VOL. 91

2002

NO. 1

HYPERSPACES OF UNIVERSAL CURVES AND 2-CELLS ARE TRUE $F_{\sigma\delta}$ -SETS

ΒY

PAWEŁ KRUPSKI (Wrocław)

Abstract. It is shown that the following hyperspaces, endowed with the Hausdorff metric, are true absolute $F_{\sigma\delta}$ -sets:

(1) $\mathcal{M}_1^2(X)$ of Sierpiński universal curves in a locally compact metric space X, provided $\mathcal{M}_1^2(X) \neq \emptyset$;

(2) $\mathcal{M}_1^3(X)$ of Menger universal curves in a locally compact metric space X, provided $\mathcal{M}_1^3(X) \neq \emptyset$;

(3) 2-cells in the plane.

Introduction. All spaces are assumed to be metric separable. There are results obtained over the last decade which fully characterize certain subspaces of the hyperspaces 2^X or $\mathcal{C}(X)$ of all non-empty compact or compact connected subsets, respectively, equipped with the Hausdorff metric, of spaces X such as, e.g., \mathbb{R}^k , I^k and the Hilbert cube $Q = I^\infty$, where I = [0, 1] (see [5, 7, 8, 10]).

Recall [10] that the subspace LC(X) of $\mathcal{C}(X)$ of all locally connected continua in X, where X is either of the above-mentioned spaces (for $k \geq 3$), is an $F_{\sigma\delta}$ -absorber, so it is homeomorphic to $\hat{c}_0 = \{(x_i) \in Q : \lim x_i = 0\}$. If X is a compact space containing a harmonic fan or comb, then LC(X) is a true $F_{\sigma\delta}$ -set (see [12, 13]), i.e., it is $F_{\sigma\delta}$ but not $G_{\delta\sigma}$. It is known from [5] that the subspace $AR(\mathbb{R}^2)$ of $\mathcal{C}(\mathbb{R}^2)$ of all absolute retracts in \mathbb{R}^2 is an $F_{\sigma\delta}$ -absorber.

The first essential step in establishing results of that kind is to determine the exact Borel class of a given subspace.

Locally connected continua with no local cut points. A point $x \in X$ is a *local cut point* of a locally connected space X if there is an open connected subset $U \subset X$ such that $U \setminus \{x\}$ is not connected. Let X be a compact space. Denote by $\mathcal{A}(X)$ the subspace of $\mathcal{C}(X)$ consisting of all

²⁰⁰⁰ Mathematics Subject Classification: Primary 54B20, 54F15; Secondary 54H05.

Key words and phrases: Borel set, hyperspace of continua, universal Menger continuum, universal Sierpiński continuum.

locally connected continua in X with no local cut points. Fix a countable open base U_1, U_2, \ldots in X and let

$$T = \{(k, l, m) : \operatorname{cl} U_k \cup \operatorname{cl} U_l \subset U_m \text{ and } \operatorname{cl} U_k \cap \operatorname{cl} U_l = \emptyset\}.$$

We say that, for $(k, l, m) \in T$ and $C \in \mathcal{C}(X)$, the set $C \cap U_m$ is connected between U_k and U_l if there exists a continuum $D \subset C \cap U_m$ intersecting both U_k and U_l ; we say that the set $C \cap U_m$ is cyclicly connected between U_k and U_l if it contains two continua D_1, D_2 each of which intersects both U_k and U_l and $D_1 \cap D_2 \subset U_k \cup U_l$.

For each $(k, l, m) \in T$ put

 $Z(k, l, m) = \{C \in \mathcal{C}(X) : C \cap U_m \text{ is not connected between } U_k \text{ and } U_l\}$ and

W(k,l,m)

 $= \{ C \in \mathcal{C}(X) : C \cap U_m \text{ is cyclicly connected between } U_k \text{ and } U_l \}.$

LEMMA 1. The set Z(k,l,m) is a G_{δ} -set and W(k,l,m) is an F_{σ} -set in $\mathcal{C}(X)$.

Proof. The set $Z_1 = \{(C, D) \in \mathcal{C}(X) \times \mathcal{C}(X) : D \subset C\}$ is closed in $\mathcal{C}(X) \times \mathcal{C}(X)$. The set $Z_2 = \mathcal{C}(X) \times \{D \in \mathcal{C}(X) : D \subset U_m, D \cap U_k \neq \emptyset \neq \emptyset \}$ $D \cap U_l$ is open in $\mathcal{C}(X) \times \mathcal{C}(X)$. The set $\mathcal{C}(X) \setminus Z(k, l, m)$ is the projection of $Z_1 \cap Z_2$ on the first coordinate space, so it is F_{σ} .

Similarly, W(k, l, m) is F_{σ} .

LEMMA 2. We have

$$\mathcal{A}(X) = \mathrm{LC}(X) \cap \bigcap_{(k,l,m) \in T} (Z(k,l,m) \cup W(k,l,m)).$$

Proof. Suppose $C \in \mathcal{A}(X)$ and $C \cap U_m$ is connected between U_k and U_l for $(k, l, m) \in T$. This means there are a continuum $D \subset C \cap U_m$ and two points $v_0 \in D \cap U_k$ and $v_1 \in D \cap U_l$. It follows by the local connectivity of C that the component E of $C \cap U_m$ containing D is an open arcwise connected subset of C. The Arc Doubling Lemma of [15, p. 21] says that v_0, v_1 lie on a simple closed curve in E. Hence, $C \cap U_m$ is cyclicly connected between U_k and U_l .

Now, suppose $C \subset X$ is a locally connected continuum which belongs to the right hand side set in Lemma 2. Let c be an arbitrary point of C and Gbe an open subset of X such that $c \in G$ and $C \cap G$ is connected. Choose a basic set $U_m \subset G$ containing c. The component E of $C \cap U_m$ that contains c is an arcwise connected open subset of C.

We claim that $E \setminus \{c\}$ is connected. Indeed, let $a, b \in E \setminus \{c\}$ be two distinct points and let $V_a, V_b \subset E \setminus \{c\}$ be their respective connected open neighborhoods in C. Choose basic sets $U_k \subset \operatorname{cl} U_k \subset U_m$ and $U_l \subset \operatorname{cl} U_l \subset U_m$

containing a and b, respectively, such that $C \cap U_k \subset V_a$ and $C \cap U_l \subset V_b$. Since the set $C \cap U_m$ is connected between U_k and U_l , it is cyclicly connected between them. Hence, there exist two continua $D_1, D_2 \subset C \cap U_m$ each of which intersects both U_k and U_l and $D_1 \cap D_2 \subset U_k \cup U_l$. For i = 1, 2, we have $D_i \cap U_k \subset C \cap U_k \subset E$, thus $D_i \subset E$. At least one of the continua D_1, D_2 , say D_1 , omits c. Then $V_a \cup V_b \cup D_1$ is a connected subset of $E \setminus \{c\}$ joining a and b. Since c does not cut $E \subset C \cap G$, it does not cut $C \cap G$ either.

If X is a locally compact, non-compact space, then taking a one-point compactification $X' = X \cup \{p\}$ we get $\mathcal{A}(X) = \mathcal{A}(X') \setminus \mathcal{C}(X', p)$, where $\mathcal{C}(X', p) = \{C \in \mathcal{C}(X') : p \in C\}$ is compact. Thus we obtain

PROPOSITION 1. $\mathcal{A}(X)$ is an absolute $F_{\sigma\delta}$ -set for any locally compact space X.

Suppose now that X is an arbitrary Polish space containing a continuum M, where

(1) M is a copy of the (k-1)-dimensional Sierpiński continuum $M_{k-1}^k \subset \mathbb{R}^k$ universal for all (k-1)-dimensional compacta in \mathbb{R}^k (k > 1), or

(2) M is a copy of the Menger k-dimensional continuum $M_k^{2k+1} \subset \mathbb{R}^{2k+1}$ universal for k-dimensional compacta.

(See [9, p. 122] for their description.) Denote by $\mathcal{M}(X)$ the subspace of $\mathcal{C}(X)$ of all topological copies of M in X. We are going to show that $\mathcal{M}(X)$, as well as $\mathcal{A}(X)$, are not $G_{\delta\sigma}$. Denote by \mathbb{N} the set of all positive integers. We will exploit the set

 $P = \{ f \in \{0,1\}^{\mathbb{N} \times \mathbb{N}} : \forall m \ (f(m,n) = 0 \text{ for all but a finite number of } n) \},\$

which is known to be a true $F_{\sigma\delta}$ -subset of the Cantor set $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ (see [11, p. 179]), and find its continuous reduction to $\mathcal{M}(X)$ or $\mathcal{A}(X)$ (see [11, p. 156] for a definition). To this end we construct an auxiliary continuum \widetilde{B} which is a (k-1)-dimensional subset of \mathbb{R}^k in the case of $M = M_{k-1}^k$ or it is k-dimensional in the case of $M = M_k^{2k+1}$.

For each pair $(m, n) \in \mathbb{N} \times \mathbb{N}$ choose a number 0 < x(m, n) < 1 such that

- $x(m, n) \neq x(m', n')$ if $(m, n) \neq (m', n')$;
- for each m, the sequence $(x(m, n))_n$ is decreasing and converges to 0;
- x(m,1) < x(1,m) for m > 1.

Surround each point x(m, n) by an interval

$$I(m,n) = [x(m,n) - \varepsilon_{(m,n)}, x(m,n) + \varepsilon_{(m,n)}] \subset I$$

such that $I(m,n) \cap I(m',n') = \emptyset$ if $(m,n) \neq (m',n')$.

In the first case $(M = M_{k-1}^k)$, let $B_{-1} = [-1, 1] \times I^{k-2} \times [-1, 0]$, $B_0 = [-1, 0] \times I^{k-2} \times I$ and $B(m, n) = I(m, n) \times I^{k-2} \times [0, 1/m]$. In each k-cell $D \in \{B_{-1}, B_0\} \cup \{B(m, n) : (m, n) \in \mathbb{N} \times \mathbb{N}\}$, consider a standard model \widetilde{D} of M_{k-1}^k as constructed, e.g., in [9, p. 122] (remove a null sequence of open k-cells from the interior of D so that the union of the sequence is dense in D, the closures of the removed open k-cells are mutually disjoint and their boundaries are locally flat (k-1)-spheres). We thus obtain copies $\widetilde{B_{-1}}, \widetilde{B_0}, \widetilde{B(m, n)}$, where $(m, n) \in \mathbb{N} \times \mathbb{N}$, of M_{k-1}^k .

In the second case $(M = M_k^{2k+1})$, take (2k+1)-cells $B_{-1} = [-1,1] \times I^{2k-1} \times [-1,0]$, $B_0 = [-1,0] \times I^{2k-1} \times I$, $B(m,n) = I(m,n) \times I^{2k-1} \times [0,1/m]$ and standard models $\widetilde{B_{-1}}, \widetilde{B_0}, \widetilde{B(m,n)}$, where $(m,n) \in \mathbb{N} \times \mathbb{N}$, of M_k^{2k+1} constructed in them [9].

In either case, put

$$\widetilde{B} = \widetilde{B_{-1}} \cup \widetilde{B_0} \cup \bigcup_{(m,n) \in \mathbb{N} \times \mathbb{N}} B(\widetilde{m,n}).$$

Observe that if, for each $m \in \mathbb{N}$, J(m) is a finite subset of \mathbb{N} , then the set

 $\widetilde{B_{-1}}\cup \widetilde{B_0}\cup \bigcup \{ B(\widetilde{m,n}): m\in \mathbb{N}, n\in J(m) \}$

is homeomorphic to M (see appropriate characterizations of M: [4], [6, p. 74] in the first case, and [3] in the second); it is not locally connected if J(m) is infinite for some m.

Define a mapping $F : \{0,1\}^{\mathbb{N}\times\mathbb{N}} \to \mathcal{C}(\widetilde{B})$ as follows. If f(m,n) = 0, then put $F(f)(m,n) = \widetilde{B_{-1}} \cup \widetilde{B_0}$; if f(m,n) = 1, then put $F(f)(m,n) = \widetilde{B_{-1}} \cup \widetilde{B_0} \cup B(m,n)$. Set

$$F(f) = \bigcup_{(m,n) \in \mathbb{N} \times \mathbb{N}} F(f)(m,n).$$

The mapping F homeomorphically embeds the Cantor set $\{0,1\}^{\mathbb{N}\times\mathbb{N}}$ in $\mathcal{C}(\widetilde{B})$. We can assume \widetilde{B} is contained in M.

Observe that

$$F(f)$$
 is homeomorphic to M iff $f \in P$ iff $F(f) \in \mathcal{A}(X)$.

This means that F homeomorphically reduces P to $\mathcal{A}(X)$ as well as to the space $\mathcal{M}(X)$. Hence, we have

PROPOSITION 2. If a Polish space X contains a topological copy of M, where M is the Sierpiński continuum M_{k-1}^k or M is the Menger continuum M_k^{2k+1} , then neither of the sets $\mathcal{A}(X)$ and $\mathcal{M}(X)$ is $G_{\delta\sigma}$. REMARK 1. If X contains a k-cell, then $\mathcal{M}_{k-1}^{k}(X)$ contains a copy of the $F_{\sigma\delta}$ -absorber \hat{c}_{0} as a closed subset. An analogous conclusion holds for $\mathcal{M}_{k}^{2k+1}(X)$ if X contains a (2k+1)-cell [12, 13].

THEOREM 1. If X is a locally compact space containing \mathcal{M}_1^2 , then $\mathcal{A}(X)$ is a true absolute $F_{\sigma\delta}$ -set.

Sierpiński plane universal curves. It is known that the subspace $\text{DIM}_1(X) \subset 2^X$ of 1-dimensional compacta in an arbitrary space X is G_{δ} (see, e.g., [7]). If X is a 2-dimensional sphere or a plane, then Whyburn's [16] topological characterization of M_1^2 can be expressed in the following form: $\mathcal{M}_1^2(X) = \mathcal{A}(X) \cap \text{DIM}_1(X).$

Hence, by Proposition 2 and Theorem 1, $\mathcal{M}_1^2(X)$ is a true absolute $F_{\sigma\delta}$ -set.

In order to establish the Borel class of $\mathcal{M}_1^2(X)$ for more general spaces X one has to deal with planability properties. Recall that if C is a locally connected continuum with no local cut points, then C is non-planar if and only if C contains a complete five-point graph K_5 [15, pp. 23–24]. Graphs K_5 , however, are not convenient for exact Borel class evaluation. We are going to replace K_5 by K_5 -like continua.

A continuum $K \subset X$ is said to be K_5 -like if there exist five mutually disjoint continua $V_1, \ldots, V_5 \subset X$, called *vertices* of K, and ten mutually disjoint continua $K_1, \ldots, K_{10} \subset X$, called *edges* of K, such that

- (1) $K = V_1 \cup \ldots \cup V_5 \cup K_1 \cup \ldots \cup K_{10};$
- (2) any two distinct vertices are both intersected by exactly one edge;
- (3) each edge intersects exactly two distinct vertices.

LEMMA 3. No K_5 -like continuum is planable.

Proof. Suppose K is a K_5 -like continuum in \mathbb{R}^2 with vertices V_1, \ldots, V_5 and edges $K\{i, j\}, i \neq j, i, j \in \{1, \ldots, 5\}$, such that $K\{i, j\}$ is the unique edge joining V_i and V_j . For each $\{i, j\}$, one can find an arc $a\{i, j\} \subset \mathbb{R}^2$ in a neighborhood of $K\{i, j\}$ so that conditions (1)–(3) are satisfied for edges being replaced by the arcs. We can also assume that the arcs meet vertices only at their endpoints. Let W_1, \ldots, W_5 be mutually disjoint connected neighborhoods of V_1, \ldots, V_5 , respectively, which satisfy (1)–(3) if substituted for vertices with arcs $a\{i, j\}$ as new edges. Let $a\{i, j_1\}, \ldots, a\{i, j_4\}$ denote the arcs that meet V_i at their end-points $e\{i, j_1\}, \ldots, e\{i, j_4\}$, respectively. For every $i = 1, \ldots, 5$, one can easily find a finite tree $T_i \subset W_i$ such that

$$T_i \cap (a\{i, j_1\} \cup \ldots \cup a\{i, j_4\}) = \{e\{i, j_1\}, \ldots, e\{i, j_4\}\}.$$

It follows from the Moore decomposition theorem [14, p. 533] that shrinking each tree T_i to a point t_i yields a K_5 graph in the plane with vertices t_i and edges $a\{i, j\}, i, j = 1, ..., 5$, a contradiction. PROPOSITION 3. A locally connected continuum $C \subset X$ with no local cut point is planable if and only if C contains no K_5 -like subcontinuum.

Assume now X is compact. Denote by $\mathcal{K}_5(X)$ the subspace of $\mathcal{C}(X)$ consisting of all continua in X which contain a K_5 -like continuum in X. We have the following formula:

$$\mathcal{K}_5(X) = \{ C \in \mathcal{C}(X) : \exists V_1, \dots, V_5 \in \mathcal{C}(X) \; \exists K_1, \dots, K_{10} \in \mathcal{C}(X) \\ (V_1 \cup \dots V_5 \cup K_1 \cup \dots \cup K_{10} \text{ is a } K_5 \text{-like} \\ \text{continuum contained in } C \text{ with vertices} \\ V_1, \dots, V_5 \text{ and edges } K_1, \dots, K_{10} \}.$$

Let A be the set of all 16-tuples $(C, V_1, \ldots, V_5, K_1, \ldots, K_{10}) \in \mathcal{C}(X)^{16}$ such that the union of all V_i 's and K_j 's is a subcontinuum of C and appropriate non-empty intersections occur between K_j 's and V_i 's (as the definition of a K_5 -continuum requires). Then A is a closed subset of $\mathcal{C}(X)^{16}$. The set B of all 16-tuples $(C, V_1, \ldots, V_5, K_1, \ldots, K_{10}) \in \mathcal{C}(X)^{16}$ such that appropriate empty intersections occur between K_j 's and V_i 's (according to the same definition) is an open subset of $\mathcal{C}(X)^{16}$. Finally, $\mathcal{K}_5(X)$ is the projection of $A \cap B$ on the first coordinate space, whence $\mathcal{K}_5(X)$ is an absolute F_{σ} . Using the one-point compactification trick (as in the paragraph preceding Proposition 1) we get

PROPOSITION 4. If X is a locally compact space, then $\mathcal{K}_5(X)$ is an absolute F_{σ} -set.

It follows from Proposition 3 that $\mathcal{M}_1^2(X) = \mathcal{A}(X) \cap \text{DIM}_1(X) \setminus \mathcal{K}_5(X)$. Thus, by Propositions 1, 2 and 4, we obtain

THEOREM 2. If X is a locally compact space, then $\mathcal{M}_1^2(X)$ is an absolute $F_{\sigma\delta}$ -set. If, moreover, X contains a copy of M_1^2 , then $\mathcal{M}_1^2(X)$ is a true $F_{\sigma\delta}$ -set.

Menger universal curves. The Menger universal curve M_1^3 was topologically characterized by R. D. Anderson as a locally connected, one-dimensional continuum with no local cut points and no non-empty open planar subsets [1, 2]. Recall that a locally connected continuum C with no local cut points has no non-empty open planar subset if and only if each open non-empty subset of C contains K_5 (see [15, p. 24]). In view of Lemma 3, such a continuum C has no open non-empty planar subsets if and only if each open non-empty subset of C contains a K_5 -like subcontinuum.

THEOREM 3. (1) If X is a locally compact space, then $\mathcal{M}_1^3(X)$ is an absolute $F_{\sigma\delta}$ -set.

(2) If X is a Polish space containing a copy of M_1^3 , then $\mathcal{M}_1^3(X)$ is not $G_{\delta\sigma}$.

Proof. Assume X is a compact space with an open base $\{U_1, U_2, \ldots\}$. Let $Z(i) = \{C \in \mathcal{C}(X) : C \cap U_i = \emptyset\}$ and

$$K(i) = \{ C \in \mathcal{C}(X) : \exists K \in \mathcal{C}(X) \ (K \subset C \cap U_i \& K \in \mathcal{K}_5(X)) \}.$$

It is easy to see that Z(i) is closed in $\mathcal{C}(X)$. The set K(i) is a projection on the first coordinate space of the set

$$\{(C,K) \in \mathcal{C}(X) \times \mathcal{C}(X) : K \subset C \cap U_i \& K \in \mathcal{K}_5(X)\},\$$

which is F_{σ} by Proposition 4, so K(i) is F_{σ} as well. The formula

$$\mathcal{M}_1^3(X) = \mathcal{A}(X) \cap \mathrm{DIM}_1(X) \cap \bigcap_{i \in \mathbb{N}} (Z(i) \cup (C(X) \setminus K(i)))$$

implies the first part of the theorem (the case of a locally compact X is handled by a one-point compactification of X).

The second part follows from Proposition 2.

2-cells. Denote by $\mathcal{D}(X)$ the subspace of $\mathcal{C}(X)$ of all topological 2-cells in a space X, by AR(X) the subspace of $\mathcal{C}(X)$ of all absolute retracts in X and by $F_1(X)$ the subspace of $\mathcal{C}(X)$ of all singletons.

LEMMA 4. $\mathcal{D}(X) = \operatorname{AR}(X) \cap \mathcal{A}(X) \setminus (F_1(X) \cup \mathcal{K}_5(X)).$

Proof. Suppose $C \in AR(X) \cap \mathcal{A}(X) \setminus (F_1(X) \cup \mathcal{K}_5(X))$. We can assume, by Proposition 3, that $C \subset \mathbb{R}^2$. Then C is a 2-cell by [14, Theorem 11, p. 534]. The reverse inclusion is evident.

THEOREM 4. $\mathcal{D}(\mathbb{R}^2)$ is a true absolute $F_{\sigma\delta}$ -set containing a copy of \hat{c}_0 as a closed subset.

Proof. That $\mathcal{D}(\mathbb{R}^2)$ is $F_{\sigma\delta}$ is a consequence of Lemma 4, Propositions 1 and 4, [5] and the fact that $F_1(\mathbb{R}^2)$ is closed in $\mathcal{C}(\mathbb{R}^2)$. It is shown in [12, 13] that $\mathcal{D}(\mathbb{R}^2)$ contains \hat{c}_0 as a closed subset, hence it is not $G_{\delta\sigma}$.

REMARK 2. It is proved in [8] that $AR(\mathbb{R}^k)$, where k > 2, is a true $G_{\delta\sigma\delta}$ -set. Thus $\mathcal{D}(\mathbb{R}^k)$ also is $G_{\delta\sigma\delta}$. The question is whether $\mathcal{D}(X)$ is $F_{\sigma\delta}$ for $X = \mathbb{R}^k$, k > 2, or, more generally, for locally compact spaces X (it is not $G_{\delta\sigma}$ if X contains a 2-cell by [12, 13]).

REFERENCES

- R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. 67 (1958), 313–324.
- [2] —, One-dimensional continuous curves and a homogeneity theorem, ibid. 68 (1958), 1–16.
- [3] M. Bestvina, Characterizing k-dimensional Menger compacta, Mem. Amer. Math. Soc. 71 (1988).

J. W. Cannon, A positional characterization of the $(n-1)$ -dimensional Sierpiński
<i>curve in</i> S^n $(n \neq 4)$, Fund. Math. 79 (1973), 107–112.
R. Cauty, T. Dobrowolski, H. Gladdines et J. van Mill, Les hyperespaces des rétractes
absolus et des rétractes absolus de voisinage du plan, ibid. 148 (1995), 257–282.
A. Chigogidze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in: Con-
tinua: with the Houston Problem Book, H. Cook et al. (eds.), Dekker, New York,
1995, 37–88.
J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional com-
pacta and other topological copies of $(l_f^2)^{\infty}$, Pacific J. Math. 152 (1992), 255–273.
T. Dobrowolski and L. Rubin, The space of ANR's in \mathbb{R}^n , Fund. Math. 146 (1995),
31–58.
R. Engelking, Dimension Theory, PWN, Warszawa, 1978.
H. Gladdines and J. van Mill, Hyperspaces of Peano continua of euclidean spaces,
Fund. Math. 142 (1993), 173–188.
A. S. Kechris, <i>Classical Descriptive Set Theory</i> , Springer, New York, 1995.

- [11] [12]P. Krupski, Hyperspaces of various locally connected subcontinua, Acta Univ. Carolin. Math. Phys. 40 (1999), 79-83.
- [13]-, Errata to: "Hyperspaces of various locally connected subcontinua", ibid. 41 (2000), 81.
- K. Kuratowski, Topology, Vol. II, Academic Press, New York, and PWN, Warszawa, [14]1968.
- J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Char-[15]acterization and extension of homeomorphisms of non-locally-separating closed subsets, Dissertationes Math. (Rozprawy Mat.) 252 (1986).
- [16]G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324.

Mathematical Institute University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: krupski@math.uni.wroc.pl

Received 18 April 2000

(3971)

[4]

[5]

[6]

[7]

[8]

[9]

[10]

P. KRUPSKI