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AN ORBIT CLOSURE FOR A REPRESENTATION OF THE
KRONECKER QUIVER WITH BAD SINGULARITIES

BY

GRZEGORZ ZWARA (Torun)

Abstract. We give an example of a representation of the Kronecker quiver for which
the closure of the corresponding orbit contains a singularity smoothly equivalent to the
isolated singularity of two planes crossing at a point. Therefore this orbit closure is neither
Cohen—Macaulay nor unibranch.

1. Introduction and the main result. Throughout the paper, k& de-
notes a fixed algebraically closed field. Let @ = (Qo,Q1,S$,¢e) be a finite
quiver, that is, Qg is a finite set of vertices, (01 is a finite set of arrows, and
s,e : Q1 — Qo are functions such that any arrow a € @) has the start-
ing vertex s(a) and the ending vertex e(a). Let d = (d;)icq, € N?° be a
dimension vector. We define the vector space

repQ(d) = H Mde(Q)de(a)(k)7
acQ1

where My w47 (k) denotes the set of d’ x d”-matrices with coefficients in k
for any positive integers d’ and d”. The product Gl(d) = [[;cq, Gla; (k) of
general linear groups acts on rep(d) via

g*xV = (ge(a)vags_((lx))ate

for any g = (gi)ieg, € GI(d) and V' = (Vi)aeq, € repg(d). The orbits
of this action correspond to the isomorphism classes of the representations
of () with dimension vector d.

Let M be a representation of @) with dimension vector d. We will denote
by Oy the corresponding Gl(d)-orbit in repg(d). An interesting problem
is to study the geometry of the orbit closure Q). For example we may
ask when it is regular, normal or Cohen-Macaulay. The orbit closure Oy
is Cohen—Macaulay and normal if @) is a Dynkin quiver of type A, or D,,
([3], [4]). For the remaining Dynkin quivers of type E;, [ = 6,7, 8, we know at
least that Oy is unibranch ([14]), that is, its normalization map is bijective.
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The Dynkin quivers are the only quivers ) for which the variety repQ(d)
has only finitely many Gl(d)-orbit for any dimension vector d. The simplest
quiver admitting infinite families of orbits is a point with a loop. Then the
points of repg (d) are square matrices and the orbit Oy is a conjugacy class.
Hence Oy is normal and Cohen—Macaulay ([6], [10], [11]).

Another distinguished example is given by the Kronecker quiver @ :
1 é 2. It has been proved recently that then O, is regular in codimen-

B
sion one, and moreover it is Cohen—Macaulay and normal at any point N

such that there is no point W satisfying On ¢ Ow & O ([2]). In fact,
[2] gives a classification of the types of singularities Sing(Oys, N) for such
points N. Recall that following Hesselink (see [9, (1.7)]), the types of sin-
gularities Sing(X', zg) and Sing(),yo) of two pointed varieties (X, xg) and
(Y, y0) coincide if there are smooth morphisms f: 2 — X, g: Z — ) and
a point zp € Z with f(z9) = xo and g(20) = yo. If Sing(X, z¢) = Sing(V, yo)
then the variety X is regular (respectively, normal, Cohen—Macaulay,
unibranch) at z( if and only if the same is true for the variety ) at yo
(see [8, Section 17] for more information about smooth morphisms).

Let V be the set of points (z,y,z,t) € k* such that zz = 2t = yz =
yt = 0. Thus V is a union of two planes intersecting at the point 0. Conse-
quently, the variety V is neither unibranch nor normal at 0. It is also not
difficult to show that V is not Cohen-Macaulay (see for instance [7, p. 459]).
The main result of the paper shows that Sing(V,0) appears as the type of
singularity of an orbit closure in repQ(d), where (Q is the Kronecker quiver.

THEOREM 1. Let Q be the Kronecker quiver 1 £ 92 and d = (3,3). Let

B
M = (Mq, Mg) and N = (Na, Np) be two points of repg(d) given by
00O 1 00 0 0O 0 0 0
My=1]1 0 0|,Mg=]|0 0 O|,No=|1 0 O|,Ng=|A1 0 0
010 001 010 0 X O

for some scalars \1 # \a. Then N € Oy and Sing(Oyy, N) = Sing(V,0).

Note that this theorem gives the first example (to the author’s knowl-
edge) of an orbit closure in a variety of representations of a quiver which is
not Cohen—Macaulay.

2. Transversal slices. Let Q = (Qo, Q1, s, ¢) be a finite quiver, d € N@°
be a dimension vector and N = (Na)ae@, be a point of repg(d). We identify
the tangent space ZepQ(d),N with the vector space repy(d), the tangent
space 7oy, N Wwith a subspace of repg(d) and the tangent space Zgyq),

with the product [[;co, Ma;xd;(k). Let p: Gl(d) — On denote the orbit
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map sending g to g x V. Then the induced linear map of tangent spaces
t': Tayaya — Zoy,N is given by the formula

Nl(h) = (he(a)NOc - Nahs(a))a€Q1
for any h = (hi)ic, € Zai(d),1- The kernel of ' is just the endomorphism
space Endg(N) of the representation IV, and the stabilizer u=1(N) of the
point N is just the automorphism group Autg(N) of the representation N.

Since Autg(/N) is a non-empty open subset of the vector space Endg(N),
we have

dimTm ' = dim [ [ Mg,xq, (k) — dim Endg(N)
1€Qo
=dim Gl(d) — dim Autg(N) = dim Oy = dim 7o, .

Consequently, p’ is a surjective map, which means that the orbit map p is
separable. This enables us to apply the transversal slice method explained in
[13, Section 5.1] (see also [5, Section 6.2]). Namely, let S be a Gl(d)-invariant
subvariety of repg(d) containing N. We choose a linear complement C of
Toy,N in Trep,(d),N = repg(d). Then

Sing(S, N) = Sing(SN (N +C), N).

For instance, we may apply this for any orbit closure S = Oj; containing
the point N.

3. The proof of Theorem 1. Let @) be the Kronecker quiver 1 é 2 and
B
d = (3,3). We consider the representation M in rep(d) given in Theorem 1.

The following lemma characterizes the orbit Oy,.

LEMMA 2. Let V = (Va, Vp) be a point of repy(d). Then V' belongs to
Owr if and only if

Vo O

_ Vol Vo Vg 0] _
tk[Vy Vg| =1k [VB] =3, 1k [ A VB} =rk 163 Yéa = 5.
8

Proof. We will use some basic facts concerning finite-dimensional repre-
sentations of the Kronecker quiver which can be found in [1] or [12]. Observe
that the above conditions are invariant under the action of the group Gl(d)
and hold for V' = M. Thus one implication is proved.

We consider the following representations of Q:

(5] o1

0 0
P=ke0, Po=kc—k L=ke—k, L=0¢cEk.
0 B (10 0



84 G. ZWARA

In particular, M ~ P, & I;. Assume that V satisfies the above rank con-
ditions. It is easy to check that the equality rk [V, V3] = 3 means that

dimHomg(V, P1) = 0, and rk [‘6" “;ﬁ ‘Bﬂ] = 5 means that dim Homg(V, P,)
= 1. Observe that the radical rad P> of the representation P» is isomorphic

to P, @& P;. Since Ps is a projective representation, it follows that
1 = dim Homg(V, P») — dim Homg (V,rad P,)

is the multiplicity of P» as a direct summand of V. By duality, the repre-
sentation I; occurs as a direct summand of V. Hence V ~ P, @& I; & V'
for some representation V. Comparing the dimension vectors of the above
representations we get V' ~ 0, and consequently, V ~ M. =

We fix two different scalars A\, Ay € k. Let N be the representation in
repQ(d) given in Theorem 1. It is easy to calculate that the tangent space
Toy.N consists of the points

ci1 ci2 O A1ci1 Aaci2 0
€21 €22 €23 |, |Aice1  d22  Aicags ,
€31 €32 €33 d31  Aaczp Aac33

where ¢; j,d; ; € k. We choose the following linear complement of 7o, n in
ﬂepQ (d),N*

0 0 = * k%
C= 0 0 O0],|* 0 = ,
0 0 0 0 * =«

where each * stands for an arbitrary scalar. Thus each element V' = (V,, Vj)
of N + C has the form

0 0 ars big bi2 b3
(1) Va=1|1 0 0 |, Vg=|ba1 0 b3
01 0 0 bs2 b33

for some scalars aj 3,b; ;. Let U denote the open subset of Oy N (N+0C)
given by the inequality ba 1 # b3 2.

LEMMA 3. U consists of the points V' of the form (1) such that
(2) a13="b13="011b12=">b11b23 =Db33b12 =033ba3=0, by1 # b3a.

Proof. We denote by W the set of points V' of the form (1) satisfying (2).
Let V' € U. Observe that rk(M, + AMg) < 2 for any scalar A. Since this is a
closed condition invariant under the action of Gl(d), we have rk(V,, + AVj3)
< 2 for any A € k. Thus the coefficients of the polynomial det(V, + AVj) of
the variable A vanish. After standard calculations we get

a13 = b1z =0b1,1b23 = b33b12 =0.
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From Lemma 2 we conclude that

Vo O
rk[‘go‘ gﬂ ‘9],1«1{ Vi Vo | <5.
@ B 0 Vs

Next standard calculations give the remaining two equalities
b1,1b1,2 = b3 3b2 3 = 0.

Thus U C W.

In order to prove the reverse inclusion it suffices to show that W N Oy,
is a dense subset of W. The variety W is the union of two four-dimensional
irreducible components:

0 (b 0 0]
W' = 0 b1 0 O tbo #b32 g,
1 | 0 b32 b33 |
0 [0 b2 0]
w" = 0 boi 0 ba3 2o # b32
| 1 1 L 0 b32 0 ]

Applying Lemma 2 we can calculate that an element V' in W belongs to Oy
if and only if

N KT
(3) rk [bl,l bl’g] =rk |:b373:| =1.

It is easy to see that there is a point in W’ as well as a point in W satisfying
the open condition (3). Hence W/NQO)y is a dense subset of W and W”NOy,
is a dense subset of W', u

By the above lemma, N € U C Oy;. Applying the transversal slice
method we get B
Sing(Opr, N) = Sing(U, N).

It follows from Lemma 3 that I/ is isomorphic to the product of the smooth
variety

{(b21,b32) € k* : b1 # b3}

and the variety V introduced in Section 1. Hence
Sing(U, N) = Sing(V, 0),
which finishes the proof of Theorem 1. =
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