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DIVERGENCE OF GENERAL OPERATORS
ON SETS OF MEASURE ZERO

BY

G. A. KARAGULYAN (Yerevan)

Abstract. We consider sequences of linear operators Un with a localization property.
It is proved that for any set E of measure zero there exists a set G for which UnIG(x)
diverges at each point x ∈ E. This result is a generalization of analogous theorems known
for the Fourier sum operators with respect to different orthogonal systems.

In 1876 P. Du Bois-Reymond [5] constructed an example of a continuous
function whose trigonometric Fourier series diverges at some point. In 1923
A. N. Kolmogorov [11] proved that for a function from L1(T) the divergence
of the Fourier series can hold everywhere. On the other hand, according to
the Carleson–Hunt theorem ([4], [7]) the Fourier series of functions from
Lp(T), p > 1, converge a.e. A natural question is whether the Fourier series
of a function from Lp (p > 1) or C may diverge on an arbitrary given set
of measure zero. In fact the investigation of this problem began before Car-
leson’s theorem. First S. B. Stechkin [14] proved in 1951 that for any set
E ⊂ T of measure zero there exists a function f ∈ L2(0, 2π) whose Fourier
series diverges on E. Then in 1963 L. V. Tăıkov [15] showed that f can be
taken from Lp(0, 2π) for any 1 ≤ p < ∞. In 1965 Kahane and Katznel-
son [8] proved the existence of a continuous complex valued function whose
Fourier series diverges on a given set of measure zero. Essentially developing
Kahane–Katznelson’s approach V. V. Buzdalin [3] proved that for any set
of measure zero there exists a continuous real valued function whose Fourier
series diverges on that set. The same question has also been investigated
for other classical orthonormal systems. Sh. V. Kheladze [9] constructed a
function from Lp(0, 1) (1 < p < ∞) whose Fourier–Walsh series diverges
on a given set of measure zero. In another paper [10] he proved the same
for Vilenkin systems. Then V. M. Bugadze [1] proved that for the Walsh
system the function in question can be taken from L∞. In fact Bugadze
proved the same also for Haar ([2]), Walsh–Paley and Walsh–Kaczmarz sys-
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tems ([1]). The Haar system in such problems was also considered in the
papers of M. A. Lunina [12] and V. I. Prokhorenko [13]. Recently U. Gogi-
nava [6] proved that for any set of measure zero there exists a bounded
function whose Walsh–Fejér means diverges on that set. For other problems
concerning divergent Fourier series the reader is referred to the papers of
P. L. Ul’yanov [16] and W. L. Wade [17].

In this paper we notice that this phenomenon is common for general
sequences of linear operators with a localization property. We consider se-
quences of linear operators

(1) Unf(x) =
b�

a

Kn(x, t)f(t) dt, n = 1, 2, . . . ,

with

(2) |Kn(x, t)| ≤Mn.

We say the sequence (1) has the localization property (L-property) if for any
f ∈ L1(a, b) with f(x) = 1 for x ∈ I = (α, β) (⊂ [a, b]) we have

lim
n→∞

Unf(x) = 1 for x ∈ I,

and the convergence is uniform in each closed set A ⊂ I. We prove the
following

Theorem. If the sequence of operators (1) has the localization property,
then for any set of measure zero E ⊂ [a, b] there exists a set G ⊂ [a, b] such
that

lim inf
n→∞

UnIG(x) ≤ 0, lim sup
n→∞

UnIG(x) ≥ 1 for any x ∈ E,

where IG denotes the characteristic function of G.

This theorem can be applied to the Fourier partial sum operators with
respect to all classical orthogonal systems (trigonometric, Walsh, Haar,
Franklin and Vilenkin systems). Moreover, instead of partial sums we can
also discuss linear means of partial sums corresponding to an arbitrary reg-
ular summation method T = {aij}. It is well known that all these operators
have the localization property. So the following corollary is an immediate
consequence of the main result.

Corollary. Let Φ = {φn(x), n ∈ N}, x ∈ [a, b], be one of the above
mentioned orthogonal systems and T an arbitrary regular linear summation
method. Then for any set E of measure zero there exists a set G ⊂ [a, b] such
that the Fourier series of its characteristic function f = IG with respect to
Φ diverges at each point of E for the T -method.
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Remark. The function f in the corollary cannot be continuous in gen-
eral. There are a variety of sequences of Fourier operators which converge
uniformly when f is continuous.

The following lemma gives a bound for the kernels of operators (1) if the
Un have the L-property.

Lemma. If the sequence of operators Un has the L-property, then there
exists a positive decreasing function φ(u), u ∈ (0,+∞), such that if x ∈ [a, b]
and n ∈ N then

(3) |Kn(x, t)| ≤ φ(|x− t|) for almost all t ∈ [a, b].

Proof. We define

φ(u) = sup
n∈N, x∈[a,b]

ess sup
t:|t−x|≥u

|Kn(x, t)|,

where ess supt∈A |g(t)| denotes ‖g‖L∞(A). It is clear that φ is decreasing and
satisfies (3) provided φ(u) < ∞ for u > 0. To prove φ(u) is finite, suppose
the converse, that is, φ(u0) = ∞ for some u0 > 0. This means that for any
γ > 0 there exist lγ ∈ N and cγ ∈ [a, b] such that

(4) |Klγ (cγ , t)| > γ, t ∈ Eγ ⊂ [a, b] \ (cγ − u0, cγ + u0), |Eγ | > 0.

Consider the sequences ck and lk corresponding to the numbers γk = k, k =
1, 2, . . . . We can fix an interval I with |I| = u0/3 which contains infinitely
many terms of the sequence {ck}. Hence we can suppose that cγ ∈ I in (4)
and therefore 2I ⊂ (cγ − u0, cγ + u0). So we can write

(5) cγ ∈ I, Eγ ⊂ [a, b] \ 2I.

Then we choose a sequence γk ↗ ∞ such that for the corresponding se-
quences mk = lγk , xk = cγk and Ek = Eγk we have

xk ⊂ I, Ek ⊂ (a, b) \ 2I,(6)

|Kmk(xk, t)| ≥ k3, t ∈ Ek,(7)
sup

1≤i<k
|UmkIEi(x)| < 1, x ∈ I,(8)

|Ek| · max
1≤i<k

Mmi < 1 (k > 1).(9)

We do this by induction. Taking γ1 = 1 we get m1 satisfying (7). This
follows from (4). Now suppose we have already chosen the numbers γk and
mk satisfying (6)–(9) for k = 1, . . . , p. According to the L-property, UnIEi(x)
converges to 0 uniformly in I for any i = 1, . . . , p. On the other hand, because
of (2) and (4), lγ → ∞ as γ → ∞. Hence we can choose γp+1 > (p + 1)3

such that the corresponding mp+1 satisfies the inequality

(10) |Ump+1IEi(x)| < 1, x ∈ I, i = 1, . . . , p.
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This gives (8) in the case k = p + 1. According to (4) and the bound
γp+1 > (p + 1)3 we also have (7). Finally, taking Ep+1 with small enough
measure we can guarantee (9) for k = p + 1. So the construction of the
sequence γk satisfying (6)–(9) is complete. Now consider the function

(11) g(x) =
∞∑
i=1

IEi(x)
k2

.

We have g ∈ L1 and supp g ⊂ [a, b] \ 2I. Since xk ∈ I, using the relations
(6)–(9), we obtain

|Umkg(xk)| ≥
|UmkIEk(xk)|

k2
−
k−1∑
i=1

|UmkIEi(xk)|
i2

−
∞∑

i=k+1

|UmkIEi(xk)|
i2

≥ k −
k−1∑
i=1

1
i2
−Mmk

∞∑
i=k+1

|Ei|
i2
≥ k − 2.

This is a contradiction, because the convergence Ung(x)→ 0 is uniform on
I according to the L-property.

We say a family I of mutually disjoint semi-open intervals is a regular
partition of an open set G ⊂ (a, b) if G =

⋃
I∈I I and each interval I ∈ I

has two adjacent intervals I+, I− ∈ I with

(12) 2I ⊂ I∗ = I ∪ I+ ∪ I−.

It is clear that any open set has a regular partition.

Proof of Theorem. For a given set E of measure zero we will construct
a specific sequence of open sets Gk with regular partitions Ik, k = 1, 2, . . . .
They will satisfy the conditions

1) if I ∈ Ik and I = [α, β) then α, β 6∈ E,
2) if I, J ∈

⋃k
j=1 Ij then J ∩ I ∈ {∅, I, J},

3) E ⊂ Gk ⊂ Gk−1 (G0 = [a, b]).

In addition, for any interval I ∈ I we fix a number ν(I) ∈ N such that

4) if I, J ∈
⋃k
j=1 Ij and I ⊂ J then ν(I) ≥ ν(J),

5) supx∈I |Uν(I)IGl(x)− 1| < 1/k2 if I ∈ Ik and l ≤ k,
6) supx∈I |Uν(I)IGk(x)| < 1/k2 if I ∈ Il and l < k.

We define G1 and its partition I1 arbitrarily, just ensuring condition 1).
This can be done because |E| = 0 and so Ec is everywhere dense in [a, b].
Then using the L-property for any interval I ∈ I1 we can find ν(I) ∈ N
satisfying 5) for k = 1. Now suppose we have already chosen Gk and Ik
satisfying 1)–6) for all k ≤ p. Obviously we can choose an open set Gp+1,
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E ⊂ Gp+1 ⊂ Gp, satisfying 1), 2) and the bound

|Gp+1 ∩ I| < δ(I), I ∈
p⋃

k=1

Ik,

where

δ(I) =
1

6(p+ 1)2 max{Mν(I),Mν(I+),Mν(I−), φ(|I|/2)/|I|}
,

and the function φ(u) is taken from the lemma. Suppose I ∈ Il and l < p+1.
We have

(13) |Uν(I)IGp+1(x)| ≤ |Uν(I)IGp+1∩I∗(x)|+ |Uν(I)IGp+1∩(I∗)c(x)|.
Using the lemma and the bound

δ(J) ≤ |J |
6φ(|J |/2)(p+ 1)2

, J ∈ Il,

for any x ∈ I we get

|Uν(I)IGp+1∩(I∗)c(x)| ≤
∑

J∈Il : J 6=I,I+,I−

�

Gp+1∩J
φ(|x− t|) dt(14)

≤
∑

J∈Il : J 6=I,I+,I−

�

Gp+1∩J
φ(|J |/2) dt

≤
∑

J∈Il : J 6=I,I+,I−
|Gp+1 ∩ J |φ(|J |/2)

≤
∑

J∈Il : J 6=I,I+,I−
δ(J)φ(|J |/2)

≤ 1
6(p+ 1)2

∑
J∈Il : J 6=I,I+,I−

|J |

<
1

6(p+ 1)2
.

On the other hand, we have

δ(I), δ(I+), δ(I−) ≤ 1
6(p+ 1)2Mν(I)

,

and therefore

(15) |Uν(I)IGp+1∩I∗(x)| ≤Mν(I)|Gp+1 ∩ I∗|

≤Mν(I)(δ(I) + δ(I+) + δ(I−)) ≤ 1
2(p+ 1)2

, x ∈ [a, b].

Combining (13)–(15) we get 6) in the case k = p + 1. Now we choose a
partition Ip+1 satisfying just conditions 1) and 2). Using the L-property we
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may define numbers ν(I) for I ∈ Ip+1 satisfying condition 5) with k = p+1.
Hence the construction of the sets Gk is complete. Now denote

G =
∞⋃
i=1

(G2i−1 \G2i).

We have

UnIG(x) =
∞∑
k=1

(−1)k+1UnIGk(x).

For any x ∈ E there exists a unique sequence I1 ⊃ I2 ⊃ · · · , Ik ∈ Ik, such
that x ∈ Ik, k = 1, 2, . . . . According to 6) we have

|Uν(Ik)IGl(x)| ≤ 1/l2, l > k.

From 5) it follows that

|Uν(Ik)IGl(x)− 1| ≤ 1/k2, l ≤ k.
Thus we obtain∣∣∣Uν(Ik)IG(x)−

k∑
l=1

(−1)l+1
∣∣∣ ≤ k∑

l=1

|Uν(Ik)IGl(x)− 1|+
∞∑

l=k+1

|Uν(Ik)IGl(x)|

≤ k · 1
k2

+
∞∑

l=k+1

1
l2
<

2
k
.

Since the sum
∑k

i=1(−1)k+1 takes values 0 and 1 alternately we get

lim
t→∞

Uν(I2t)IG(x) = 0, lim
t→∞

Uν(I2t+1)IG(x) = 1

for any x ∈ E. The proof of the Theorem is complete.
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