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n-FUNCTIONAL DIGRAPHS

UNIQUELY DETERMINED BY THE SKELETON

BY

KONRAD PIÓRO (Warszawa)

Abstract. We show that any total n-functional digraph D is uniquely determined by
its skeleton up to the orientation of some cycles and infinite chains. Next, we characterize
all graphs G such that each n-functional digraph obtained from G by directing all its
edges is total. Finally, we describe finite graphs whose edges can be directed to form a
total n-functional digraph without cycles.

Any total functional connected digraph is uniquely determined in the
class of all functional digraphs (up to the orientation of a single cycle or a
single infinite path with or without the source vertex) by its skeleton. This
follows from the fact that such a digraph has exactly one loop or exactly one
cycle (a loop is not considered to be a cycle, see below), or an infinite path
and no cycles or loops. The skeleton of a digraph D is the graph obtained
from D by ignoring the orientation of all the edges.

Here we generalize this result to n-functional digraphs, where n is a
fixed non-negative integer. A digraph D is said to be n-functional (resp.
total n-functional) if for any vertex v, its outdegree dD(v), i.e. the number
of edges starting from v, is not greater than (resp. equal to) n. Further, we
assume that cycles and chains (finite and infinite) have pairwise different
and regular edges, whereas they may contain the same vertex more than
once. In particular, a loop is not a cycle here. We also assume that a finite
or infinite path does not encounter the same vertex twice. Besides infinite
chains with source vertices, which are called N-chains here, we will also
use chains which are infinite in both directions. Such chains will be called
Z-chains.

The main aim of the present paper is to prove the following result.

Theorem 1. Let D be a total n-functional digraph, and H an arbitrary
n-functional digraph with the same skeleton as D. Then there is a family

R of pairwise disjoint cycles of D, a family S of pairwise edge-disjoint
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Z-chains of D and a family T of pairwise edge-disjoint N-chains of D such

that R,S, T are also pairwise edge-disjoint , and H is obtained from D by
inverting the orientation of all the edges in R, S and T .

Proof. Take a vertex v of D and let Dv be the subdigraph of D con-
sisting of v and all finite (directed) chains starting from v. Clearly, Dv is
n-functional, as a subdigraph of an n-functional digraph. Moreover, exactly
one of the following two possibilities holds:

(1.1) Dv is a finite digraph

or

(1.2) there is an infinite path starting from v.

If Dv is infinite, then (1.2) holds by Ramsey’s argument, because the out-
degrees of all vertices of Dv are bounded by n, and also, for any vertex w of
Dv such that w 6= v, there is a directed path from v to w.

Now take an n-functional digraph H having the same skeleton as D. Let
F be the set of all the regular edges of D that are inversely directed in H. It
is sufficient to prove that the edges in F may be divided into three pairwise
disjoint sets in such a way that the edges in the first set form pairwise disjoint
cycles, the edges in the second set form pairwise edge-disjoint Z-chains, and
the edges from the third set form pairwise edge-disjoint N-chains. Of course,
we may assume F 6= ∅.

Let C be the subdigraph ofD consisting of F and the endpoints of all the
edges in F . Then C is a non-empty n-functional digraph (as a subdigraph
of an n-functional digraph) without loops and has at least one regular edge.

Take a vertex v of C. Let e1, . . . , ek be all the edges in F starting from v.
Let f1, . . . , fl be all the edges in F ending at v. Let g1, . . . , gm be all the
edges of D that start from v and are not in F . Then

k +m = n,

because D is total.

Next, f1, . . . , fl, g1, . . . , gm are all the edges of H starting from v. Thus

l +m ≤ n.

These two facts yield

l ≤ k.

Hence,

(2) ddC(v) ≤ dC(v) for each vertex v of C,

where ddC(v) is the indegree of v, i.e. the number of edges of C ending at v.
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Take a vertex u in C and the digraph Cu (defined at the beginning of
the proof). It is easily shown (see also [2], proof of Theorem 2) that for each
vertex v of Cu,

(3) dCu(v) = dC(v).

First assume that Cu is a finite digraph. Then (see e.g. [3])

(Eq) L =

m∑

i=1

dCu(vi) =

m∑

i=1

ddCu(vi),

where L is the number of edges of Cu and v1, . . . , vm are all its vertices.
By (2) and (3) we also have

ddCu(vi) ≤ dd
C(vi) ≤ d

C(vi) = d
Cu(vi).

This together with the fact that Cu is finite entails that for any vertex v
of Cu,

ddCu(v) = dCu(v),

and thus also

(4) dC(v) = ddC(v) for any vertex v of Cu

and
ddCu(v) = ddC(v).

The last equality and (3) imply that for any edge f of C, if the initial or
final vertex of f belongs to Cu, then Cu contains f . Using this fact we show

(5) Cu = C
′,

where C ′ is the connected component of C containing u.
As Cu is connected as an undirected graph and contains u, it is contained

in C ′. On the other hand, for a vertex w of C ′ such that w 6= u, there is an
undirected path (f1, . . . , fk) connecting u and w. Since the initial or final
vertex of f1 is equal to u, f1 is contained in Cu. In particular, both endpoints
of f1 belong to Cu. Hence, the initial or final vertex of f2 belongs to Cu.
Repeating this procedure k times we deduce that f1, . . . , fk are contained
in Cu. In particular, w belongs to Cu. This implies that C

′ and Cu have the
same vertex set, so C ′ = Cu (the edge sets of C

′ and Cu are also equal, since
any edge having endpoints in Cu is contained in Cu).
By (4) and (5), we see, in particular, that for any finite connected com-

ponent B of C, dB(w) = ddB(w) for each vertex w of B. Note that C
does not contain trivial (i.e. one-vertex) connected components, so B has at
least one regular edge. Thus by Euler’s Theorem (see e.g. [1], Chapter 11,
Theorem 1), there is a (directed) cycle containing all the edges of B.
Now we remove all the finite connected components of C. (Obviously, we

can assume that C has at least one infinite connected component. Otherwise
we are done, because each finite connected component forms a cycle.) To
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simplify the notation we will also denote the resulting digraph by C. Then
by (5), for each vertex v of C,

(6) Cv is an infinite digraph.

Indeed, if Cu were finite for some vertex, then by (5), Cu would be a con-
nected component of C containing u, which is a contradiction.

First, we assume that C contains Z-chains, as otherwise it is sufficient
to take the empty family as S.

Next, take the family M of all sets consisting of pairwise edge-disjoint
Z-chains in C. Clearly,M is non-empty, since each set consisting of a single
Z-chain is inM. Moreover, the set-theoretical union of any non-empty lin-
early ordered (by inclusion) subfamily of M also belongs to M. Thus by
Zorn’s Lemma,M has a maximal element S (with respect to inclusion).

By the maximality of S, the digraph C obtained from C by omitting
all the edges from the family S has no Z-chain. Observe also that for any
Z-chain p and a vertex v of C, the numbers of edges of p ending at v and of
those starting from v are equal. Hence by (2) we get

ddC(v) ≤ dC(v) for each vertex v of C,

since any two chains in S are edge-disjoint.

Summarizing, S is the desired family of Z-chains of C, and the digraph
C satisfies (2), so we can just assume in the rest of the proof that

(A.1) C does not contain Z-chains.

For any vertex v of C, let Cv be the subdigraph of C consisting of v and
all finite (directed) chains ending at v.

Clearly, Cv can be obtained in the following three steps. First, take the
digraph C in obtained from C by inverting the orientation of all the edges
of C. Next, take the subdigraph C inv . And finally, invert again the orientation
of all the edges in C inv .

(2) implies that C in is an n-functional digraph, so by (1), C inv is finite or
contains an N-path starting from v. Consequently, Cv is a finite digraph or
there is an infinite path in the digraph C ending at v.

Now we show that the second case is impossible. Assume to the contrary
that p = (. . . , e3, e2, e1) is an infinite path with v as its target vertex. Let B
be the subdigraph of C obtained from C by removing the edges e1, e2, e3, . . .
For any vertex u of p other than v, the numbers of edges of p ending at u
and of those starting from u are equal, whereas at v one more edge ends
than starts. Hence, by (2), for any vertex u of B,

ddB(u) ≤ dB(u) and ddB(v) ≤ dB(v)− 1.

Take the digraph Bv. Since Bv is a subdigraph of B we deduce by (3) that
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for any vertex u of Bu,

ddBu(u) ≤ dBu(u) and ddBu(v) ≤ dBu(v)− 1.

These inequalities and the equality (Eq) imply that Bv is infinite. Thus
by (1.1–2) (note that B is n-functional, as a subdigraph of C), there is an
N-path q of B starting from v. Obviously, the paths p and q together form
a Z-chain. This contradiction entails that for any vertex v of C,

(7) Cv is a finite digraph.

Assume that C has cycles, and letM be the family of all sets consisting
of pairwise edge-disjoint cycles of C. Obviously, M is non-empty, because
any set consisting of one cycle of C belongs toM. It is also easy to show that
the set-theoretical union of a linearly ordered (by inclusion) subfamily ofM
belongs to M as well. Thus using Zorn’s Lemma we can take a maximal
element U inM.
Take the digraph obtained from C by omitting all the edges from the

family U , and next removing all isolated vertices. Then, of course, the re-
sulting digraph C has no cycles. Moreover, since U is a family of pairwise
edge-disjoint cycles, the new digraph also satisfies (2). These two facts imply
that C satisfies (6) (or is empty, but then we are done). Otherwise Cv is fi-
nite and non-trivial for some vertex v, and then by (4) and Euler’s Theorem
we get a cycle of C, a contradiction. Therefore this digraph C will also be
denoted by C. More precisely, we can assume that

(A.2) C does not contain cycles.

Observe that there is a family R2 of pairwise disjoint cycles of C which
contains all the edges of U . To see this, take the subdigraph B of C consisting
of all the edges and vertices from U . Clearly,

dB(w) = ddB(w) for any vertex w of B.

Take a vertex v of B and the digraph Bv. Then for each vertex w of Bv,

(8) ddB
v

(w) = ddB(w)

and

dB
v

(w) ≤ dB(w).

The proof of (8) is analogous to that of (3), and the inequality follows from
the fact that Bv is a subdigraph of B.
Thus

dB
v

(w) ≤ ddB
v

(w) for each vertex w of Bv.

Hence, because Bv is finite by (7) (as a subdigraph of Cv), we deduce (in
exactly the same way as for (4)) that for each vertex w of Bv,

dB
v

(w) = ddB
v

(w),
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and consequently,

(9) dB
v

(w) = dB(w).

The equalities (8) and (9) imply (see the proof of (5)) that Bv is the con-
nected component of B containing v. Hence, since v was arbitrarily chosen,
each connected component of B is finite. Note also that each connected com-
ponent is non-trivial, by the definition of B. Thus by Euler’s Theorem, each
connected component is a cycle. Taking all these cycles we obtain the family
R2 of pairwise disjoint cycles containing all the edges of U . Note that the
families R1 and R2 are disjoint (where R1 is the family of cycles containing
all the finite connected components of C), so their union R = R1∪R2 is the
desired family.

It remains to show that the edges of C form pairwise edge-disjoint
N-chains. First, by (1.1–2) and (6) each edge lies on some N-path. (In partic-
ular, C contains N-paths, being non-empty by assumption.) Secondly, each
path p can be completed to a maximal N-path (i.e. to a path such that
ddC(v) = 0, where v is its source). Indeed, if ddC(v) ≥ 1, then the digraph
Cv is non-trivial. Thus, since it is finite by (7), we can take a path q ending
at v with maximal length. As C has no cycles, we first deduce, by the maxi-
mality of q, that ddC(u) = 0, where u is the initial vertex of q, and secondly,
q and p form a new path containing p.

A family L of N-paths is said to contain relatively maximal paths if for
any p ∈ L with initial vertex v, each edge of C ending at v lies on some path
belonging to L.

Let M be the family of all sets consisting of relatively maximal and
pairwise edge-disjoint N-paths. Obviously, M is non-empty, because each
set consisting of one maximal N-path belongs toM. Observe also that the
set-theoretical union of any subfamily N ⊆M contains relatively maximal
paths, and moreover, if N is linearly ordered by inclusion, then

⋃
N has

pairwise edge-disjoint paths. Hence,
⋃
N ∈M.

Thus, using Zorn’s Lemma, we take a maximal element T in M. Of
course, we want to prove that T contains all the edges of C (which would
complete the proof). Assume otherwise, take the digraph B′ obtained from
C by removing all the edges from T (but not the vertices), and let B be a
non-trivial connected component of B′. Then by (2),

ddB(w) ≤ dB(w) for each vertex w of B.

More precisely, if w is the source vertex of some path in T , then all edges
(in C) ending at w belong to some paths in T , so ddB(w) = 0. If for each
path p in T , w is an inner vertex of p, then the number, say k, of edges
from T that end at w is equal to that of those that start from w. Hence,
ddB(w) = ddC(w)− k ≤ dC(w)− k = dB(w).
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Secondly, for any vertex v of B, the digraph Bv is infinite. Otherwise,
if Bu is finite for some vertex u (B is connected, which implies that Bu
is non-trivial), then by the above inequality and the equality (Eq) we ob-
tain

ddBu(w) = dBu(w) for any vertex w of Bu,

and consequently, by Euler’s Theorem, B contains a cycle (in fact, there is
a cycle containing all the edges of B; see (5)), but this is in contradiction
with (A.2).

Now by (1.1–2), there is an N-path in B (note that B is n-functional,
as a subdigraph of the n-functional digraph C). Since B does not contain
cycles, there is also a maximal infinite path p in B. But then T ∪ {p} is a
new element of the familyM properly containing T , a contradiction.

Remark. Note that in the proof we construct the family T in such a way
that each of its elements is an N-path (not just a chain). But if we admit
the weaker condition that T is a family of pairwise edge-disjoint N-chains
(instead of paths), then we can choose families R′, S′, T ′ (in Theorem 1)
such that R′ is disjoint (not only edge-disjoint) from S′ and T ′.

Indeed, let R,S, T be the families from Theorem 1, and take the fam-
ilies R1 and R2 of all cycles in R that have common vertices with S and
T , respectively. Obviously, the family R′ = R \ (R1 ∪ R2) is disjoint from
S∪T ∪R1∪R2. Thus it is sufficient to construct two new edge-disjoint fam-
ilies S′ and T ′ of pairwise edge-disjoint Z-chains and pairwise edge-disjoint
N-chains, respectively, containing all the edges of S ∪ T ∪R1 ∪R2.

For each cycle c ∈ R1 (resp. c ∈ R2) we choose some Z-chain from S
(resp. N-chain from T ) which has at least one common vertex with c.

Take a chain p ∈ S and let a = (. . . , v−2, v−1, v0, v1, v2, . . .) be the se-
quence of successive vertices of p. Next, take the family Fp of all cycles for
which we have chosen p, and for each cycle c in Fp take a common ver-
tex of c and p. Thus we obtain a subsequence a′ = (. . . , vi

−1
, vi0 , vi1 , . . .) of

pairwise different vertices (because our cycles are pairwise disjoint). Note
that we can arrange all the cycles in Fp in a sequence (. . . , ci

−1
, ci0 , ci1 , . . .).

Now it is sufficient to insert each cycle cij of Fp in the corresponding place
of the sequence a (i.e. vertices of cij in place of the corresponding element
vij in a). Applying this construction to each chain from S we obtain the
required family S′.

Clearly, in a similar way, we can construct the family T ′.

Remark. The family R′ is uniquely determined (for a given digraph H),
that is, for any similar family R′′, there is a bijective correspondence between
R′ and R′′ such that corresponding cycles have the same edges.
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This follows from the fact that R′ is a family of cycles obtained from all
the finite connected components of C (we use the notation from the proof
of Theorem 1). More precisely, each cycle c which is disjoint from S and T
forms a connected component of C, because c is also disjoint from other
cycles, and moreover, each edge of C belongs to R or S or T .

Unfortunately, the following example shows that the families S and T
from Theorem 1 are not uniquely determined (for a given digraph H), even
in the case of a digraph D without undirected cycles.

. . . q - q - q . . .
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More precisely, this is a total 2-functional digraph, and by inverting the
orientation of all its edges we also obtain a 2-functional digraph. Clearly,
there are families S and T consisting of all the edges of this digraph, but
it is easy to see that there are many such families. (Obviously, in each case
S contains a single Z-path, and T is a family of N-paths.)

If an n-functional digraph has an N-chain or a Z-chain, then it also has
an N-path. This follows from the fact that each vertex v of an N-chain may
appear in such a chain at most n times (because at most n edges start from
any vertex, in particular, from v). More precisely, let (v1, v2, v3, . . .) be the
sequence of vertices of an N-chain. (Obviously, if a digraph has a Z-chain,
then it also has an N-chain.) We first take the last occurrence of v1 in this
sequence, next we take the last occurrence of v2, and so on. Clearly, the
resulting sequence forms an N-path.

By this fact and Theorem 1 we have

Corollary 2. Let n be a positive integer and D be a total n-functional
digraph without (directed) N-paths. Let H be an arbitrary n-functional di-

graph with the same skeleton. Then H is obtained from D by inverting the

orientation of some pairwise disjoint (directed) cycles of D. In particular ,
H is also total and does not contain infinite paths.

Hence we immediately get

Corollary 3. Let D be a total n-functional digraph without (directed)
N-paths and cycles. Then D is uniquely determined by its skeleton.
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Let D1 be the digraph consisting of all the positive integers 1, 2, . . . as
vertices and of all the pairs 〈k, k+1〉 as directed edges. LetD2 be the digraph
obtained from D1 by inverting the orientation of all the edges. Then D1, D2
are non-isomorphic functional digraphs without cycles and with the same
skeleton. Note that D1 is total, but has an N-path; and D2 has no N-path,
but is not total.

This example shows that the skeleton of a total n-functional digraph can
be directed to form a non-total n-functional digraph. But using Corollary 2
and the results in [2] we can easily prove the following fact.

Proposition 4. Let G be an infinite graph and n a positive integer.
Then the following conditions are equivalent :

(a) The edges of G can be directed to form a total n-functional digraph
without N-paths.

(b) The edges of G can be directed to form an n-functional digraph and
each such n-functional digraph is total and has no N-path.

(c) The edges of G can be directed to form an n-functional digraph and
each such n-functional digraph is total.

(d) G is a graph such that

(d.1) for any finite subgraph H, me ≤ n ·mv, where mv and me are
the numbers of vertices and edges of H, respectively ,

(d.2) for any vertex v, there is a finite subset W of vertices such that
v ∈W and there are exactly n · |W | edges with endpoints in W .

Proof. (a)⇒(b) follows from Corollary 2. Of course, (b) implies (a)
and (c). (c)⇒(b) follows from the fact that for any n-functional digraph
D with an N-path p, we can invert the orientation of p to obtain a new
n-functional digraph H such that dH(v) = dD(v)− 1, where v is the initial
vertex of p in D.

(a)⇒(d). Direct all the edges of G to obtain a total n-functional digraph
D without N-paths. (d.1) holds by Corollary 6 in [2].

Take a vertex v of D and the digraph Dv from the proof of Theorem 1.
By (1.1–2) and (3) in that proof, Dv is finite and total. In particular, the
number of its edges is equal to n ·m, where m is the number of its vertices.
(d)⇒(a). By (d.1) and Corollary 6 in [2], all the edges of G can be

directed to form an n-functional digraph D. Let v be a vertex of G and take
the set W from (d.2) for v. Next, let H be the subdigraph of D spanned
on W . Then H is finite n-functional and has n · |W | edges. These two facts
imply that H is total. Hence we infer dD(v) = n, so D is total.

Finally, observe that any regular edge f starting from H is contained
in H; this follows from the equality dD(w) = n = dH(w) for any vertex w
of H. Hence, by simple induction, any path in D starting from v is contained
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in H. This fact implies that there is no N-path starting from v, because H
is finite. Thus D does not contain N-paths.

By Corollary 3 we deduce, in particular, that any finite total n-functional
digraph without cycles is uniquely determined by its skeleton. Now we char-
acterize those finite graphs whose edges can be directed to form such a
digraph.

Let G be a graph (or digraph) and v its vertex. Then G− v is the graph
obtained from G in the following way (see e.g. [3]): first, any regular edge
with one endpoint v is replaced by a loop at the other endpoint; next, v and
all the loops at v are removed.

A graph (or digraph) H is said to be an n-reduct of G iff there is a
sequence G0, . . . , Gk of graphs such that G0 = G and Gk = H and for
each i = 0, . . . , k − 1 we have Gi+1 = Gi − vi, where vi is a vertex of Gi
with exactly n loops and the connected component of Gi containing vi is
non-trivial.

An n-reduct H of G is maximal if each connected component of H is
trivial, or H does not contain vertices with exactly n loops.

Proposition 5. Let G be a finite graph and n be a positive integer.
Then the following conditions are equivalent :

(a) The edges of G can be directed to form a total n-functional digraph
without (directed) cycles.

(b) Some maximal n-reduct of G contains only loops and each of its
vertices has exactly n loops.

(c) G has exactly one maximal n-reduct H, and each connected compo-
nent of H contains exactly one vertex and exactly n loops.

Proof. The implication (c)⇒(b) is trivial.
(b)⇒(a). Let H be a maximal n-reduct of G. This can be witnessed by

suitable sequences of graphs G0, . . . , Gk and of their vertices v0, . . . , vk−1
connecting G and H by n-reductions. First, H = Gk can be regarded as a
total n-functional digraph without cycles. Now, assume that all the edges of
Gi (where 1 ≤ i ≤ k) can be directed to form a total n-functional digraph
without cycles. Observe that Gi−1 is obtained from Gi by adding vi−1 with
n loops and replacing some loops of Gi−1 by regular edges with vi−1 as
one of endpoints. Thus we can direct all these regular edges towards vi−1
and obtain a total n-functional digraph without cycles. Hence by simple
induction all the edges of G0 = G can be directed in the desired way.

(a)⇒(c). Let D be a total n-functional digraph without cycles obtained
from G. Then D, and also each of its connected components, contains a
vertex u with exactly n loops. To see this take the very last vertex u of a
path with maximal length. This vertex u has n loops, as otherwise the path
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can be extended by a regular edge starting from u. Obviously, no regular
edge starts from u. Hence, first, D − u and D have the same outdegrees of
vertices. Next, for any vertex w of D−u, w is a root in D− v iff w is a root
in D (w is said to be a root if no regular edge ends at w). Moreover, if u is
contained in a non-trivial connected component of D, then u is not a root.
Observe also that D − u has no cycles, because D has no cycles.
Take a maximal n-reduct K of D. Then by the above facts and simple

induction, K is a total n-functional digraph having the same set of roots
as D. Further, K contains only loops, since otherwise K would have to
contain a non-trivial connected component with some vertex with n loops.
Thus each vertex of K is a root. Summarizing, K consists of all the roots
of D and each of its vertices has exactly n loops. In particular, all maximal
n-reducts of D are equal.
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