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REARRANGEMENT ESTIMATES OF THE AREA INTEGRALS

BY

A. K. LERNER (Ramat Gan)

Abstract. We derive weighted rearrangement estimates for a large class of area in-
tegrals. The main approach used earlier to study these questions is based on distribution
function inequalities.

Introduction. For a harmonic function u on the upper half-space R
n+1
+

= R
n × R+, define the Lusin area integral and the nontangential maximal

function by

Aαu(x) =
( \
Γα(x)

t1−n|∇u(y, t)|2 dy dt
)1/2
,

Nαu(x) = sup
(y,t)∈Γα(x)

|u(y, t)|,

where Γa(x) is the cone with vertex at x ∈ R
n and aperture α. That is,

Γα(x) = {(y, t) ∈ R
n+1
+ : |y − x| < αt}.

A well known and important result due to Burkholder and Gundy [2] and
Fefferman and Stein [4] states that

‖Aau‖p ≤ cp,n,α,β‖Nβu‖p (0 < p <∞, 0 < α, β <∞).(1)

The following generalization of this inequality was proved by Kaneko [6].
Consider the differential operator L defined by

L =

n+1∑

j,k=1

ajk
∂2

∂yj∂yk
+

n+1∑

j=1

bjt
−1 ∂
∂yj
,

where yn+1 denotes the (n+ 1)st variable t, and the differentiation is taken
in the sense of distributions. For v ∈ L1loc(Rn+1+ ) such that Lv is a positive
Borel measure µLv on R

n+1
+ , we define the area integral Sαv by

Sαv(x) =
\

Γα(x)

t1−n dµLv(y, t).
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Then, by [6],

‖Sav‖p ≤ cp,n,α,β,L‖Nβv‖p (0 < p <∞, 0 < α, β <∞).(2)

If u is harmonic on R
n+1
+ and L = ∆ is the Laplacian, then L|u|2 = 2|∇u|2.

Hence, taking L = ∆, v = |u|2 in (2), we obtain (1). More generally, if L = ∆
and v is subharmonic, then (2) gives the estimate proved by McConnell [8]
for a limited range of p and by Uchiyama [10] for all p > 0.
Note that the proofs of (1), (2) in the above-mentioned papers are based

on good-λ inequalities (see also [5, 9], where the same technique was used).
In this paper we prove weighted rearrangement estimates relating Sαv

and Nβv. The key lemma used here deals with an abstract analogue of the
area integral, so our method can be applied to more general cases.
Our main result is the following.

Theorem. Let v be a locally integrable function on R
n+1
+ such that Lv

is a positive Borel measure on R
n+1
+ . Let ω be a weight satisfying the A∞

condition. Then for 0 < δ ≤ 1 we have

((Sαv)
δ)∗ω(t) ≤ c1

∞\
c2t

((Nβv)
δ)∗ω(τ)

dτ

τ
(t > 0, 0 < α, β <∞),(3)

where c1, c2 depend only on n, α, β, L and ω.

It is clear that (3) and Hardy’s inequality [1, p. 124] give a weighted
version of (2).
When δ = 1/2, L = ∆, v = |u|2 and u is harmonic, we obtain
Corollary. Let u be a harmonic function on R

n+1
+ and let ω ∈ A∞.

Then

(Aαu)
∗
ω(t) ≤ c1

∞\
c2t

(Nβu)
∗
ω(τ)
dτ

τ
(t > 0, 0 < α, β <∞),(4)

where c1, c2 depend only on n, α, β and ω.

We mention that in the case when u is the Poisson integral of f , u =
f ∗ Pt(y), a weaker result was proved in [7] with the Hardy–Littlewood
maximal function Mf instead of Nβu on the right hand side of (4).

1. Definitions and the main Lemma. We recall that the Hardy–
Littlewood maximal function is defined by Mf(x) = sup |Q|−1

T
Q |f(y)| dy,

where the supremum is taken over all cubes Q containing x.
Let ω be a non-negative, locally integrable function on R

n. Given a mea-
surable set E, let ω(E) =

T
E ω(x) dx. We say that ω satisfies Muckenhoupt’s

condition A∞ if there exist c, ξ > 0 so that for any cube Q and E ⊂ Q,
ω(E) ≤ c(|E|/|Q|)ξω(Q).
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It is well known (see, for example, [3]) that a weight ω belongs to A∞ iff
there exist k, r ≥ 1 so that

ω{x :Mf(x) > λ} ≤ k
λr

\
Rn

|f(x)|rω(x) dx(5)

for all measurable functions f on R
n and all λ > 0.

The non-increasing rearrangement of f with respect to ω is defined by

f∗ω(t) = sup
ω(E)=t

inf
x∈E
|f(x)| (0 < t <∞).

Let F be an arbitrary measurable function on R
n+1
+ . We define its non-

tangential maximal function by

NαF (x) = sup
(y,t)∈Γα(x)

|F (y, t)|.

It is easy to show (see, for example, [2]) that if β > α, then

{x : NβF (x) > λ} ⊂ {x :Mχ{NαF>λ}(x) > cn,α,β}
for all λ > 0. From this and (5) we immediately get

(NβF )
∗
ω(t) ≤ (NαF )∗ω(ct) (t > 0, α < β),(6)

where c depends only on n, α, β and ω.

For a positive Borel measure µ on R
n+1
+ , define its “area integral” by

Sα(µ)(x) =
\

Γα(x)

dµ(y, t).

Denote by Γ hα (x) the truncated cone, that is,

Γ hα (x) = {(y, t) ∈ R
n+1
+ : |y − x| < αt, 0 < t < h}.

Now we can formulate our main Lemma.

Lemma. Let F be an arbitrary measurable function and µ be a positive
Borel measure on R

n+1
+ . Suppose that for any α > 0 there exist constants

α′, c > 0 so that \
⋃
x∈E Γ

ℓQ
α (x)

tn dµ(y, t) ≤ c|Q| sup
x∈E
Nα′F (x)(7)

for each cube Q ⊂ R
n and E ⊂ Q, where ℓQ denotes the side length of Q.

Let ω be a weight in the class A∞(Rn). Then for any α, β > 0 and 0 < δ ≤ 1
we have

((Sα(µ))
δ)∗ω(t) ≤ c1

∞\
c2t

((NβF )
δ)∗ω(s)

ds

s

for all t > 0, where c1 and c2 depend only on n, α, β and ω.
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Proof. Assume first that µ has compact support in R
n+1
+ . Let B(x, t)

denote the ball in R
n with center x and radius t. Take a C∞ function ϕ on

R
n satisfying χB(0,α) ≤ ϕ ≤ χB(0,2α), and define

S̃α(µ)(x) =
\

R
n+1
+

ϕ

(
x− y
t

)
dµ(y, t).

Clearly, Sα(µ)(x) ≤ S̃α(µ)(x).
Let E be a set of ω-measure t such that S̃α(µ)(x) ≥ (S̃α(µ))∗ω(t) for any

x ∈ E. Choose λ so that c(2nλ)ξ = 1/3, where c, ξ are the constants from
the definition of A∞, and apply the Calderón–Zygmund decomposition to
the function χE and number λ. We get pairwise disjoint cubes Qi such that
λ|Qi| < |E ∩Qi| and

∑
i ω(Qi) ≥ 3t.

Let γ = (λ/2)r/(2k), where k, r are the constants from (5). In accordance

with (7) take α = (2α+
√
n)′, and set E1 = {x : S̃α(µ)(x) > (S̃α(µ))∗ω(2t)},

E2 = {x : Mχ{y:NαF (y)>(NαF )∗ω(γt)}(x) > λ/2}. Observe that ω(E1) ≤ 2t
and, by (5), ω(E2) ≤ t/2. Hence, among Qi there is a cube Q′ such that
|Q′ \ (E1 ∪ E2)| > 0. Take a point x′ ∈ Q′ \ E1. We deduce that for all x,
S̃α(µ)(x) is bounded by (S̃α(µ))

∗
ω(2t) and

ℓQ′\
0

\
Rn

ϕ

(
x− y
t

)
dµ(y, t) +

∞\
ℓQ′

\
Rn

(
ϕ

(
x− y
t

)
− ϕ
(
x′ − y
t

))
dµ(y, t).

By properties of ϕ, if x ∈ Q′, these integrals are majorized by\
Γ
ℓQ′
2α (x)

dµ(y, t) + cℓQ′
∞∑

j=0

2j+1ℓQ′\
2jℓQ′

\
B(x,2αt)∪B(x′,2αt)

1

t
dµ(y, t).(8)

Let F be the set of all x such that NαF (x) ≤ (NαF )∗ω(γt). Since Q′ ∩Ec2
6= ∅, we have |F ∩ 2jQ′| ≥ (1 − λ/2)|2jQ′| (j = 0, 1, . . .). Note that for
all x ∈ Q′, η ∈ 2jQ′ and t ≥ 2jℓQ′ we get |x − η| ≤ 2j

√
n ℓQ′ ≤

√
n t,

and hence B(x, 2αt) ∪ B(x′, 2αt) ⊂ B(η, (2α + √n)t). Thus, setting Dj =
⋃
η∈F∩2jQ′ Γ

2j+1ℓQ′

2α+
√
n
(η), using (7) and Fubini’s theorem, we see that the sec-

ond term in (8) is majorized by

(9) c

∞∑

j=0

1

2j
inf

η∈F∩2jQ′

\
Γ
2j+1ℓQ′

2α+
√
n
(η)

dµ(y, t)

≤ c
∞∑

j=0

1

2j |F ∩ 2jQ′|
\
Dj

tn dµ(y, t) ≤ c(NαF )∗ω(γt).
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Next, observe that |F ∩ E ∩ Q′| ≥ λ|Q′|/2 since |E ∩ Q′| > λ|Q′|. Hence,
exactly as above, we get

inf
x∈F∩E∩Q′

\
Γ
ℓ
Q′
2α (x)

dµ(y, t) ≤ c(NαF )∗ω(γt).(10)

Combining (8)–(10), we obtain

((S̃α(µ))
δ)∗ω(t) ≤ inf

x∈E∩Q′
(S̃α(µ)(x))

δ ≤ (c(NαF )∗ω(γt) + (S̃α(µ))∗ω(2t))δ

≤ c((NαF )δ)∗ω(γt) + ((S̃α(µ))δ)∗ω(2t).
Notice that S̃α(µ) has compact support, because µ does, and therefore

(S̃α(µ))
∗
ω(+∞) = 0. Thus, iterating the last estimate gives

((Sα(µ))
δ)∗ω(t) ≤ ((S̃α(µ))δ)∗ω(t) ≤ c

∞\
γt/2

((NαF )
δ)∗ω(s)

ds

s
.

The assumption on µ is easily removed by taking an increasing sequence
µi ↑ µ with compact support, and using the fact that |fi| ↑ |f | implies
(fi)
∗
ω(t) ↑ f∗ω(t) (see [1, p. 41]). Now invoke the estimate (6) to conclude the

proof of the Lemma.

2. Proof of Theorem. Take dµ(y, t) = t1−ndµLv(y, t). In view of the
Lemma, to prove the Theorem, it suffices to show that for each E ⊂ Q,\

⋃
x∈E Γ

ℓQ
α (x)

t dµLv(y, t) ≤ c|Q| sup
x∈E
Nα′v(x).(11)

Essentially, this was proved in [6]. We give a sligthly different proof here.
Define d(x) = dist(x,E). Then d(x) is a Lipschitz function; moreover,

|d(x)− d(x′)| ≤ |x− x′|. Let Gξ = {y ∈ (1 + 2α)Q : d(y) < ξ}. By Fubini’s
theorem, \

⋃
x∈E Γ

ℓQ
α (x)

t dµLv(y, t) ≤
ℓQ\
0

\
Gαt

t dµLv(y, t)(12)

≤
∞∑

j=0

ℓQ
2j

ℓQ/2
j\

ℓQ/2j+1

\
G
αℓQ/2

j

dµLv(y, t).

Take a non-negative C∞ function ϕ on R
n such that suppϕ ⊂ B(0, 1)

and ‖ϕ‖1 = 1. Set ϕt(x) = ϕ(x/t)t−n and Φj(y, t) = χG
3αℓQ/2

j+1 ∗ ϕαt/4(y).
By the Lipschitz property of d we know that for t ≤ ℓQ/2j−1,

χG
αℓQ/2

j (y) ≤ Φj(y, t) ≤ χGαℓQ/2j−1 (y).
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Next, take a non-negative C∞ function η on R such that χ(1/2,1)(t) ≤ η(t) ≤
χ(1/4,2)(t). Since Φj(y, t)η(t) is a Schwartz function, we deduce that the right
hand side of (12) is bounded by

(13)

∞∑

j=0

ℓQ
2j

\
R
n+1
+

Φj(y, t)η(2
jt/ℓQ) dµLv(y, t)

=

∞∑

j=0

ℓQ
2j

\
R
n+1
+

L∗(Φj(y, t)η(2
jt/ℓQ))v(y, t) dy dt,

where

L∗ =
n+1∑

j,k=1

ajk
∂2

∂yj∂yk
−
n+1∑

j=1

bj
∂

∂yj

1

t
.

It is easy to see that

|L∗(Φj(y, t)η(2jt/ℓQ))| ≤ (c/t2)χDj (y, t),
where

Dj = (GαℓQ/2j−1 \GαℓQ/2j )× (ℓQ/2j+2, ℓQ/2j−1).
If (y, t) ∈ Dj , then there exist x ∈ E so that |y − x| ≤ 2d(y) < 4αℓQ/2j ≤
16αt, and therefore |v(y, t)| ≤ supx∈E N16αv(x). Thus, the expression in (13)
is majorized by

c sup
x∈E
N16αv(x)

∞∑

j=0

ℓQ
2j

ℓQ/2
j−1\

ℓQ/2j+2

dt

t2

\
G
αℓQ/2

j−1\GαℓQ/2j

dy

≤ c sup
x∈E
N16αv(x)

∞∑

j=0

|GαℓQ/2j−1 \GαℓQ/2j | ≤ c|Q| sup
x∈E
N16αv(x),

which proves the Theorem.
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