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HYPERSPACES OF UNIVERSAL CURVES
AND 2-CELLS ARE TRUE F,s-SETS

BY

PAWEL KRUPSKI (Wroctaw)

Abstract. It is shown that the following hyperspaces, endowed with the Hausdorff
metric, are true absolute F, s-sets:

(1) M%(X) of Sierpinski universal curves in a locally compact metric space X, pro-
vided M3 (X) # 0;

(2) M‘;'(X ) of Menger universal curves in a locally compact metric space X, provided
MI(X) # 0;

(3) 2-cells in the plane.

Introduction. All spaces are assumed to be metric separable. There
are results obtained over the last decade which fully characterize certain
subspaces of the hyperspaces 2% or C(X) of all non-empty compact or com-
pact connected subsets, respectively, equipped with the Hausdorff metric, of
spaces X such as, e.g., R¥, I*¥ and the Hilbert cube Q = I*°, where I = [0, 1]
(see [5, 7, 8, 10]).

Recall [10] that the subspace LC(X) of C(X) of all locally connected
continua in X, where X is either of the above-mentioned spaces (for k& > 3),
is an F,s-absorber, so it is homeomorphic to ¢y = {(z;) € @ : limz; = 0}.
If X is a compact space containing a harmonic fan or comb, then LC(X) is
a true Fys-set (see [12, 13]), i.e., it is F,s but not Gs,. It is known from [5]
that the subspace AR(R?) of C(R?) of all absolute retracts in R? is an
F,s-absorber.

The first essential step in establishing results of that kind is to determine
the exact Borel class of a given subspace.

Locally connected continua with no local cut points. A point
x € X is a local cut point of a locally connected space X if there is an
open connected subset U C X such that U \ {z} is not connected. Let X
be a compact space. Denote by A(X) the subspace of C(X) consisting of all
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locally connected continua in X with no local cut points. Fix a countable
open base Uy,Us, ... in X and let

T ={(k,l,m):clUgUclU; C U, and clUgNeclU; = 0}.

We say that, for (k,l,m) € T and C € C(X), the set C NU,, is connected
between Uy, and U if there exists a continuum D € C'NU,, intersecting both
Uy and Uj; we say that the set CNU,, is cyclicly connected between Uy, and
U, if it contains two continua D1, Do each of which intersects both Uy and
U, and D1 N Dy C U, UU,.

For each (k,l,m) € T put

Z(k,l,m)={C € C(X): CNU, is not connected between Uy and U, }
and
W (k,1,m)
={C e(C(X): CnU, is cyclicly connected between Uy and U, }.

LEMMA 1. The set Z(k,l,m) is a Gs-set and W(k,l,m) is an F,-set
in C(X).

Proof. The set Z; = {(C,D) € C(X) xC(X) : D C C} is closed in
C(X) xC(X). Theset Zo =C(X)x{D €C(X): D CUp,DNU, #0 #
DNU;}isopenin C(X) x C(X). The set C(X) \ Z(k,l,m) is the projection
of Z1 N Z5 on the first coordinate space, so it is Fj.

Similarly, W (k,l,m) is F,.

LEMMA 2. We have
AX)=LCX)n (] (Z(k1,m)UW(k,1,m)).

(k,l,m)eT

Proof. Suppose C' € A(X) and C NU,, is connected between Uy and U,
for (k,I,m) € T. This means there are a continuum D C C NU,, and two
points vg € DNUy and v1 € DNU;. It follows by the local connectivity of C
that the component E of CNU,, containing D is an open arcwise connected
subset of C. The Arc Doubling Lemma of [15, p. 21] says that vy, v1 lie on
a simple closed curve in E. Hence, C' N U, is cyclicly connected between Uy,
and Uj.

Now, suppose C' C X is a locally connected continuum which belongs to
the right hand side set in Lemma 2. Let ¢ be an arbitrary point of C' and G
be an open subset of X such that ¢ € G and C' N G is connected. Choose a
basic set U, C G containing c¢. The component E of C' N U,, that contains
¢ is an arcwise connected open subset of C.

We claim that E'\ {c} is connected. Indeed, let a,b € E'\ {c} be two dis-
tinct points and let V,, Vj, € E'\{c} be their respective connected open neigh-
borhoods in C'. Choose basic sets U, C clU, C U, and U; C clU; C U,
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containing a and b, respectively, such that C NU, C V, and CNU; C V.
Since the set CNU,, is connected between Uy and U, it is cyclicly connected
between them. Hence, there exist two continua D1, Dy C C' N U, each of
which intersects both U, and U; and D1 N Dy C Up UU;. For ¢ = 1,2, we
have D; NU, C CNU, C E, thus D; C E. At least one of the continua
D7, Do, say Dy, omits c¢. Then V,, UV, U D, is a connected subset of E'\ {c}
joining a and b. Since ¢ does not cut £ C C'N G, it does not cut C NG
either.

If X is a locally compact, non-compact space, then taking a one-point
compactification X’ = X U {p} we get A(X) = A(X') \ C(X’,p), where
C(X',p) ={C € C(X’) : p e C} is compact. Thus we obtain

PROPOSITION 1. A(X) is an absolute F,s5-set for any locally compact
space X.

Suppose now that X is an arbitrary Polish space containing a contin-
uum M, where

(1) M is a copy of the (k — 1)-dimensional Sierpifiski continuum M},
C R* universal for all (k — 1)-dimensional compacta in R* (k > 1), or

(2) M is a copy of the Menger k-dimensional continuum M ,ka C R2++1
universal for k-dimensional compacta.

(See [9, p. 122] for their description.) Denote by M(X) the subspace of
C(X) of all topological copies of M in X. We are going to show that M(X),
as well as A(X), are not Gs,. Denote by N the set of all positive integers.
We will exploit the set

P={f e {0,113 :¥m (f(m,n) = 0 for all but a finite number of n)},

which is known to be a true F,s-subset of the Cantor set {0, 1}"*N (see
[11, p. 179]), and find its continuous reduction to M(X) or A(X) (see
[11, p. 156] for a definition). To this end we construct an auxiliary continuum

B which is a (k — 1)-dimensional subset of R* in the case of M = M}, or
op
it is k-dimensional in the case of M = M ,fk“.
op
For each pair (m,n) € N x N choose a number 0 < z(m,n) < 1 such that

e x(m,n) # x(m',n) if (m,n) # (m',n');
e for each m, the sequence (z(m,n)),, is decreasing and converges to 0;
o x(m,1) < z(1l,m) for m > 1.

Surround each point x(m,n) by an interval
I(ma n) = [‘T(mv Tl) — &(m,n)» $(m7 n) + E(m,n)] cl

such that I(m,n)NI(m/,n") =0 if (m,n) # (m',n’).
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In the first case (M = M} ), let B_y = [-1,1] x I*72 x [-1,0], By =
[~1,0] x I¥=2 x I and B(m,n) = I(m,n) x I*=2 x [0,1/m]. In each k-cell
D € {B_1,Bp} U{B(m,n) : (m,n) € N x N}, consider a standard model
D of M} | as constructed, e.g., in [9, p. 122] (remove a null sequence of
open k-cells from the interior of D so that the union of the sequence is
dense in D, the closures of the removed open k-cells are mutually disjoint
and their boundaries are locally flat (k — 1)-spheres). We thus obtain copies

Bv_l,E),B(/WT,n), where (m,n) € N x N, of M} _,.

In the second case (M = MZE) take (2k + 1)-cells B_; = [—1,1] x
%=1 %[-1,0], By = [-1,0]x I?=1x I, B(m,n) = I(m,n)x I**~1x[0,1/m]
and standard models E’:,E),B(/WT,TL), where (m,n) € N x N, of M,fkﬂ

constructed in them [9].
In either case, put

B=B_,UByU U B(m,n).
(m,n)eNxXN

Observe that if, for each m € N, J(m) is a finite subset of N, then the
set

B-1UBy U J{B(m,n) : m € N,n € J(m)}

is homeomorphic to M (see appropriate characterizations of M: [4],
[6, p. 74] in the first case, and [3] in the second); it is not locally connected
if J(m) is infinite for some m.

Define a mapping F : {0,1}"*N — C(B) as follows. If f(m,n) = 0,
then put F(f)(m,n) = B_1 U By; if f(m,n) = 1, then put F(f)(m,n) =
B 1UByU B(m,n) Set

FiHy= U FHmn).

(m,n)eNxN

The mapping F homeomorphically embeds the Cantor set {0, 1}*Nin C (E)
We can assume B is contained in M.
Observe that

F(f) is homeomorphic to M iff fe P iff F(f) e A(X).

This means that F' homeomorphically reduces P to A(X) as well as to the
space M(X). Hence, we have

ProposITION 2. If a Polish space X contains a topological copy of M,
where M is the Sierpiniski continuum MF | or M is the Menger contin-

wum MY then neither of the sets A(X) and M(X) is Gs.,.
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REMARK 1. If X contains a k-cell, then M¥_,(X) contains a copy of

the F,s-absorber ¢y as a closed subset. An analogous conclusion holds for
MPFF(X) if X contains a (2k + 1)-cell [12, 13].

THEOREM 1. If X is a locally compact space containing M3, then A(X)
is a true absolute Fs-set.

Sierpinski plane universal curves. It is known that the subspace
DIM; (X) C 2% of 1-dimensional compacta in an arbitrary space X is Gs
(see, e.g., [7]). If X is a 2-dimensional sphere or a plane, then Whyburn’s [16]
topological characterization of M? can be expressed in the following form:

M3(X) = A(X) N DIM; (X).

Hence, by Proposition 2 and Theorem 1, M?(X) is a true absolute F,s-set.

In order to establish the Borel class of M?(X) for more general spaces
X one has to deal with planability properties. Recall that if C is a locally
connected continuum with no local cut points, then C' is non-planar if and
only if C' contains a complete five-point graph K5 [15, pp. 23-24]. Graphs
K5, however, are not convenient for exact Borel class evaluation. We are
going to replace K5 by Kj5-like continua.

A continuum K C X is said to be Kj-like if there exist five mutually
disjoint continua Vi,...,Vs C X, called wertices of K, and ten mutually
disjoint continua Ki,..., K19 C X, called edges of K, such that

(1) K=VU...UVz; UK U...UKjp;
(2) any two distinct vertices are both intersected by exactly one edge;
(3) each edge intersects exactly two distinct vertices.

LEMMA 3. No Ks-like continuum is planable.

Proof. Suppose K is a Ks-like continuum in R? with vertices Vi, ..., V;
and edges K{i,j}, i # j,i, j € {1,...,5}, such that K{i,j} is the unique
edge joining V; and V;. For each {i, j}, one can find an arc a{i, j} C R? in a
neighborhood of K{i, j} so that conditions (1)—(3) are satisfied for edges be-
ing replaced by the arcs. We can also assume that the arcs meet vertices only
at their endpoints. Let Wy, ..., W5 be mutually disjoint connected neigh-
borhoods of Vi, ..., Vs, respectively, which satisfy (1)—(3) if substituted for
vertices with arcs a{i,j} as new edges. Let a{i,j1},...,a{i, js} denote the
arcs that meet V; at their end-points e{i, j1},...,e{i, js}, respectively. For
every i = 1,...,5, one can easily find a finite tree T; C W; such that

TN (a{i,jl} U...uU a{i,j4}) = {e{i,jl}, RN 6{i,j4}}.
It follows from the Moore decomposition theorem [14, p. 533] that shrinking

each tree T; to a point ¢; yields a K5 graph in the plane with vertices ¢; and
edges a{i,j}, 4,7 =1,...,5, a contradiction.
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PROPOSITION 3. A locally connected continuum C C X with no local
cut point is planable if and only if C' contains no Ks-like subcontinuum.

Assume now X is compact. Denote by IC5(X) the subspace of C(X)
consisting of all continua in X which contain a Kj5-like continuum in X. We
have the following formula:

Ks(X)={CeC(X):3V,...,V; €C(X) IKy,..., K19 € C(X)
(VU...VUK;U...UKjg is a K5-like
continuum contained in C with vertices
Vi,..., Vs and edges K1, ..., Kio)}.

Let A be the set of all 16-tuples (C,V1,...,Vs, Ky,...,Kio) € C(X)0 such
that the union of all V;’s and K;’s is a subcontinuum of C' and appropriate
non-empty intersections occur between K;’s and V;’s (as the definition of
a Kj-continuum requires). Then A is a closed subset of C(X)¢. The set B
of all 16-tuples (C,V4,...,Vs, K1,...,Kio) € C(X)6 such that appropriate
empty intersections occur between K;’s and V;’s (according to the same
definition) is an open subset of C(X)'®. Finally, K5(X) is the projection
of AN B on the first coordinate space, whence K5(X) is an absolute F,.
Using the one-point compactification trick (as in the paragraph preceding
Proposition 1) we get

PROPOSITION 4. If X is a locally compact space, then K5(X) is an ab-
solute F,-set.

It follows from Proposition 3 that M3 (X) = A(X)NDIM; (X) \ K5(X).
Thus, by Propositions 1, 2 and 4, we obtain

THEOREM 2. If X is a locally compact space, then M3 (X) is an abso-
lute F,s-set. If, moreover, X contains a copy of M3, then M3(X) is a true
F,5-set.

Menger universal curves. The Menger universal curve M; was topo-
logically characterized by R. D. Anderson as a locally connected, one-dimen-
sional continuum with no local cut points and no non-empty open planar
subsets [1, 2]. Recall that a locally connected continuum C with no local
cut points has no non-empty open planar subset if and only if each open
non-empty subset of C' contains K5 (see [15, p. 24]). In view of Lemma 3,
such a continuum C has no open non-empty planar subsets if and only if
each open non-empty subset of C' contains a Kj5-like subcontinuum.

THEOREM 3. (1) If X is a locally compact space, then M3(X) is an
absolute Fys-set.

(2) If X is a Polish space containing a copy of M3, then M3(X) is
not Ggy.
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Proof. Assume X is a compact space with an open base {Uy, Us,...}.
Let Z(i) ={C € C(X): CNU; =0} and

K@) ={CeC(X):IK eC(X) (K CCNU; & K € K5(X))}.

It is easy to see that Z (i) is closed in C(X). The set K (i) is a projection on
the first coordinate space of the set

{(CK)eC(X)xC(X): KCcCONU,; & K € K5(X)},
which is F,, by Proposition 4, so K(i) is F,, as well. The formula
M (X) = A(X) NDIM,(X) N () (Z () U (C(X) \ K(9)))

i€EN
implies the first part of the theorem (the case of a locally compact X is
handled by a one-point compactification of X).
The second part follows from Proposition 2.

2-cells. Denote by D(X) the subspace of C(X) of all topological 2-cells
in a space X, by AR(X) the subspace of C(X) of all absolute retracts in X
and by F(X) the subspace of C(X) of all singletons.

LEMMA 4. D(X) = AR(X) N A(X) \ (F1(X) UK5(X)).

Proof. Suppose C € AR(X)NA(X)\ (F1(X)UK5(X)). We can assume,
by Proposition 3, that C' C R2. Then C is a 2-cell by [14, Theorem 11,
p. 534]. The reverse inclusion is evident.

THEOREM 4. D(R?) is a true absolute F,s-set containing a copy of Co
as a closed subset.

Proof. That D(R?) is F,s is a consequence of Lemma 4, Propositions 1
and 4, [5] and the fact that F;(R?) is closed in C(R?). It is shown in [12, 13]
that D(R?) contains ¢ as a closed subset, hence it is not Gs,.

REMARK 2. It is proved in [8] that AR(R*), where k > 2, is a true
G'sgs-set. Thus D(R¥) also is Gso5. The question is whether D(X) is F,4 for
X =R¥* k > 2, or, more generally, for locally compact spaces X (it is not
G5, if X contains a 2-cell by [12, 13]).
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