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HYPERSPACES OF UNIVERSAL CURVES

AND 2-CELLS ARE TRUE Fσδ-SETS

BY

PAWEŁ KRUPSKI (Wrocław)

Abstract. It is shown that the following hyperspaces, endowed with the Hausdorff
metric, are true absolute Fσδ-sets:

(1) M21(X) of Sierpiński universal curves in a locally compact metric space X, pro-
videdM21(X) 6= ∅;
(2)M31(X) of Menger universal curves in a locally compact metric space X, provided

M31(X) 6= ∅;
(3) 2-cells in the plane.

Introduction. All spaces are assumed to be metric separable. There
are results obtained over the last decade which fully characterize certain
subspaces of the hyperspaces 2X or C(X) of all non-empty compact or com-
pact connected subsets, respectively, equipped with the Hausdorff metric, of
spaces X such as, e.g., Rk, Ik and the Hilbert cube Q = I∞, where I = [0, 1]
(see [5, 7, 8, 10]).
Recall [10] that the subspace LC(X) of C(X) of all locally connected

continua in X, where X is either of the above-mentioned spaces (for k ≥ 3),
is an Fσδ-absorber, so it is homeomorphic to ĉ0 = {(xi) ∈ Q : limxi = 0}.
If X is a compact space containing a harmonic fan or comb, then LC(X) is
a true Fσδ-set (see [12, 13]), i.e., it is Fσδ but not Gδσ. It is known from [5]
that the subspace AR(R2) of C(R2) of all absolute retracts in R

2 is an
Fσδ-absorber.
The first essential step in establishing results of that kind is to determine

the exact Borel class of a given subspace.

Locally connected continua with no local cut points. A point
x ∈ X is a local cut point of a locally connected space X if there is an
open connected subset U ⊂ X such that U \ {x} is not connected. Let X
be a compact space. Denote by A(X) the subspace of C(X) consisting of all
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locally connected continua in X with no local cut points. Fix a countable
open base U1, U2, . . . in X and let

T = {(k, l,m) : clUk ∪ clUl ⊂ Um and clUk ∩ clUl = ∅}.

We say that, for (k, l,m) ∈ T and C ∈ C(X), the set C ∩ Um is connected
between Uk and Ul if there exists a continuum D ⊂ C∩Um intersecting both
Uk and Ul; we say that the set C ∩Um is cyclicly connected between Uk and
Ul if it contains two continua D1, D2 each of which intersects both Uk and
Ul and D1 ∩D2 ⊂ Uk ∪ Ul.
For each (k, l,m) ∈ T put

Z(k, l,m) = {C ∈ C(X) : C ∩ Um is not connected between Uk and Ul}

and

W (k, l,m)

= {C ∈ C(X) : C ∩ Um is cyclicly connected between Uk and Ul}.

Lemma 1. The set Z(k, l,m) is a Gδ-set and W (k, l,m) is an Fσ-set
in C(X).

Proof. The set Z1 = {(C,D) ∈ C(X) × C(X) : D ⊂ C} is closed in
C(X) × C(X). The set Z2 = C(X) × {D ∈ C(X) : D ⊂ Um, D ∩ Uk 6= ∅ 6=
D ∩Ul} is open in C(X)×C(X). The set C(X) \Z(k, l,m) is the projection
of Z1 ∩ Z2 on the first coordinate space, so it is Fσ.
Similarly, W (k, l,m) is Fσ.

Lemma 2. We have

A(X) = LC(X) ∩
⋂

(k,l,m)∈T

(Z(k, l,m) ∪W (k, l,m)).

Proof. Suppose C ∈ A(X) and C ∩Um is connected between Uk and Ul
for (k, l,m) ∈ T . This means there are a continuum D ⊂ C ∩ Um and two
points v0 ∈ D∩Uk and v1 ∈ D∩Ul. It follows by the local connectivity of C
that the component E of C∩Um containing D is an open arcwise connected
subset of C. The Arc Doubling Lemma of [15, p. 21] says that v0, v1 lie on
a simple closed curve in E. Hence, C ∩Um is cyclicly connected between Uk
and Ul.
Now, suppose C ⊂ X is a locally connected continuum which belongs to

the right hand side set in Lemma 2. Let c be an arbitrary point of C and G
be an open subset of X such that c ∈ G and C ∩G is connected. Choose a
basic set Um ⊂ G containing c. The component E of C ∩ Um that contains
c is an arcwise connected open subset of C.
We claim that E \ {c} is connected. Indeed, let a, b ∈ E \ {c} be two dis-

tinct points and let Va, Vb ⊂ E\{c} be their respective connected open neigh-
borhoods in C. Choose basic sets Uk ⊂ clUk ⊂ Um and Ul ⊂ clUl ⊂ Um
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containing a and b, respectively, such that C ∩ Uk ⊂ Va and C ∩ Ul ⊂ Vb.
Since the set C∩Um is connected between Uk and Ul, it is cyclicly connected
between them. Hence, there exist two continua D1, D2 ⊂ C ∩ Um each of
which intersects both Uk and Ul and D1 ∩ D2 ⊂ Uk ∪ Ul. For i = 1, 2, we
have Di ∩ Uk ⊂ C ∩ Uk ⊂ E, thus Di ⊂ E. At least one of the continua
D1, D2, say D1, omits c. Then Va ∪Vb ∪D1 is a connected subset of E \ {c}
joining a and b. Since c does not cut E ⊂ C ∩ G, it does not cut C ∩ G
either.

If X is a locally compact, non-compact space, then taking a one-point
compactification X ′ = X ∪ {p} we get A(X) = A(X ′) \ C(X ′, p), where
C(X ′, p) = {C ∈ C(X ′) : p ∈ C} is compact. Thus we obtain

Proposition 1. A(X) is an absolute Fσδ-set for any locally compact
space X.

Suppose now that X is an arbitrary Polish space containing a contin-
uum M , where

(1) M is a copy of the (k − 1)-dimensional Sierpiński continuum Mkk−1
⊂ R

k universal for all (k − 1)-dimensional compacta in R
k (k > 1), or

(2)M is a copy of the Menger k-dimensional continuumM2k+1k ⊂ R
2k+1

universal for k-dimensional compacta.

(See [9, p. 122] for their description.) Denote byM(X) the subspace of
C(X) of all topological copies ofM in X. We are going to show thatM(X),
as well as A(X), are not Gδσ. Denote by N the set of all positive integers.
We will exploit the set

P = {f ∈ {0, 1}N×N : ∀m (f(m,n) = 0 for all but a finite number of n)},

which is known to be a true Fσδ-subset of the Cantor set {0, 1}
N×N (see

[11, p. 179]), and find its continuous reduction to M(X) or A(X) (see
[11, p. 156] for a definition). To this end we construct an auxiliary continuum

B̃ which is a (k− 1)-dimensional subset of Rk in the case of M =
top
Mkk−1 or

it is k-dimensional in the case of M =
top
M2k+1k .

For each pair (m,n) ∈ N×N choose a number 0 < x(m,n) < 1 such that

• x(m,n) 6= x(m′, n′) if (m,n) 6= (m′, n′);

• for each m, the sequence (x(m,n))n is decreasing and converges to 0;

• x(m, 1) < x(1,m) for m > 1.

Surround each point x(m,n) by an interval

I(m,n) = [x(m,n)− ε(m,n), x(m,n) + ε(m,n)] ⊂ I

such that I(m,n) ∩ I(m′, n′) = ∅ if (m,n) 6= (m′, n′).
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In the first case (M =
top
Mkk−1), let B−1 = [−1, 1]× I

k−2 × [−1, 0], B0 =

[−1, 0] × Ik−2 × I and B(m,n) = I(m,n) × Ik−2 × [0, 1/m]. In each k-cell
D ∈ {B−1, B0} ∪ {B(m,n) : (m,n) ∈ N × N}, consider a standard model

D̃ of Mkk−1 as constructed, e.g., in [9, p. 122] (remove a null sequence of
open k-cells from the interior of D so that the union of the sequence is
dense in D, the closures of the removed open k-cells are mutually disjoint
and their boundaries are locally flat (k− 1)-spheres). We thus obtain copies

B̃−1, B̃0, ˜B(m,n), where (m,n) ∈ N× N, of Mkk−1.

In the second case (M =
top
M2k+1k ), take (2k + 1)-cells B−1 = [−1, 1] ×

I2k−1×[−1, 0], B0 = [−1, 0]×I
2k−1×I, B(m,n) = I(m,n)×I2k−1×[0, 1/m]

and standard models B̃−1, B̃0, ˜B(m,n), where (m,n) ∈ N × N, of M2k+1k

constructed in them [9].

In either case, put

B̃ = B̃−1 ∪ B̃0 ∪
⋃

(m,n)∈N×N

˜B(m,n).

Observe that if, for each m ∈ N, J(m) is a finite subset of N, then the
set

B̃−1 ∪ B̃0 ∪
⋃
{ ˜B(m,n) : m ∈ N, n ∈ J(m)}

is homeomorphic to M (see appropriate characterizations of M : [4],
[6, p. 74] in the first case, and [3] in the second); it is not locally connected
if J(m) is infinite for some m.

Define a mapping F : {0, 1}N×N → C(B̃) as follows. If f(m,n) = 0,

then put F (f)(m,n) = B̃−1 ∪ B̃0; if f(m,n) = 1, then put F (f)(m,n) =

B̃−1 ∪ B̃0 ∪ ˜B(m,n). Set

F (f) =
⋃

(m,n)∈N×N

F (f)(m,n).

The mapping F homeomorphically embeds the Cantor set {0, 1}N×N in C(B̃).

We can assume B̃ is contained in M .

Observe that

F (f) is homeomorphic to M iff f ∈ P iff F (f) ∈ A(X).

This means that F homeomorphically reduces P to A(X) as well as to the
spaceM(X). Hence, we have

Proposition 2. If a Polish space X contains a topological copy of M ,
where M is the Sierpiński continuum Mkk−1 or M is the Menger contin-

uum M2k+1k , then neither of the sets A(X) and M(X) is Gδσ.
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Remark 1. If X contains a k-cell, then Mkk−1(X) contains a copy of
the Fσδ-absorber ĉ0 as a closed subset. An analogous conclusion holds for
M2k+1k (X) if X contains a (2k + 1)-cell [12, 13].

Theorem 1. If X is a locally compact space containingM21, then A(X)
is a true absolute Fσδ-set.

Sierpiński plane universal curves. It is known that the subspace
DIM1(X) ⊂ 2

X of 1-dimensional compacta in an arbitrary space X is Gδ
(see, e.g., [7]). If X is a 2-dimensional sphere or a plane, then Whyburn’s [16]
topological characterization of M21 can be expressed in the following form:

M21(X) = A(X) ∩DIM1(X).

Hence, by Proposition 2 and Theorem 1,M21(X) is a true absolute Fσδ-set.
In order to establish the Borel class of M21(X) for more general spaces

X one has to deal with planability properties. Recall that if C is a locally
connected continuum with no local cut points, then C is non-planar if and
only if C contains a complete five-point graph K5 [15, pp. 23–24]. Graphs
K5, however, are not convenient for exact Borel class evaluation. We are
going to replace K5 by K5-like continua.
A continuum K ⊂ X is said to be K5-like if there exist five mutually

disjoint continua V1, . . . , V5 ⊂ X, called vertices of K, and ten mutually
disjoint continua K1, . . . ,K10 ⊂ X, called edges of K, such that

(1) K = V1 ∪ . . . ∪ V5 ∪K1 ∪ . . . ∪K10;
(2) any two distinct vertices are both intersected by exactly one edge;
(3) each edge intersects exactly two distinct vertices.

Lemma 3. No K5-like continuum is planable.

Proof. Suppose K is a K5-like continuum in R
2 with vertices V1, . . . , V5

and edges K{i, j}, i 6= j, i, j ∈ {1, . . . , 5}, such that K{i, j} is the unique
edge joining Vi and Vj . For each {i, j}, one can find an arc a{i, j} ⊂ R

2 in a
neighborhood of K{i, j} so that conditions (1)–(3) are satisfied for edges be-
ing replaced by the arcs. We can also assume that the arcs meet vertices only
at their endpoints. Let W1, . . . ,W5 be mutually disjoint connected neigh-
borhoods of V1, . . . , V5, respectively, which satisfy (1)–(3) if substituted for
vertices with arcs a{i, j} as new edges. Let a{i, j1}, . . . , a{i, j4} denote the
arcs that meet Vi at their end-points e{i, j1}, . . . , e{i, j4}, respectively. For
every i = 1, . . . , 5, one can easily find a finite tree Ti ⊂Wi such that

Ti ∩ (a{i, j1} ∪ . . . ∪ a{i, j4}) = {e{i, j1}, . . . , e{i, j4}}.

It follows from the Moore decomposition theorem [14, p. 533] that shrinking
each tree Ti to a point ti yields a K5 graph in the plane with vertices ti and
edges a{i, j}, i, j = 1, . . . , 5, a contradiction.
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Proposition 3. A locally connected continuum C ⊂ X with no local
cut point is planable if and only if C contains no K5-like subcontinuum.

Assume now X is compact. Denote by K5(X) the subspace of C(X)
consisting of all continua in X which contain a K5-like continuum in X. We
have the following formula:

K5(X) = {C ∈ C(X) : ∃V1, . . . , V5 ∈ C(X) ∃K1, . . . ,K10 ∈ C(X)

(V1 ∪ . . . V5 ∪K1 ∪ . . . ∪K10 is a K5-like

continuum contained in C with vertices

V1, . . . , V5 and edges K1, . . . ,K10)}.

Let A be the set of all 16-tuples (C, V1, . . . , V5,K1, . . . ,K10) ∈ C(X)
16 such

that the union of all Vi’s and Kj ’s is a subcontinuum of C and appropriate
non-empty intersections occur between Kj ’s and Vi’s (as the definition of
a K5-continuum requires). Then A is a closed subset of C(X)

16. The set B
of all 16-tuples (C, V1, . . . , V5,K1, . . . ,K10) ∈ C(X)

16 such that appropriate
empty intersections occur between Kj ’s and Vi’s (according to the same
definition) is an open subset of C(X)16. Finally, K5(X) is the projection
of A ∩ B on the first coordinate space, whence K5(X) is an absolute Fσ.
Using the one-point compactification trick (as in the paragraph preceding
Proposition 1) we get

Proposition 4. If X is a locally compact space, then K5(X) is an ab-
solute Fσ-set.

It follows from Proposition 3 thatM21(X) = A(X)∩DIM1(X) \K5(X).
Thus, by Propositions 1, 2 and 4, we obtain

Theorem 2. If X is a locally compact space, then M21(X) is an abso-
lute Fσδ-set. If , moreover , X contains a copy of M

2
1 , then M

2
1(X) is a true

Fσδ-set.

Menger universal curves. The Menger universal curveM31 was topo-
logically characterized by R. D. Anderson as a locally connected, one-dimen-
sional continuum with no local cut points and no non-empty open planar
subsets [1, 2]. Recall that a locally connected continuum C with no local
cut points has no non-empty open planar subset if and only if each open
non-empty subset of C contains K5 (see [15, p. 24]). In view of Lemma 3,
such a continuum C has no open non-empty planar subsets if and only if
each open non-empty subset of C contains a K5-like subcontinuum.

Theorem 3. (1) If X is a locally compact space, then M31(X) is an
absolute Fσδ-set.
(2) If X is a Polish space containing a copy of M31 , then M

3
1(X) is

not Gδσ.
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Proof. Assume X is a compact space with an open base {U1, U2, . . .}.
Let Z(i) = {C ∈ C(X) : C ∩ Ui = ∅} and

K(i) = {C ∈ C(X) : ∃K ∈ C(X) (K ⊂ C ∩ Ui & K ∈ K5(X))}.

It is easy to see that Z(i) is closed in C(X). The set K(i) is a projection on
the first coordinate space of the set

{(C,K) ∈ C(X)× C(X) : K ⊂ C ∩ Ui & K ∈ K5(X)},

which is Fσ by Proposition 4, so K(i) is Fσ as well. The formula

M31(X) = A(X) ∩DIM1(X) ∩
⋂

i∈N

(Z(i) ∪ (C(X) \K(i)))

implies the first part of the theorem (the case of a locally compact X is
handled by a one-point compactification of X).
The second part follows from Proposition 2.

2-cells. Denote by D(X) the subspace of C(X) of all topological 2-cells
in a space X, by AR(X) the subspace of C(X) of all absolute retracts in X
and by F1(X) the subspace of C(X) of all singletons.

Lemma 4. D(X) = AR(X) ∩A(X) \ (F1(X) ∪ K5(X)).

Proof. Suppose C ∈ AR(X)∩A(X)\ (F1(X)∪K5(X)). We can assume,
by Proposition 3, that C ⊂ R

2. Then C is a 2-cell by [14, Theorem 11,
p. 534]. The reverse inclusion is evident.

Theorem 4. D(R2) is a true absolute Fσδ-set containing a copy of ĉ0
as a closed subset.

Proof. That D(R2) is Fσδ is a consequence of Lemma 4, Propositions 1
and 4, [5] and the fact that F1(R

2) is closed in C(R2). It is shown in [12, 13]
that D(R2) contains ĉ0 as a closed subset, hence it is not Gδσ.

Remark 2. It is proved in [8] that AR(Rk), where k > 2, is a true
Gδσδ-set. Thus D(R

k) also is Gδσδ. The question is whether D(X) is Fσδ for
X = R

k, k > 2, or, more generally, for locally compact spaces X (it is not
Gδσ if X contains a 2-cell by [12, 13]).
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