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ON FREE SUBGROUPS OF UNITS IN QUATERNION ALGEBRAS II

BY

JAN KREMPA (Warszawa)

Abstract. Let A C Q be any subring. We extend our earlier results on unit groups of
the standard quaternion algebra H(A) to units of certain rings of generalized quaternions

H(A,a,b) = (7‘11;(’]), where a,b € A. Next we show that there is an algebra embedding

of the ring H(A,a,b) into the algebra of standard Cayley numbers over A. Using this
embedding we answer a question asked in the first part of this paper.

1. Generalized quaternions. We apply the notation of [2]. In par-
ticular, F stands for a free group of rank two and A, = Z[1/n] for any
n € N.

For any subring A C Q we consider not only the standard quaternion
A-algebra H(A), but also a generalized quaternion algebra H(A, a, b), where
a,b € A are positive numbers. By definition H(A,a,b) = (%_b) is an
associative A-algebra free as an A-module, with base 1,44, jp, kap, and with
multiplication given by

(1) i2=—a, jE=—b k% =—ab, iujy = —jpia = kap-

Under this notation H(A) = H(A,1,1), ¢ = i1, j = j1 and k = k;. Using
(1) we have a natural embedding e of H(A, a,b) into the algebra H of real
quaternions induced by

(2) elia) = Vai,  e(js) = Vbj.
Using this embedding we can apply the standard quaternion notation. In
particular, for o = ag + a1iq + asjy + askq € H(A, a,b) we can write

a = ag — aiiq — azjp — aszkap,
(3) n(a) = aa = a} + aa} + ba3 + abaj.
The unit group of an arbitrary ring R is denoted by U(R). For any « €
H(A,a,b), by (3), we know that o € U(H(A, a,b)) if and only if n(a)) € U(A),
because in H we have a~! = a/n(a).
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In [2] the following result was proved:

THEOREM 1.1. Let Z C A C Q be a subring. If A = Ao then the group
U(H(A)) is cyclic-by-finite. In any other case F C U(H(A)).

We are going to extend this result. Because any subring of QQ is a local-
ization of Z at a subset of N, we have

PROPOSITION 1.2. Let A C Q and let a,b,c,d € A be positive numbers.
Then H(A,ac?, bd?) C H(A, a,b). In particular, H(A,a,b) C H(A,d' V),

where a’,b' € N and are square free.

If in generalized quaternions one of parameters is equal to 1 then a
further reduction is possible.

PROPOSITION 1.3. Let A C Q be a subring and b € N be square free. If

i N we have b = cd, where d is a sum of two squares, then there exists an
embedding of H(A, 1,b) into H(A, 1,c¢).

Proof. Let d = x? + y? where z,y € N. Then the A-algebra homo-
morphism ¢ induced by ¢(i) = i and ¢(jp) = xj. + yke is the required
embedding. m

COROLLARY 1.4. LetZ C A C Q be a subring and let b € A be a positive
element which is a sum of two squares in A. If A = Ay then U(H(A,1,0))
is cyclic-by-finite. In any other case F C U(H(A,1,b)).

Proof. By previous propositions we have an embedding n : H(A, 1,b) —
H(A,1,1) = H(A), as an A-algebra. Now it is not hard to check that the
image of 7 has finite additive index in H(A). From Lemma 4.2 in [3] it then
follows that the group U(H(A, 1, b)) has a finite index in the group U(H(A)).
Hence the claim becomes a consequence of Theorem 1.1. »

Now we show that this corollary cannot be extended to all b € N.

PROPOSITION 1.5. Let b € N be square free and let p € N be a prime
of the form 4k + 3, where k > 0. If p|b then the group U(H(A,,1,b)) is
cyclic-by-finite.

Proof. Let S = H(A,,1,b). Then the group (p) is a central subgroup of
U(S). Moreover, any u € U(S) can be written in the form u = pFa, where
k € Z and a = ag + a1 + azjp + asky € H(Z,1,b). We can assume that not
all a;’s are divisible by p and of course n(«) = p" for some r > 0.

Assume r > 2. This implies that p| (a2 + a?), hence p|ap and p|ay
because p is not a sum of two squares in N (see [5, §13.5]). From (3) we then
deduce that p| (a3 + a3). Hence, as above, p|as and p|as, a contradiction
to the choice of a.

In this way we proved that r < 2. Hence we have only a finite number
of elements «, and the group (p) has finite index in U(S). =
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On the other hand we have

EXAMPLE 1.6. Consider the ring R = H(A2,1,3) and elements o =
1+ g3+ 2ks, B =1—2j3+ k3. Then, from (3), n(o) = n(8) = 16. Hence
a, 3 € U(R). Let G = (o, ). Using the embedding € : R — H defined by (2)
we obtain an embedding of G into U(H). Now, as in §2 of [2], we can apply a
result of Swierczkowski to show that the group £(G) is free nonabelian with
free generators ea and €03. Hence G ~ F.

2. Cayley numbers. In this section C(A) denotes the ring of classical
Cayley numbers over a ring A. Hence C(A) = H(A) @ H(A)e, where

(4) (a + be)(c+ de) = ac — bd + (ad + be)e

for all a,b,¢,d € H(A). Under this multiplication C(A) is an alternative
ring, in which the set U(C(A)) of invertible elements is a Moufang loop (for
details see [1]). Hence, any two-generated subloop of U(C(A)) is a subgroup.

We need the following classical result of Gauss in number theory (see [4,
p. 45]):

LEMMA 2.1. Let n € N. Then n can be represented as a sum of three
squares of nonnegative integers if and only if n is not of the form 2 (81+7),
where k,1 >0, k,l € Z.

THEOREM 2.2. Let A C Q be a subring and let a,b € A be positive
numbers. Then there exists an A-algebra embedding of H(A, a,b) into C(A).

Proof. By Proposition 1.2 we can assume that a,b € N and are square
free.

First let a = a? + a3 + a3 and b = b3 + b + b3 + b3, where all a,, b, are
nonnegative integers. Consider the A-module mapping ¢ of H(A, a,b) into
C(A) such that ¢(1) =1 and

¢(ia) = a1i+ azj +azk,  ©(jp) = (bo + b1i + baj + b3k)e,

p(kab) = #(ia)p(b)-
With the help of (4) and (1) it can be checked that ¢ is an embedding of
A-algebras.

If b is a sum of three squares in Z, then it is enough to observe first that
H(A,a,b) ~ H(A,b,a) and then to apply the previous case.

Finally, suppose neither a nor b is a sum of three squares of nonnegative
integers. We can also assume that a < b. Because a and b are square free, by
Lemma 2.1 we have a = 7 mod 8 and b = 7 mod 8. By the Legendre Four
Square Theorem (see [5, 4]) and our assumption we know that a is a sum of
four squares in N. Write

a:a%+a%+a§+ai.
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It is easy to check that two a;’s, say ag and a4, are odd. Set ¢ = b— (a% +a?1).
Then ¢ € N and it is congruent to 5 modulo 8. Hence, by Lemma 2.1 we can
write ¢ = ¢ + ¢3 + ¢3 and consequently

b=a3+aj+c+c3+c3
Now we can define an A-module mapping ¢ of H(A, a,b) into C(A) by
o(1) =1, ¢(ia) = a17+ azj + azk + ase,
@(jp) = —ask + (a3 + c1i + caj + csk)e,  (kav) = p(ia)P(jb)-
Using (4) and (1) it can be checked that ¢ is an embedding of A-algebras. m

As a consequence of the above theorem, Theorem 1.1 and Example 1.6
we obtain the following result, answering in particular a question from [2,
p. 27].

COROLLARY 2.3. Let Z C A C Q be a subring. Then F C U(C(A)).

REMARK. From Theorem 1.1, Example 1.6 and [2] it is visible that there
is an effective construction of F C C(A) for any Z C A C Q.
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