(X).

3.11. Remark. Let us observe that Corollary 3.10 is an extension of
[18, Theorem 3.8] for the class of irreducible continua, because we do not
require the continuity of T . Also note that each irreducible continuum is
point T -symmetric [16, 3.1.37].

Next, we prove that the image under K of any closed subset of an irre-
ducible continuum X is connected. First, we prove the following:

3.12. Lemma. Let X be a decomposable continuum which is irreducible
between p and q. Let P ∗ = {x ∈ X | X is irreducible between x and q} and
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Q∗ = {x ∈ X | X is irreducible between p and x}. Then, for all p′ ∈ P ∗ and
q′ ∈ Q∗, X is irreducible between p′ and q′.

Proof. Let p′ ∈ P ∗ and let q′ ∈ Q∗. Then X is irreducible between
p′ and q, and between p and q′. By [14, Lemma, p. 196], X is irreducible
either between p′ and q′, or between p′ and p. Since X is decomposable,
P ∗ ∩Q∗ = ∅, because if z ∈ P ∗ ∩Q∗, then there are three points of X, p, q
and z, such that X is irreducible between any two of them, and thus, by
[22, Corollary 11.20], X is indecomposable, which is a contradiction. Hence,
P ∗ ⊆ X \ Q∗. Since X \ Q∗ is the composant of p [22, Theorem 11.4], X
is not irreducible between p and p′. Therefore, X is irreducible between p′

and q′.

3.13. Theorem. If X is an irreducible continuum, then K(A) is con-
nected for each A ∈ 2X .

Proof. Let X be a continuum which is irreducible between p and q and
let A ∈ 2X . If K(A) = X, then K(A) is connected. Assume that K(A) 6= X.
Thus, by Lemma 3.6, X is decomposable. Let P ∗ = {x ∈ X | X is irreducible
between x and q} and Q∗ = {x ∈ X | X is irreducible between p and x}.
Note that p ∈ P ∗ and q ∈ Q∗. We consider two cases:

Case (i): A ∩ Cl(P ∗) 6= ∅. If we had A ∩ Cl(Q∗) 6= ∅, then for every
subcontinuum M of X such that A ⊆ Int(M), there would exist p′ ∈M ∩P ∗
and q′ ∈ M ∩ Q∗. Then, by Lemma 3.12, M = X, and thus, K(A) = X,
contrary to the assumption that K(A) 6= X. Hence, A∩Cl(Q∗) = ∅. Since A
is compact, there exists r > 0 such that Vr(A) ∩ Cl(Q∗) = ∅. Let N ∈ N be
such that 1/n < r for each n > N . Given n > N , let Qn be the component
of X \ V1/n(A) containing q. By [14, Theorem 3, p. 193], Cl(X \ Qn) is a
subcontinuum of X for each n > N . Note that A ⊆ Int(Cl(X \ Qn)) ⊆
Cl(X \ Qn). Let H =

⋂
n>N Cl(X \ Qn). Then H is a subcontinuum of X

[16, 1.7.2]. We claim that H = K(A). By definition, K(A) ⊆ H. Assume
that there exists z ∈ H \ K(A). Then there exists a subcontinuum W of X
such that A ⊆ Int(W ) and z /∈ W . Since A ⊆ Int(W ), there exists N0 ∈ N
such that V1/n(A) ⊆ W ; and thus, by [22, Theorem 5.6], Qn ∩W 6= ∅ for
every n > N0. Since A ⊆ Int(W ) and A ∩ Cl(P ∗) 6= ∅, there exists p′ ∈ P ∗
such that p′ ∈ W . If we had z /∈ Qm for some m > N0, then W ∪ Qm

would be a subcontinuum of X such that p′, q ∈W ∪Qm but z /∈W ∪Qm,
which contradicts the fact that X is irreducible between p′ and q. Thus,
z ∈ Qn for each n > N0. Let l > N0. Then z ∈ Ql, p′ ∈ W , q ∈ Ql and
W ∩Ql 6= ∅. Hence, X = W ∪Ql. This implies that X \Ql ⊆ W . Since W
is closed, Cl(X \ Ql) ⊆ W . But z ∈ Cl(X \ Ql). Thus, z ∈ W , which is a
contradiction.
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Case (ii): A ∩ Cl(P ∗) = ∅ and A ∩ Cl(Q∗) = ∅. Since A is compact,
there exists r > 0 such that Vr(A) ∩ Cl(P ∗) = ∅ and Vr(A) ∩ Cl(Q∗) = ∅.
Let N ∈ N be such that 1/n < r for each n > N . Given n > N , let Pn be
the component of X \ V1/n(A) containing p and let Qn be the component
of X \ V1/n(A) containing q. By [14, Theorem 3, p. 193], for each n > N ,
Cl(X \ Pn) and Cl(X \Qn) are subcontinua of X. Also, by [14, Theorem 4,
p. 193], X \ (Pn ∪ Qn) = (X \ Pn) ∩ (X \ Qn) is connected. Observe that
A ⊆ (X \Pn)∩ (X \Qn). Let H =

⋂
n>N Cl((X \Pn)∩ (X \Qn)). Note that,

as in Case (i), H is a subcontinuum of X. We claim that H = K(A). By
definition, K(A) ⊆ H. Suppose that there exists z ∈ H \ K(A). Then there
exists a subcontinuum W of X such that A ⊆ Int(W ) and z /∈ W . Note
that z ∈ Cl((X \ Pn) ∩ (X \Qn)) for each n > N . Since A ⊆ Int(W ), there
exists N0 ∈ N such that N0 > N and V1/n(A) ⊆ W for each n > N0. Thus,
by [22, Theorem 5.6], Pn ∩W 6= ∅ and Qn ∩W 6= ∅ for every n > N0. Now,
z ∈ Pn ∪ Qn for each n > N0. If we had z /∈ Pm ∪ Qm for some m > N0,
then Pm ∪W ∪Qm would be a subcontinuum of X containing p and q and
z /∈ Pm∪W ∪Qm, contrary to the fact that X is irreducible between p and q.
Thus z ∈ Pn ∪ Qn for each n > N0. Since X is irreducible, Pn ∪ Qn is not
connected and we may assume that z ∈ Qn for each n > N0. Let l > N0.
Then z ∈ Ql \ Pl. Since p ∈ Pl ∪W and q ∈ Ql, we have Pl ∪W ∪Ql = X.
Hence, X \ Ql ⊆ Pl ∪ W ; thus, Cl(X \ Ql) ⊆ Pl ∪ W . This implies that
Cl(X\Pl)∩Cl(X\Ql) ⊆ Cl(X\Ql) ⊆ Pl∪W . Since z ∈ Cl(X\Pl)∩Cl(X\Ql),
it follows that z ∈ Pl ∪W , which is a contradiction.

3.14. Remark. Note that Theorem 3.13 is not true for weakly irre-
ducible continua. To show this, let S1 be the unit circle. Then S1 is weakly
irreducible and K is the identity on 2S1

[8, Theorem 26].

To prove Lemma 3.16 below, we need the following definition: Let X be
a continuum and let A ⊆ X. We say that a point z ∈ X is a weak cut point
of X that separates A provided that z ∈ M for every subcontinuum M of
X such that A ⊆M . Let WC(A) denote the set all such points.

3.15. Lemma. Let X be a continuum and let A ∈ 2X . Then WC(A) ⊆
K(A).

Proof. This follows from the above definition.

3.16. Lemma. Let X be an irreducible continuum and let A ∈ 2X . If W
is a subcontinuum of X such that T (A) ⊆ Int(W ), then K(A) ⊆ Int(W ).

Proof. Let X be an irreducible continuum between p and q. Suppose
y ∈ K(A) \ Int(W ). Since T (A) ⊆ Int(W ), we have y /∈ T (A). Then there
exists a subcontinuum M of X such that y ∈ Int(M) ⊆ M ⊆ X \ A. Since
X is irreducible, X \M has at most two components. If A were contained
in one of them, say C1, then Cl(C1) would be a subcontinuum of X such
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that A ⊆ Int(Cl(C1)) ⊆ Cl(C1) ⊆ X \ {y}, contradicting y ∈ K(A). Hence,
X \M = C1 ∪ C2 where A ∩ Ci 6= ∅ for i ∈ {1, 2} and we may assume that
p ∈ C1 and q ∈ C2. Then every point of Int(M) is a weak cut point of X
that separates A. If there existed z ∈ Int(M) which is not a weak cut point
of X that separates A, there would exist a subcontinuum R of X such that
A ⊆ R and z /∈ R. But this implies that Cl(C1) ∪ R ∪ Cl(C2) is a proper
subcontinuum of X containing p and q, which is a contradiction. Hence, by
Lemma 3.15, Int(M) ⊆W . Thus, y ∈ Int(W ), contrary to our assumption.

The next result shows that the set functions T and K commute on irre-
ducible continua.

3.17. Theorem. If X is an irreducible continuum, then T (K(A)) =
K(T (A)) for each A ∈ 2X .

Proof. Let A ∈ 2X . First we show that K(T (A)) ⊆ T (K(A)). By Corol-
lary 3.8 we have T (A) ⊆ K(A). Hence, K(T (A)) ⊆ K(K(A)). By Theo-
rem 3.13, K(A) is connected and, by Theorem 3.9, K(K(A)) = T (K(A)).
Therefore, K(T (A)) ⊆ T (K(A)).

For the other inclusion, let x ∈ X \ K(T (A)). Then there exists a sub-
continuum W of X such that T (A) ⊆ Int(W ) and x /∈W . By Lemma 3.16,
K(A) ⊆ Int(W ). Since X is irreducible, X \W has at most two components.
Let C be the one containing x. Then Cl(C) is a subcontinuum of X such
that x ∈ Int(Cl(C)) ⊆ Cl(C) ⊆ X \ K(A). Thus, x ∈ X \ T (K(A)).

4. K-symmetric continua. We aim to characterize irreducible K-sym-
metric continua (Theorem 4.6).

4.1. Theorem. Let X be a K-symmetric continuum. If K({x}) 6= X for
each x ∈ X, then X is not irreducible.

Proof. Suppose X is irreducible between p and q. Let P ∗ = {x ∈ X |
X is irreducible between x and q} and Q∗ = {x ∈ X | X is irreducible
between p and x}. By Lemma 3.12, X is irreducible between p′ and q′, for
all p′ ∈ P ∗ and q′ ∈ Q∗. Since K({x}) 6= X for any x ∈ X, we deduce that
Cl(P ∗)∩Cl(Q∗) = ∅: if z ∈ Cl(P ∗)∩Cl(Q∗), then every continuum W such
that z ∈ Int(W ) must contain some p′ ∈ P ∗ and some q′ ∈ Q∗; thus, W = X
and K({z}) = X, which is a contradiction.

Let y ∈ X \ (Cl(P ∗) ∪ Cl(Q∗)). Let U be an open set such that y ∈
U ⊆ Cl(U) ⊆ X \ (Cl(P ∗) ∪ Cl(Q∗)). Since X is irreducible, X \ U is
not connected. Let P and Q be the components of X \ U containing p
and q respectively. By [14, Theorem 3, p. 210], P ∗ ⊆ P and Q∗ ⊆ Q. By
[14, Theorem 4, p. 193], X \ (P ∪ Q) is connected and U ⊆ X \ (P ∪ Q).
Hence, Cl(X \ (P ∪Q)) is a subcontinuum of X containing y in its interior.
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This implies that K({y}) ∩ (P ∗ ∪ Q∗) = ∅. However, K({p, q}) = X, i.e.,
y ∈ K({p, q}), which contradicts the fact that X is K-symmetric.

Note that irreducible continua are T -symmetric [16, 3.1.37]. Rewriting
Theorem 4.1, we see that most irreducible continua are not K-symmetric.

4.2. Corollary. If X is a K-symmetric irreducible continuum, then
there exists a point x ∈ X such that K({x}) = X.

Note that [4, Theorem 7] may be stated as follows:

4.3. Theorem. If X is a continuum, then there exists a positive integer
n such that X is n-indecomposable if and only if the collection E = {T ({x}) |
x ∈ X} is finite.

4.4. Theorem. Let X be an irreducible continuum and let x0 ∈ X. If
T ({x0}) = X, then the collection E = {T ({x}) | x ∈ X} is finite.

Proof. First note that if X is indecomposable, then clearly E = {X} [16,
3.1.34]. Hence, E is finite.

Suppose X is decomposable and irreducible between the points a and b.
Let x0 be a point of X such that T ({x0}) = X. Since X is irreducible, X is
T -symmetric [16, 3.1.37]. Thus, X is point T -symmetric. Since T ({x0})=X,
it follows that x0 ∈ T ({a}) ∩ T ({b}). Hence, by the irreducibility of X,
X = T ({a}) ∪ T ({b}).

Now, we show that Cl(X \ T ({b})) = T ({a}). Suppose there exists
x ∈ T ({a}) \Cl(X \ T ({b})). Then Cl(X \ T ({b})) is a subcontinuum of X
[14, Theorem 3, p. 193] such that a ∈ Int(Cl(X\T ({b}))) ⊂ Cl(X\T ({b})) ⊂
X \ {x}. Hence, a 6∈ T ({x}). Since X is point T -symmetric [16, 3.1.37], we
obtain x 6∈ T ({a}), a contradiction. Therefore, Cl(X \ T ({b})) = T ({a}).
Thus, T ({a}) is irreducible between a and each point of Bd(T ({a})) [14,
Theorem 7, p. 194]. Since, with a similar argument, we can show that
x0 ∈ Cl(X \ T ({a})), it follows that x0 ∈ Bd(T ({a})). Therefore, T ({a})
is irreducible between a and x0. Similarly, T ({b}) is irreducible between b
and x0.

Let x ∈ X. If x ∈ T ({a}) ∩ T ({b}), then T ({x}) = X. Suppose x ∈
T ({a}) \ T ({b}). Since X is point T -symmetric [16, 3.1.37], we have a ∈
T ({x}). Hence, T ({x}) = T ({a}), since x 6∈ T ({b}). Similarly, if x ∈
T ({b}) \ T ({a}), then T ({x}) = T ({b}). Thus, E = {X, T ({a}), T ({b})}.
Therefore, E has three elements.

4.5. Theorem. Let X be an n-indecomposable continuum. If n ≥ 3,
then either X is not irreducible, or K({x}) 6= X for any x ∈ X.

Proof. Since X is an n-indecomposable continuum, X =
⋃n

j=1 Zj , where
Zj is an indecomposable subcontinuum of X for j ∈ {1, . . . , n} and no Zj is
a subset of the union of the other continua. We consider two cases.



THE SET FUNCTIONS T AND K 87

Case (i):
⋂n

j=1 Zj 6= ∅. Then, since n ≥ 3, X is not irreducible.

Case (ii):
⋂n

j=1 Zj = ∅. Then there exist j1, j2 ∈ {1, . . . , n} such that
Zj1 ∩ Zj2 = ∅. Hence, we have two possibilities:

(a) If x ∈ Zj1 , then Zj2 \ K({x}) 6= ∅ and K({x}) 6= X. Similarly, if
x ∈ Zj2 , then K({x}) 6= X.

(b) If x ∈
⋃
{Z` | ` ∈ {1, . . . , n} \ {j1, j2}}, then K({x}) ⊂

⋃
{Z` | ` ∈

{1, . . . , n} \ {j1, j2}}, and K({x}) 6= X. Hence, K({x}) 6= X for any
x ∈ X.

Therefore, either X is not irreducible, or K({x}) 6= X for any x ∈ X.

4.6. Theorem. Let X be an irreducible continuum. Then X is K-sym-
metric if and only if X is indecomposable or 2-indecomposable.

Proof. Suppose X is an irreducible K-symmetric continuum. Thus, there
exists x0 ∈ X such that K({x0}) = X, by Corollary 4.2. It follows that
T ({x0}) = X (Theorem 3.3). Then, by Theorem 4.4, the collection E =
{T ({x}) | x ∈ X} is finite. Hence, there exists a positive integer n such that
X is n-indecomposable (Theorem 4.3). Then, by Theorem 4.5, n ≤ 2. There-
fore, X is either indecomposable or 2-indecomposable.

Now, if X is indecomposable, then K({x}) = X for all x ∈ X, by
Lemma 3.6. Suppose X is 2-indecomposable. Then there exist two inde-
composable subcontinua H and L of X such that X = H∪L, H \L 6= ∅ and
L \H 6= ∅. Note that, since H and K are indecomposable with union X, for
each A ∈ 2X , K(A) ∈ {X,H,L}. Now it follows that X is K-symmetric.

5. Continua of type λ. We present a different proof of a result, with
respect to the set function T , by R. W. FitzGerald [6, p. 169], which says that
given a continuum of type λ, X, the finest monotone upper semicontinuous
decomposition G of X such that each element of G is nowhere dense and X/G
is an arc, can be expressed in terms of the set function T (Theorem 5.2).
We also give the corresponding result for the set function K (Theorem 5.3).

We begin by proving the following easy lemma.

5.1. Lemma. Let X be a continuum of type λ. Let G be the finest mono-
tone upper semicontinuous decomposition of X such that each element of G
is nowhere dense and X/G is an arc, and let q : X � [0, 1] be the quotient
map. If x ∈ X and A ⊂ q−1(q(x)), then T (A) ⊂ q−1(q(x)).

Proof. Let y ∈ X \ q−1(q(x)). Then q(y) 6= q(x). Hence, there exists
a closed subinterval [r, t] of [0, 1] such that q(y) ∈ Int[0,1]([r, t]) and q(x) ∈
[0, 1]\ [r, t]. This implies that q−1(q(x))∩q−1([r, t]) = ∅. Since q is monotone,
q−1([r, t]) is a subcontinuum of X. By construction, y ∈ IntX(q−1([r, t]).
Therefore, y ∈ X \ T (A).
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5.2. Theorem. If X is a continuum of type λ, then {T 2({x}) | x ∈ X}
is the finest monotone upper semicontinuous decomposition G of X such that
each element of G is nowhere dense and X/G is an arc.

Proof. Let q : X � [0, 1] be the quotient map corresponding to G. Ob-
serve that G = {q−1(q(x)) | x ∈ X}.

Let x ∈ X. Note that T ({x}) ⊂ q−1(q(x)), by Lemma 5.1. By [24,
Theorem 18, p. 26], there exists z ∈ q−1(q(x)) such that T ({z}) = q−1(q(x)).
Since X is T -symmetric [16, 3.1.37] and x ∈ T ({z}), we have z ∈ T ({x}).
Hence, q−1(q(x)) = T ({z}) ⊂ T 2({x}) ⊂ q−1(q(x)) (the last inclusion is
true by Lemma 5.1). Thus, T 2({x}) = q−1(q(x)). Since x is an arbitrary
point of X, we conclude that G = {T 2({x}) | x ∈ X}.

As a consequence of Theorem 5.2 and Corollary 3.10 we have the follow-
ing:

5.3. Theorem. If X is a continuum of type λ, then {K2({x}) | x ∈ X}
is the finest monotone upper semicontinuous decomposition G of X such that
each element of G is nowhere dense and X/G is an arc.

6. Continuity of T and K. We begin noting a couple of theorems on
the continuity of K, one on hereditarily unicoherent continua (Theorem 6.1)
and the other on irreducible continua (Theorem 6.2). Next, we characterize
the class of irreducible continua for which the set functions T and K are
continuous (Theorems 6.6 and 6.7, repectively).

The proof of the following theorem may be found in [7, Theorem 7].

6.1. Theorem. Let X be a hereditarily unicoherent continuum. If for
each x ∈ X, K is continuous at {x}, then K is continuous.

Essential to the proof of Theorem 6.1 is the fact that K(A) is connected
for each A ∈ 2X . Since by Theorem 3.13 we have this property on irreducible
continua, the proof of the following theorem is very similar to the proof of
Theorem 6.1 and we omit it.

6.2. Theorem. Let X be an irreducible continuum. If for each x ∈ X,
K is continuous at {x}, then K is continuous.

To prove our theorem about the continuity of the set function T (The-
orem 6.6), we need the following results.

6.3. Lemma. Let X be a continuum, let A ∈ 2X and let A = {T ({a} |
a ∈ A}. If T is continuous on singletons, then A is closed in 2X .

Proof. Let B ∈ Cl2X (A). Then there exists a sequence {an}∞n=1 of points
of A such that the sequence {T ({an})}∞n=1 converges to B. Since A is com-
pact, without loss of generality, we assume that {an}∞n=1 converges to a point
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a ∈ A. Since T is continuous on singletons, we have B = limn→∞ T ({an}) =
T ({a}). Therefore, B ∈ A and A is closed in 2X .

6.4. Theorem. Let X be a continuum with T (A) =
⋃
{T ({a}) | a ∈ A}

for all A ∈ 2X . If T is continuous on singletons, then T is continuous.

Proof. Let ε > 0, and let δ > 0 be given by the uniform continuity of
T |F1(X).

Let A,B ∈ 2X be such that H(A,B) < δ. Let A = {T ({a}) | a ∈ A}
and let B = {T ({b}) | b ∈ B}. By Lemma 6.3, A and B are closed sub-
sets of 2X . Let T ({a}) ∈ A. Since H(A,B) < δ, there exists b ∈ B such
that H({a}, {b}) < δ. Hence, by the choice of δ, H(T ({a}), T ({b})) < ε.
Thus, A ⊂ VHε (B). Similarly, B ⊂ VHε (A). Therefore, H2(A,B) < ε, where
H2 is the Hausdorff metric on 22X

induced by H. Then, by [21, (1.48)],
H(

⋃
A,

⋃
B) ≤ H2(A,B) < ε. By hypothesis, T (A) =

⋃
A and T (B) =⋃

B. Hence, we have proved that if H(A,B) < δ, then H(T (A), T (B)) < ε.
Therefore, T is continuous.

6.5. Corollary. Let X be a T -additive continuum. If T is continuous
on singletons, then T is continuous.

Proof. Since X is T -additive, T (A) =
⋃
{T ({a}) | a ∈ A} for all A ∈ 2X

[16, 3.1.46]. Now, the corollary follows from Theorem 6.4.

Now, we characterize the class of irreducible continua for which T is
continuous.

6.6. Theorem. Let X be an irreducible continuum. Then T is contin-
uous for X if and only if X is continuously irreducible.

Proof. Note that if X is continuously irreducible, then T is continuous
for X [19, Theorem 3.2].

Suppose that X is an irreducible continuum for which T is continuous.
Since X is irreducible, it is T -symmetric [16, 3.1.37]. Hence, it is point
T -symmetric. Since T is continuous, it follows that

G = {T ({x}) | x ∈ X}

is a monotone continuous decomposition of X such that X/G is a locally
connected continuum, and the elements of G are nowhere dense [17, Theorem
3.8]. Since X is irreducible and the quotient map q : X � X/G is monotone,
X/G is an irreducible continuum [14, Theorem 3, p. 192]. Hence, X/G is
an arc. Thus, X is a continuum of type λ. Since T is continuous, X is
continuously irreducible [19, Theorem 3.2].

Now, we characterize the class of irreducible continua for which K is
continuous.
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6.7. Theorem. Let X be an irreducible continuum. Then KX is con-
tinuous if and only if X is continuously irreducible.

Proof. Since X is irreducible, it is TX -symmetric [16, 3.1.37]. Hence, it
is TX -additive [16, 3.144] and point TX -symmetric. Since X is point TX -
symmetric, KX({x}) = TX({x}), by Theorem 3.3. If KX is continuous, then
TX is continuous on singletons. Thus, by Corollary 6.5, it is continuous.
Therefore, by Theorem 6.6, X is continuously irreducible.

Now, suppose X is a continuously irreducible continuum. Let q : X �
[0, 1] be the quotient map. Then q−1(t) is a terminal subcontinuum of X for
all t ∈ [0, 1] [19, Lemma 3.3]. Since q is monotone, open and each q−1(t) is
a terminal continuum, KX(A) = q−1K[0,1]q(A) for each A ∈ 2X [18, Theo-
rem 3.2]. Let =(q) : 2[0,1] → 2X be given by =(q)(B) = q−1(B). Since q is
continuous and open, we deduce that =(q) and 2q are continuous ([13, The-
orem 2, p. 165] and [21, (1.168)], respectively). Since K[0,1] is continuous [8,
Theorem 27], and KX = =(q)◦K[0,1] ◦2q, it follows that KX is continuous.

6.8. Remark. Note that the “if” implication follows from Theorem 6.6,
[16, 3.1.37], [19, Lemma 3.3] and [18, Corollary 6.3], but we preferred to give
a proof using only the set function K. It would be of interest to find a proof of
the reverse implication using only K, i.e., without using the set function T .

Acknowledgements. We thank P. Krupski for pointing out that S. T.
Czuba proved the following: for each subcontinuum A of a continuum X, we
have K(A) = {x ∈ X | T ({x}) ∩ A 6= ∅} [5, Lemma 6], which is equivalent
to Theorem 3.1.
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México D.F., C.P. 04510, México
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