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Abstract. We investigate absolute retracts for hereditarily unicoherent continua, and
also the continua that have the arc property of Kelley (i.e., the continua that satisfy both
the property of Kelley and the arc approximation property). Among other results we prove
that each absolute retract for hereditarily unicoherent continua (for tree-like continua, for
λ-dendroids, for dendroids) has the arc property of Kelley.

1. Introduction. It is well known that absolute retracts (for the class
of all compacta) are locally connected. This is also the case of absolute re-
tracts for many smaller but important classes of spaces (see [4] and [9]).
Following Maćkowiak’s ideas from [25], in the present paper we study the
class AR(HU) of absolute retracts for the class HU of hereditarily unicoher-
ent continua (and also absolute retracts for tree-like continua, λ-dendroids,
dendroids). These classes appear in a natural way in various regions of math-
ematical interest and are among the most extensively studied classes of con-
tinua. Therefore their absolute retracts seem to be worth a special attention.
According to Maćkowiak’s result (see [25, Corollaries 4 and 5, pp. 181 and
183]), which was also independently proved by David P. Bellamy (unpub-
lished; see [25, “added in proof”, p. 183]), the buckethandle continuum and
the Cantor fan belong to AR(HU). Thus the members of AR(HU) need
not be locally connected. Recently, the authors proved [5] that every inverse
limit of trees with confluent bonding mappings belongs to AR(HU). Con-
sequently, we have a new large class of (not necessarily locally connected)
continua that belong to AR(HU). Other authors’ results concerning the class
AR(HU) are presented in [5], [6], [7] and [11].
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The goal of this paper is to show that the members of AR(HU) have
very regular properties which make them particularly interesting objects
to study. First, we present a number of results showing that the mem-
bers of AR(HU) have some basic properties similar to those of regular
absolute retracts for all compacta (Theorems 2.5, 2.11 and 2.17). Next
we prove that every member of AR(HU) has two strong properties that
are shared by all Peano continua: the property of Kelley and the arc ap-
proximation property. The conjunction of these two properties, called here
the arc property of Kelley, turned out to be a crucial tool in the authors’
study of AR(HU) spaces [5]–[8] and lifting properties of confluent mappings
[10]. Let us recall that the property of Kelley has been used to study hy-
perspaces, in particular their contractibility (see e.g. Chapter 16 of [29],
where references for further results in this area are given). Now the prop-
erty, which has been recognized as an important tool in investigation of
various properties of continua, is interesting in its own right, and has nu-
merous applications to continuum theory. Many of them are not related to
hyperspaces, as e.g. topological characterizations of solenoids (see [20] and
[21]) and of the sinusoidal curve [28, Lemma 2.5, p. 517]. The other prop-
erty, i.e., the arc approximation property, has been introduced and studied
in [14].

In this paper we also present some other results for members of AR(HU)
and for continua that have the arc property of Kelley. For instance we prove
that continua in AR(HU) have the generalized ε-push property (see Defini-
tion 2.20 below), which relates such continua to homogeneous ones. Other
applications of this property are presented in [6] and [12].

The paper consists of three sections. The notion of a unionable class
of spaces as well as two other related concepts are introduced in Section 2
(Definitions 2.1, 2.6 and 2.13). It is shown that the class of hereditarily
unicoherent continua and some of its subclasses are unionable (Theorem
2.16) and that members of the class of their absolute retracts have the
generalized ε-push property. The properties of unionable and related classes
of continua are exploited in the next section, in which classes K of continua
are investigated such that absolute retracts for K have the property of Kelley
and the arc approximation property.

Acknowledgements. We thank the referee for his/her care in reading
the paper and for valuable remarks and suggestions which allowed us to
improve the paper.

By a space we mean a metric space. A class of spaces is always meant
topologically, i.e., it contains all topological copies of its members. A map-
ping means a continuous function. The reader is referred to [1] and [18] for
needed information on retracts.
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Following [18, p. 80], if K is a class of compacta (i.e., of compact metric
spaces), then AR(K) denotes the family of all absolute retracts for K, i.e.,
K ∈ AR(K) provided that if Z ∈ K contains a homeomorphic copy K ′ of K,
then K ′ is a retract of Z.

Let X be a metric space with a metric d. For a mapping f : A → B,
where A and B are subspaces of X, we define d(f) = sup{d(x, f(x)) : x
∈ A}. Further, we denote by B(p, ε) the (open) ball in X centered at p ∈ X
with radius ε. For a subset A ⊂ X we put N(A, ε) =

⋃{B(a, ε) : a ∈ A}.
The symbol N stands for the set of all positive integers, and R denotes the
space of real numbers.

By a continuum we mean a connected compactum. Given a contin-
uum X, we let C(X) denote the hyperspace of all nonempty subcontinua
of X equipped with the Hausdorff metric H (see e.g. [29, (0.1), p. 1 and
(0.12), p. 10]). We use the symbols LsAn and LimAn to denote the upper
limit and the limit of the sequence {An} as defined in [22, §29, III and VI,
pp. 337 and 339].

A continuum X is said to be unicoherent if the intersection of any two of
its subcontinua whose union is X is connected. X is said to be hereditarily
unicoherent if all its subcontinua are unicoherent. A hereditarily unicoherent
and arcwise connected continuum is called a dendroid. A locally connected
dendroid is called a dendrite. A tree means a graph containing no simple
closed curve. A continuum that is the inverse limit of an inverse sequence
of trees is called tree-like.

A continuum is said to be decomposable provided that it can be repre-
sented as the union of two of its proper subcontinua. Otherwise it is said to be
indecomposable. A continuum is said to be hereditarily decomposable (hered-
itarily indecomposable) provided that each of its nondegenerate subcontinua
is decomposable (indecomposable, respectively). A hereditarily unicoherent
and hereditarily decomposable continuum is called a λ-dendroid.

Let D0 denote the class of dendrites, D the class of dendroids, λD the
class of λ-dendroids, and T L the class of tree-like continua. Then

(1.1) D0 ⊂ D ⊂ λD ⊂ T L ⊂ HU .
According to the result of Borsuk (see [1, (13.5), p. 138]) we have

AR(D0) = D0 ⊂ AR(D) ∩AR(λD) ∩AR(T L) ∩AR(HU).

Note that the class of absolute retracts of all unicoherent continua co-
incides with the class of retracts of the Hilbert cube, thus it also coincides
with the class of absolute retracts of all compacta. This class is relatively
well studied, and we do not investigate it here.

2. Unionable classes of spaces. We start by introducing the following
concept.
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Definition 2.1. A class S of nonempty compacta is called unionable
provided that if a space Z is the union of subspacesX and Y withX,Y,X∩Y
∈ S, then X ∪ Y ∈ S.

Observation 2.2. The following classes of spaces are unionable: com-
pacta of dimension less than or equal to n, continua, hereditarily unicoherent
continua, tree-like continua, λ-dendroids, dendroids, dendrites.

Indeed, for at most n-dimensional compacta and for continua see [22,
§27, I, Theorem 2, p. 288] and [23, §47, I, Theorem 1, p. 168], respectively.
For the remaining classes see [15, Theorems 14 and 15, p. 97 and 98, and
Corollary, p. 98].

However, one can see that most classes of compacta are not unionable.
Such are, e.g., the classes of hereditarily decomposable continua and of uni-
coherent ones. The next two examples show this.

Example 2.3. The class of hereditarily decomposable continua is not
unionable.

Proof. In fact, let D be the simplest Knaster indecomposable continuum
embedded in the plane R2 in the standard way, as described in [23, §48, V,
Example 1, p. 204 and Fig. 4, p. 205]. Let L stand for the straight line
segment joining the points 〈0, 0〉 and 〈1, 0〉 of D. Define X = L ∪ {〈x, y〉 ∈
D : y ≥ 0} and Y = L∪{〈x, y〉 ∈ D : y ≤ 0}. Then X, Y , and X∩Y = L are
hereditarily decomposable continua, but X∪Y is not, since it contains D.

A mapping f : X → Y between continua is said to be:

• monotone if it has connected point inverses;
• atomic provided that for each subcontinuum K of X either f(K) is

a singleton or f−1(f(K)) = K (it is known [24, (4.14), p. 17] that every
atomic mapping of a continuum is monotone).

Example 2.4. The class of unicoherent continua is not unionable.

Proof. In the ring R = {z ∈ R2 : 1 ≤ |z| ≤ 2} consider the closure S of
a spiral approaching the inner circle, i.e., S = cl{(1 + 1/t)eiπt : t ∈ [1,∞)}.
Let h : R → R denote the central symmetry defined by h(z) = −z for
z ∈ R. Then R \ (S ∪ h(S)) is the union of two components, A and B. Thus
R = clA ∪ clB, and clA ∩ clB = S ∪ h(S).

We will show that the continua clA, clB and S ∪ h(S) are unicoherent.
Indeed, shrinking the inner circle {z ∈ R2 : |z| = 1} of R to a point we
obtain atomic mappings defined on each of these three continua onto a disk,
a disk, and an arc, respectively. Then by [26, Proposition 11(i), p. 537] the
continua clA, clB and S ∪ h(S) are unicoherent, while R is not.

Let X and Y be two disjoint spaces, U ⊂ X a closed subset of X, and let
f : U → Y be a mapping. In the disjoint union X ⊕Y define an equivalence
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relation ∼ by u ∼ f(u) for each u ∈ U . Then the quotient space (X⊕Y )/∼
is denoted by X ∪f Y (see [17, Definition 6.1, p. 127] and compare [30, 3.18,
p. 42]).

Theorem 2.5. Let S be a unionable class of compacta. If X ∈ AR(S)
and Y ∈ S is a retract of X, then Y ∈ AR(S).

Proof. Let Y be embedded in a space Z ∈ S. We have to define a
retraction from Z onto Y . Take the disjoint union of Z and X, and let
e : Y → X be the embedding. Put T = Z∪eX. Since S is unionable, T ∈ S.
Thus there exists a retraction r1 : T → X. If r2 : X → Y is a retraction,
then r2 ◦ r1|Z : Z → Y is the required retraction.

The assumption that S is unionable is necessary in the above theorem,
as shown by the following example. Let S1 be the unit circle, I2 the unit
square, and K any of the two Kuratowski nonplanable graphs (see [23, §51,
VII, Fig. 11, p. 305]). Put S = {S1, I2,K} (understood topologically). Then
S is not unionable, AR(S) = S \ {S1}, but S1 is a retract of K.

Definition 2.6. A class S of nonempty compacta is called functionally
unionable provided that for all members U,X, Y of S such that U ⊂ X with
X ∩Y = ∅ and for each mapping f : U → Y , if f(U) ∈ S, then X ∪f Y ∈ S.

Observation 2.7. Each functionally unionable class of compacta is
unionable.

Remark 2.8. The opposite implication to that of Observation 2.7 does
not hold in general. Indeed, let K consist of all one-point sets and of all
continua that are unions of finitely many arcs. Then K is unionable. To
see that it is not functionally unionable consider the following example. Let
U be the straight line segment joining 〈0, 0〉 to 〈1, 0〉 in the plane. Let Bn
be the upper semicircle in the plane that has the points 〈1/(n + 1), 0〉 and
〈1/n, 0〉 as its ends. Thus B = {〈0, 0〉} ∪ ⋃{Bn : n ∈ N} is an arc having
〈0, 0〉 and 〈1, 0〉 as its ends. Put X = U ∪B. Then X ∈ K. If Y is a singleton
and f : U → Y is the constant mapping, then the continuum X ∪f Y is not
in K.

To show functional unionability of classes listed in Observation 2.2 we
need the following lemma.

Lemma 2.9. Let K∈{D0,D, λD, T L,HU}. Let X,U, Y ∈K with U⊂X
and X ∩ Y = ∅, and let a mapping f : U → Y be a surjection. Then
X ∪f Y ∈ K.

Proof. We will prove the lemma for K = HU . For the other classes the
proof is the same, or even simpler.

First we show the following claim.
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(2.9.1) For each continuum K ⊂ X ∪f Y the set K ∩ Y is connected.

Indeed, suppose on the contrary that there are two nonempty, closed and
disjoint sets F and G such that K ∩ Y = F ∪ G. Applying the boundary
bumping theorem (see e.g. [30, 5.6, p. 74]) we infer that there is a compo-
nent C of K \ Y such that clC ∩ F 6= ∅ 6= clC ∩ G. If q : X → X ∪f Y
is the quotient mapping (which, by definition, identifies the pairs (u, f(u))
for u ∈ U only), then cl q−1(C) ∩ q−1(F ) 6= ∅ 6= cl q−1(C) ∩ q−1(G), and
cl q−1(C)∩U ⊂ q−1(F )∪ q−1(G). Therefore the continuum cl q−1(C)∪U is
a nonunicoherent subcontinuum of X, a contradiction. Thus (2.9.1) follows.

Let K1 and K2 be subcontinua of X∪fY with K1∩K2 6= ∅. For i ∈ {1, 2}
define

K ′i =
{
Ki if Ki ∩ Y = ∅,
Ki ∪ Y otherwise.

Then Li = q−1(K ′i) are continua with L1 ∩ L2 6= ∅. Hence L1 ∩ L2 is
connected. So M = q(L1 ∩ L2) is also connected. We have either M =
K1∩K2, or M = (K1∩K2)∪Y . In the former case K1∩K2 is connected. In
the latter, we see that the sets K1 ∩Y and K2 ∩Y are connected by (2.9.1).
Therefore K1 ∩ K2 ∩ Y is connected by the hereditary unicoherence of Y .
So Y intersects at most one component of K1∩K2. Since M = (K1∩K2)∪Y
is connected, it follows that K1 ∩K2 is connected, as required.

A simple consequence of the above lemma and of the unionability of
the classes listed in Observation 2.2 is the functional unionability of these
classes. Thus we have the following result.

Proposition 2.10. All the classes of continua listed in Observation 2.2
are functionally unionable.

Theorem 2.11. Let S be a functionally unionable class of compacta.
Then for each Y ∈ S the following two conditions are equivalent :

(2.11.1) Y ∈ AR(S);
(2.11.2) for each space X ∈ S, for each subspace U ⊂ X such that U ∈ S,

and for each mapping f : U → Y with f(U) ∈ S there exists a
mapping f∗ : X → Y such that f∗|U = f .

Proof. To show that (2.11.2) implies (2.11.1), let Y be embedded in a
space X ∈ S. Take U = Y and let f : U → X be the inclusion map. Then f ∗

is a retraction from X onto Y .
Assume (2.11.1). Let q : X⊕Y → T = X ∪f Y be the quotient mapping.

Then T ∈ S by assumption. Let r : T → Y be a retraction. Then the
restriction f∗ = r ◦ q|X : X → Y is an extension of f , as required.

Consider a sequence of compact sets X0,X1, . . . (all situated in a metric
space M with a metric d), a sequence of closed subsets Yn of Xn for n ∈ N
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and of mappings fn : Yn → X0 such that

(2.12.1) Xm ∩Xn = ∅ for m 6= n, and m,n ∈ {0, 1, . . .};
(2.12.2) LsXn ⊂ X0;
(2.12.3) lim d(fn) = 0.

Take a decomposition of the union X0 ∪
⋃{Xn : n ∈ N} induced by identi-

fication of each of the pairs (y, fn(y)) for each y ∈ Yn and each n ∈ N, and
observe that this decomposition is upper semicontinuous. Denote the quo-
tient space of this decomposition by Q(X0; {Xn, Yn, fn}). In the particular
case when the subsets Yn are singletons {pn} we put xn = fn(pn) for n ∈ N
and we use the symbol Q(X0; {Xn, pn, xn}) in place of Q(X0; {Xn, Yn, fn}).

Definition 2.13. A class K of nonempty compacta is called functionally
ω-unionable provided that for each sequence X0,X1, . . . of elements of K
and for any sequences of subsets Yn of Xn with Yn ∈ K and of mappings
fn : Yn → X0 for n ∈ N satisfying conditions (2.12.1)–(2.12.3) the quotient
space Q(X0; {Xn, Yn, fn}) belongs to K. In particular, if the sets Yn are
singletons, then K is called pointwise ω-unionable.

Remark 2.14. The class of dendrites is functionally unionable but not
pointwise ω-unionable. To get a pointwise ω-unionable class of compact
metric spaces which is not unionable it is enough to consider the small-
est pointwise ω-unionable class containing a disk. To this end, observe the
following sequence of facts.

(2.14.1) Let {Kα} be an arbitrary family of classes of compacta such that
each class Kα is pointwise ω-unionable. Then the intersection of
this family is also pointwise ω-unionable.

An easy and standard proof of (2.14.1) is omitted. The next fact is obvious.

(2.14.2) The class of all compacta is pointwise ω-unionable.

Facts (2.14.1) and (2.14.2) imply the next one.

(2.14.3) For each class K of compacta there exists the smallest class K̂ of
compacta that contains K and which is pointwise ω-unionable.

It can easily be shown that

(2.14.4) The class of all compacta not containing the 3-book (i.e., the
product of an arc and a simple triod) is pointwise ω-unionable.

It follows from (2.14.3) and (2.14.4) that

(2.14.5) The smallest pointwise ω-unionable class K of compacta such that
the disk is in K does not contain the 3-book.

Obviously,
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(2.14.6) Every unionable class of compacta that contains a disk contains
the 3-book as well.

Finally, from (2.14.3), (2.14.5) and (2.14.6) we get the needed conclusion:

(2.14.7) The smallest pointwise ω-unionable class of compacta that con-
tains a disk is not unionable.

Consider the following classes of continua: D, λD, T L and HU . To show
that they are functionally ω-unionable we need the following lemma, which
is a consequence of [15, Theorem 14, p. 97] for HU , of [15, Theorem 15, p.
98] for T L, and of [15, Corollary, p. 98] for the classes D and λD.

Lemma 2.15. Let K ∈ {D, λD, T L,HU}. Let Z0, Z1, . . . be continua
in K such that for each m,n ∈ N with m 6= n, we have Z0 ⊂ Zn, (Zm \Z0)∩
(Zn \ Z0) = ∅, and LimZn = Z0. Then the union Y =

⋃{Zn : n ∈ N} is a
member of K.

Theorem 2.16. Each of the following classes of continua: D, λD, T L
and HU is functionally ω-unionable. In particular , each of them is pointwise
ω-unionable.

Proof. Let K ∈ {D, λD, T L,HU}. For each n ∈ N let X0, Xn, Yn and fn
be as in Definition 2.13, and q : X0∪

⋃{Xn : n ∈ N} → Q(X0; {Xn, Yn, fn})
be the quotient mapping. Put Z0 = q(X0) and Zn = q(X0 ∪ Xn) for
each n ∈ N. Since the class K is functionally unionable according to Ob-
servation 2.9 and Proposition 2.10, we get Z0, Zn ∈ K for each n ∈ N.
Note that all other assumptions of Lemma 2.15 are also satisfied. Therefore
Y = Q(X0; {Xn, Yn, fn}) is a member of K, as required.

Theorem 2.17. Let K be a functionally ω-unionable class of continua.
Let X ∈ AR(K) be a subcontinuum of a metric space M . Then for each
ε > 0 there is a δ > 0 such that for each Y ⊂ M with Y ∈ K, for each
mapping f : Y → X satisfying d(f) < δ, and for each continuum Z ∈
K satisfying Y ⊂ Z ⊂ N(X, δ) there is an extension f∗ : Z → X of f
satisfying d(f∗) < ε.

Proof. Suppose on the contrary that there is an ε > 0 having the prop-
erty that for each n ∈ N there are continua Yn, Zn ∈ K and a mapping
fn : Yn → X such that Yn ⊂ Zn ⊂ N(X, 1/n), d(fn) < 1/n, and fn does
not admit any extension on Zn which moves points by less than ε. In the
space M×{0, 1/1, 1/2, 1/3, . . .} put X0 = X×{0} and, for each n ∈ N, con-
sider the sets Xn = Yn × {1/n}, Tn = Zn × {1/n} and define the mappings
gn : Xn → X0 by gn(y, 1/n) = (fn(y), 0). Let

q : X0 ∪
⋃
{Tn : n ∈ N} →W = Q(X0; {Tn,Xn, gn})
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be the quotient mapping. Since the class K is functionally ω-unionable,
W ∈ K. The restriction q|X0 is a homeomorphism, hence we can identify
X0 and q(X0) under this homeomorphism, and since X0 is homeomorphic
to X, we have X0 ∈ AR(K). Let r : W → X0 be a retraction and, for each
n ∈ N, let hn : Zn → Tn be the homeomorphism defined by hn(z) = (z, 1/n)
and π : X0 = X × {0} → X be the projection onto the first factor. Then
the mapping f∗n = π ◦ r ◦ q ◦hn is an extension of the corresponding fn, and
lim d(f∗n) = 0, a contradiction finishing the proof.

Remark 2.18. A theorem similar to Theorem 2.17 holds if we replace
the condition that the class K is functionally ω-unionable by the weaker one
that K is pointwise ω-unionable, provided that Y is degenerate.

For Z = X ⊂M (in Theorem 2.17) we even have a simpler formulation.

Corollary 2.19. Let K be a functionally ω-unionable class of continua.
Let X ∈ AR(K) be a subcontinuum of a metric space M . Then for each ε > 0
there is a δ > 0 such that for each Y ∈ K with Y ⊂ X and each mapping
f : Y → X satisfying d(f) < δ there is an extension f∗ : X → X of f
satisfying d(f∗) < ε.

In particular, by Remark 2.18, if Y is a singleton we obtain the next
corollary. Though the guaranteed mapping need not be a homeomorphism,
the formulation of this corollary resembles the Effros theorem for homoge-
neous continua (see e.g. [3, p. 735]). Thus it indicates some kind of a “weak
homogeneity” of absolute retracts for the classes considered. Because of fur-
ther applications (see Corollary 2.22, Proposition 3.1, as well as [6, Theorem
4.6, p. 140] and [12, Corollary 4.1]) we define the property separately.

Definition 2.20. A continuum X is said to have the generalized ε-push
property provided that

(2.20.1) for each ε > 0 there is a δ > 0 such that for any two points
x, y ∈ X with d(x, y) < δ there exists a mapping f : X → X
satisfying f(x) = y and d(f) < ε.

Now the above-mentioned corollary is as follows.

Corollary 2.21. Let K be a pointwise ω-unionable class of continua.
Then each member of AR(K) has the generalized ε-push property.

Corollary 2.21 and Theorem 2.16 imply the following.

Corollary 2.22. Let K ∈ {D, λD, T L,HU}. Then each member of
AR(K) has the generalized ε-push property.

Note that the properties of (classic) AR’s and even ANR’s for the class
K of all compacta indicated in Corollaries 2.19 and 2.21 are well known [1,
Theorem 3.1, p. 103].
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3. The arc property of Kelley. In this section we introduce a new
notion of the arc property of Kelley, which turns out to be the conjunction
of the property of Kelley and the arc approximation property. We start by
recalling the needed definitions.

A continuum X is said to have the property of Kelley provided that for
each point p ∈ X and for each subcontinuum K of X containing p and for
each sequence of points pn converging to p there exists a sequence of subcon-
tinua Kn of X containing pn and converging (with respect to the Hausdorff
metric) to the continuum K (see e.g. [19, p. 167] or [29, Definition 16.10,
p. 538]).

The generalized ε-push property (see Definition 2.20) appears to be
stronger than the property of Kelley.

Proposition 3.1. Each continuum having the generalized ε-push prop-
erty has the property of Kelley.

Proof. Fix a point x0 ∈ X, and let K ∈ C(X) with x0 ∈ K. Take a
sequence of points xn in X converging to x0. By (2.20.1) for each n ∈ N there
is a mapping fn : X → X such that fn(x0) = xn, and we have lim d(fn) = 0.
Defining Kn = fn(K) we get the required sequence of continua.

A continuum X is said to have the arc approximation property provided
that for each point x ∈ X and for each subcontinuum K of X containing x
there exists a sequence of arcwise connected subcontinua Kn of X contain-
ing x and converging to the continuum K (see [14, Section 3, p. 113]). The
following proposition is known (see [14, Proposition 3.10, p. 116]).

Proposition 3.2. If a continuum has the arc approximation property ,
then each arc component of the continuum is dense.

Investigating absolute retracts for some classes of continua we have found
that the following concept of the arc property of Kelley that joins the arc
approximation property and the property of Kelley turns out to be both
natural and useful.

Definition 3.3. A metric space X is said to have the arc property of
Kelley provided that for each point p ∈ X, for each subcontinuum K of X
containing p and for each sequence of points pn ∈ X converging to p there
exists a sequence of arcwise connected subcontinua Kn of X containing pn
and converging to the continuum K.

The following proposition is a consequence of the definitions. Since its
proof is straightforward, it is left to the reader.

Proposition 3.4. A continuum has the arc property of Kelley if and
only if it has the arc approximation property and the property of Kelley.
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Below we show that continua which are absolute retracts for some classes
of continua enjoy the arc property of Kelley.

Theorem 3.5. Let K be a pointwise ω-unionable class of continua. Then
each member of AR(K) has the property of Kelley. If , moreover , a contin-
uum containing an arc belongs to K, then each member of AR(K) has the
arc property of Kelley.

Proof. Let X ∈ AR(K). The first part of the conclusion follows from
Corollary 2.21 and Proposition 3.1. To show the second part we will use
the concept of and well known facts about Z-sets in the Hilbert cube Q.
The reader can find the needed information about Z-sets for example in [27,
Section 6.2, pp. 262ff] (see also [19, Chapter III, Section 9, pp. 76–79]; for
(b) below, we refer to [2, Theorem 7.6, p. 322]).
(a) Z-sets that are arcs form a dense subset of the hyperspace C(Q).
(b) Each arc L ⊂ Q that is a Z-set has compact neighborhoods Q′ arbitrar-

ily close to L with respect to the Hausdorff metric and such that every
Q′ is homeomorphic to Q and L is a Z-set in Q′.

So, assume that K contains a continuum P with an arc A ⊂ P . We may
assume that P and X are subsets of the Hilbert cube Q, and that A is a
Z-set in Q. Let K ∈ C(X), x0 ∈ K, and take a sequence {xn} of points in
X converging to x0. By (a) we can choose a sequence of arcs An that are
Z-sets and converge to K with respect to the Hausdorff metric. For each
An take, according to (b), a closed neighborhood Qn in Q in such a way
that LimQn = LimAn = K and An is a Z-set in Qn. For each n ∈ N
let hn : A → An be a homeomorphism. Since A and An are Z-sets in Q
and Qn, respectively, the homeomorphisms hn can be extended to homeo-
morphisms h∗n : Q → Qn by the Anderson theorem (see e.g. [27, Theorem
6.4.6, p. 278] or [19, Theorem 11.9.1, p. 93]). Put Pn = h∗n(P ). Thus, we
have in Q a sequence {Pn} of copies of P with arcs An ⊂ Pn such that
LimPn = LimAn = K and a sequence of points an ∈ An with liman = x0.
Applying Theorem 2.17 in the version of Remark 2.18 we see that the map-
pings an 7→ xn have extensions f∗n : Pn → X such that lim d(f∗n) = 0. Then
the sets f∗n(An) are those required by the definition of the arc property of
Kelley. The proof is complete.

To formulate the next result some definitions are in order. A dendroid X
is said to be smooth provided that there is a point v ∈ X such that for each
point x ∈ X and for each sequence {xn} of points of X which tends to x the
sequence of arcs vxn is convergent to the arc vx. Since each dendroid having
the property of Kelley is smooth (see [16, Corollary 5, p. 730]), Theorem 3.5
implies the following result.

Corollary 3.6. Each member of AR(D) is a smooth dendroid (with
the property of Kelley).
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Theorems 2.16 and 3.5 imply the following two results, new and not
obvious for the classes λD, T L and HU .

Corollary 3.7. Let K be any class of continua listed in (1.1). Then
any member of AR(K) has the arc property of Kelley.

By Theorem 3.5 and [14, Proposition 3.10, p. 116] we get the next corol-
lary.

Corollary 3.8. Let a pointwise ω-unionable class K of continua con-
tain a continuum that contains an arc. Then each arc component of any
member X of AR(K) is dense in X. In particular , the conclusion holds for
any class K of continua listed in (1.1).

Problem 3.9. Does there exist a pointwise ω-unionable class K of con-
tinua, each containing no arc, such that there is a nondegenerate member
of AR(K)?

In the remaining part of this section we study metric spaces (in partic-
ular continua) which have some (or all) of the following properties: having
all arc components dense; the arc approximation property; the property of
Kelley; hereditary unicoherence. All results of this study can be applied to
the members of AR(D), AR(λD), AR(T L), AR(HU), or more generally,
to the members of AR(K), where K is any ω-pointwise unionable class of
hereditarily unicoherent continua with some K ∈ K containing an arc (see
Theorem 3.5). Some of these results may have more general applications.

We start with the following lemma, whose proof is left to the reader.

Lemma 3.10. Let X be a space having the arc property of Kelley , let
A = pq be an arc in X, and let pn be a sequence of points converging to p.
Then there is a sequence of arcs An = pnqn converging to the arc A such
that the sequence qn converges to q.

Previously we have shown that continua in AR(HU) have the general-
ized ε-push property (see Corollary 2.22). In the next lemma we observe a
similar phenomenon for trees contained in spaces satisfying the more general
arc property of Kelley.

Lemma 3.11. Let X be a space having the arc property of Kelley. Then
for each tree T ⊂ X, each point p ∈ T , and each sequence pn in X converging
to p there are mappings fn : T → X such that fn(p) = pn and lim d(fn) = 0.

Proof. Given ε > 0, it suffices to prove that there are mappings fn :
T → X with fn(p) = pn and d(fn) < ε for almost all n ∈ N. Let M =
{v1, . . . , vk, A1, . . . , Am} be a simplicial complex structure on T such that
p = v1, . . . , vk are vertices of M, and A1, . . . , Am are 1-dimensional edges,
each being an arc with some end points vi, vj such that diamAl < ε for
each l ∈ {1, . . . ,m}. Let q ∈ {v1, . . . , vk} be a vertex connected with p by
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an edge Al ∈ {A1, . . . , Am}. By Lemma 3.10 there are arcs Al,n ⊂ X with
end points pn and qn, respectively, such that LimnAl,n = Al and lim qn = q.
We can inductively continue this construction so that at the next step the
role of p is played by q and that of pn’s by qn’s. In this way we eventually
obtain a collection of sequences {vi,n} with i ∈ {1, . . . , k}, and arcs {Al,n}
with l ∈ {1, . . . ,m}, such that

(i) v1,n = pn for each n ∈ N;
(ii) if vi is an end point of Al, then vi,n is an end point of Al,n for each

n ∈ N;
(iii) limn vi,n = vi and LimnAl,n = Al.

Let Al be an edge in M with end points vi and vj . For any n we fix a
homeomorphism fl,n : Al → Al,n such that fl,n(vi) = vi,n and fl,n(vj) =
vj,n. Combining the mappings fl,n together, we obtain a mapping fn :T→X.
The reader can observe that for sufficiently large n we have d(fn) < ε, as
required.

For any tree T let E(T ) be the set of end points of T and, for a vertex
p ∈ T , denote by ord(p, T ) the order of p in T , i.e., the number of edges of
T to which p belongs. Finally, ordT is the maximum of the orders of the
vertices of T .

Lemma 3.12. Let T be a tree in a metric space X, and for each n ∈ N
let fn : T → X be mappings such that limd(fn) = 0. Then, for sufficiently
large n, there are trees Tn ⊂ fn(T ) and monotone surjective mappings gn :
Tn → T such that

(1) fn(E(T )) = E(Tn) and gn(E(Tn)) = E(T );
(2) (fn ◦ gn)|E(Tn) = id |E(Tn);
(3) lim d(gn) = 0;
(4) if card g−1

n (x) > 1, then ord(x, T ) > 3.

In particular , if ordT ≤ 3, then the mappings gn are homeomorphisms.

Proof. We apply induction with respect to the number of end points
in T . First, we assume that T is an arc with end points a and b. Let ≺
be the natural order in T = ab from a to b. If x, y ∈ ab, the symbol xy
denotes the arc in ab from x to y. Let x0, x1, . . . , xk be points in ab such
that a = x0 ≺ x1 ≺ . . . ≺ xk = b. Then for sufficiently large n and j > i+ 1
we have fn(xixi+1)∩ fn(xjxj+1) = ∅, and also fn(a) 6∈ fn(x1b) and fn(b) 6∈
fn(axk−1).

Let p0 = fn(a), and p0p1 be an irreducible arc in fn(x0x1) connecting p0

and fn(x1b). Then, by the assumption, p1 ∈ fn(x1x2) \ fn(x2b). Similarly,
p1p2 is defined as an irreducible arc in fn(x1x2) connecting p1 and fn(x2b).
As previously, we observe that p2 ∈ fn(x2x3) \ fn(x3b). We inductively con-
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tinue this procedure until we obtain pk−1 ∈ fn(xk−1xk)\{fn(b)}. Finally, we
choose pk−1pk to be an irreducible arc in fn(xk−1b) from pk−1 to pk = fn(b).

Note that the union p0p1 ∪ p1p2 ∪ . . .∪ pk−1pk is an arc with end points
p0 = fn(a) and pk = fn(b). We denote this arc by Tn = p0pk. For each
i ∈ {0, . . . , k − 1} we choose a homeomorphism from pipi+1 to xixi+1 that
sends pi to xi and pi+1 to xi+1. The combination of these homeomorphisms
is the desired mapping gn : Tn → T .

Given ε > 0, observe that if our initial choice of points xi is such that

max{diamxixi+1 : i ∈ {0, . . . , k − 1}} < ε/2,

and n is sufficiently large, then d(gn) < ε. Note that the mappings gn are
homeomorphisms as required in the case ordT ≤ 3. The case when T is an
arc is therefore proved.

Suppose the lemma is proved for all trees having fewer than k end points,
where k > 2, and assume that T has exactly k end points. Let a be a ram-
ification point of T , and D1, . . . ,Dm be the closures of the components of
T \ {a}. Then D1, . . . ,Dm are subtrees of T such that a is an end point of
each Di, and Di has fewer than k end points for i ∈ {1, . . . ,m}. According
to the inductive assumption, there are trees Di,n ⊂ fn(Di) and mappings
gi,n : Di,n → Di satisfying the conclusion of the lemma for the mappings
fn|Di. In particular, we have limn d(gi,n) = 0 for each i ∈ {1, . . . ,m}. Let
an = fn(a), and note that an is an end point of each Di,n. Since the trees
Di,n approximate Di, and the trees D1, . . . ,Dm are mutually disjoint except
at a, there are compact connected neighborhoods Vn of an inD1,n∪. . .∪Dm,n

with lim diamVn = 0 such that for each n the trees D1,n,D2,n, . . . ,Dm,n are
mutually disjoint except in Vn. For sufficiently large n we may additionally
assume that Vn is the union of arcs Ai,n = anbi,n ⊂ Di,n, and bi,n 6∈ Aj,n
for i, j ∈ {1, . . . ,m} with i 6= j. In the remaining part of the proof we only
consider such indices n.

Case 1. Assume m = 3. Let Wn be an arc in Vn from b1,n to b2,n,
and Zn be an arc in Vn irreducibly connecting b3,n and Wn. The condition
bi,n 6∈ Aj,n for i 6= j implies that the union Kn = Wn ∪ Zn cannot be an
arc, and thus Kn is a triod in Vn irreducibly connecting b1,n, b2,n, and b3,n.
Let hn : Kn → T be an embedding such that hn(bi,n) = gi,n(bi,n) for
i ∈ {1, 2, 3}. We let Tn = ((D1,n ∪D2,n ∪D3,n) \ Vn) ∪Kn, and we define a
homeomorphism gn : Tn → T as follows:

gn(x) =
{
gi,n(x) for x ∈ Di,n \ Vn and i ∈ {1, 2, 3},
hn(x) for x ∈ Kn.

Case 2. Assume m > 3. We have bi,n 6∈ Dj,n for i 6= j. Therefore we
can choose points ci,n ∈ Ai,n \ {an, bi,n} so near to bi,n that letting Ci,n be
the arc in Ai,n from an to ci,n, and Bi,n the arc from ci,n to bi,n, we have
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Di,n∩Dj,n ⊂ C1,n∪. . .∪Cm,n for i 6= j. The union Un = C1,n∪. . .∪Cm,n is a
locally connected continuum, so it contains a tree Ln irreducibly connecting
the points c1,n, . . . , cm,n. Define Tn = ((D1,n ∪ . . . ∪Dm,n) \ Un) ∪ Ln. Let
hi,n : Bi,n → T be an embedding such that hi,n(ci,n) = a and hi,n(bi,n) =
gi,n(bi,n). We define gn : Tn → T as follows:

gn(x) =





gi,n(x) for x ∈ Di,n \ Vn and i ∈ {1, . . . ,m},
hi,n(x) for x ∈ Bi,n and i ∈ {1, . . . ,m},
a for x ∈ Ln.

Among consequences of Lemmas 3.11 and 3.12 we have Theorem 3.13
and Corollary 3.15 below, which are the most important results of this part
of the paper. They show, for trees in spaces with the arc property of Kel-
ley, stronger properties than the one proved in Lemma 3.11. The properties
proved are applied in [6], [7] and [12].

Theorem 3.13. Let X be a space having the arc property of Kelley , T
be a tree in X, and p be an end point of T . Then for each sequence {pn}
of points in X converging to p and for sufficiently large n there are trees
Tn ⊂ X with pn ∈ Tn and monotone mappings gn : Tn → T such that

(a) lim d(gn) = 0;
(b) for each x ∈ X, if g−1

n (x) is nondegenerate, then ord(x, T ) > 3.

Definition 3.14. Let C,C1, C2, . . . be compacta in a metric space X,
with corresponding points p ∈ C, p1 ∈ C1, p2 ∈ C2, . . . We say that the pairs
(Cn, pn) converge homeomorphically to the pair (C, p) provided that there
exists a sequence of homeomorphisms hn : C → Cn such that hn(p) = pn
and limd(hn) = 0.

Note that if the tree T in Theorem 3.13 is such that ordT ≤ 3, then the
mappings gn are homeomorphisms by (b). Using the inverses g−1

n we get the
following.

Corollary 3.15. Let X be a metric space having the arc property of
Kelley , p be an end point of a tree T in X with ordT ≤ 3, and {pn}
be a sequence of points in X converging to p. Then for almost all n ∈ N
there are trees Tn ⊂ X with pn ∈ Tn such that the pairs (Tn, pn) converge
homeomorphically to the pair (T, p).

We end the paper with the following example which shows that the as-
sumption ordT ≤ 3 in Corollary 3.15 is essential. This example also shows
that the mappings gn in Theorem 3.13 not always can be homeomorphisms.
Recall that the union of four arcs each two of which are disjoint except at
their common end point p is called a 4-od.
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Example 3.16. There exist a continuum X which is in AR(HU) (so it
has the arc property of Kelley by Corollary 3.7), a tree T ⊂ X with ordT > 3,
an end point p ∈ T , and a sequence of points pn ∈ X converging to p with
no trees Tn in X such that the pairs (Tn, pn) converge homeomorphically to
the pair (T, p).

Proof. In the Euclidean 3-space define

A0 = ([−1, 1]× {〈0, 0〉}) ∪ ({0} × [−1, 1]× {0}),
and for each n ∈ N put

An = ([−1, 1]× {〈0, 1/n〉})
∪ ({−1/n} × [−1, 0]× {1/n}) ∪ ({1/n} × [0, 1]× {1/n}).

Then A0 is a 4-od, for n > 1 each An is homeomorphic to the letter H, and
the sequence of continua An converges to A0. Define

X = ({〈1, 0〉} × [0, 1]) ∪A0 ∪
⋃
{An : n ∈ N}.

Then putting p = 〈−1, 0, 0〉, T = A0, and pn = 〈−1, 0, 1/n〉 for each n ∈ N,
we see that in X there are no 4-ods Tn containing pn and such that the
pairs (Tn, pn) converge homeomorphically to (T, p). On the other hand, the
continuum X has the arc property of Kelley, and by [5, Corollary 4.6] it is
even in AR(HU).
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