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NEW EXAMPLES OF BIHARMONIC MAPS IN SPHERES

BY

C. ONICIUC (Iaşi)

Abstract. We give some new methods to construct nonharmonic biharmonic maps
in the unit n-dimensional sphere Sn.

1. Introduction. It is known that a map φ : (M,g)→ (N,h) between
two Riemannian manifolds is harmonic if it is a critical point of the energy
E(φ) = 1

2

�
M |dφ|2vg, and φ is harmonic if and only if its tension field τ(φ) =

trace∇dφ vanishes (see [9, 7, 15]). In the same way, as suggested by J. Eells
and J. H. Sampson in [9], a map φ is biharmonic if it is a critical point of
the bienergy E2(φ) = 1

2

�
M |τ(φ)|2vg. G. Y. Jiang obtained in [11, 12] the

first and second variation formula for the bienergy showing that the map φ
is biharmonic if and only if

τ2(φ) = −J(τ(φ)) = 0,(1.1)

where J = ∆φ + traceRN (dφ·, )dφ· is the Jacobi operator of φ. The equa-
tion τ2(φ) = 0 is called the biharmonic equation. Of course, any harmonic
map is biharmonic, so we are interested in nonharmonic biharmonic maps.
In Jiang’s papers the following example was given: the generalized Clifford
torus Sn1(1/

√
2) × Sn2(1/

√
2), where n1 6= n2, is a nonharmonic (nonmini-

mal) biharmonic submanifold of Sn1+n2+1.
B. Y. Chen and S. Ishikawa proved in [6] that there are no nonminimal

biharmonic submanifolds of R3. Similarly, in [2], it was proved that there are
no such submanifolds in N 3(−1), where N3(−1) is a 3-dimensional manifold
with negative constant sectional curvature −1.

In [1] a classification of nonminimal biharmonic submanifolds of S3 was
given. They are: circles, spherical helices and parallel spheres. Then, in [2],
two methods were presented to construct examples of nonminimal bihar-
monic submanifolds of the unit n-dimensional sphere Sn for n > 3. In this
case the family of such submanifolds is much larger.

Biharmonic submanifolds of the Heisenberg group H3 were studied in [4].
Examples of biharmonic helices and biharmonic integral curves were given.
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We note that H3 has nonconstant sectional curvature, as in the previous
cases.

Biharmonic Riemannian submersions were studied in [14], and bihar-
monic curves on surfaces in [3].

The aim of this paper is to construct some new examples of nonhar-
monic biharmonic maps in the sphere Sn. First, using harmonic Rieman-
nian submersions, we give two classes of nonharmonic biharmonic maps in
Sn (Theorems 2.1 and 2.3). These maps have constant rank, i.e. they are
subimmersions. Finally, using a particular conformal change of the canoni-
cal metric on Sn, we get a new class of examples of biharmonic maps in Sn
endowed with the new metric (Theorem 3.7).

Notation. We work in the C∞ category, i.e. manifolds, metrics, con-
nections, maps will be assumed to be smooth. (Mm, g) will stand for a
connected manifold of dimension m, without boundary, endowed with a
Riemannian metric g. We denote by ∇ the Levi-Civita connection of (M,g).
For the Riemann curvature operator we use the sign convention R(X,Y ) =
[∇X ,∇Y ] − ∇[X,Y ]. For a map φ : (M,g) → (N,h) we denote by ∇φ the
connection in the pull-back bundle φ−1TN .

2. Biharmonic subimmersions in Sn. Let

Sn(a) = Sn(a)× {b}
= {p = (x1, . . . , xn+1, b) | (x1)2 + . . .+ (xn+1)2 = a2, a ∈ (0, 1), a2 + b2 = 1}
be a parallel hypersphere of Sn+1. We consider on Sn+1 the canonical metric
〈 , 〉. The set of all sections of the tangent bundle of Sn(a) is given by

C(TSn(a)) = {X = (X1, . . . ,Xn+1, 0) | x1X1 + . . .+ xn+1Xn+1 = 0}.
Let η = c−1(x1, . . . , xn+1,−a2/b), where c > 0 and c2 = a2 + a4/b2. Then η
satisfies

〈η, p〉 = 0, 〈η,X〉 = 0, |η| = 1,

i.e. η is a unit section in the normal bundle of Sn(a) in Sn+1. By a direct
computation we obtain

A = −1
c
I, B(X,Y ) = −1

c
〈X,Y 〉η, ∇⊥η = 0,(2.1)

where A is the shape operator, B is the second fundamental form of Sn(a)
and ∇⊥ is the normal connection in the normal bundle of Sn(a) in Sn+1. It
was proved in [1] that Sn(a) is a biharmonic submanifold of Sn+1, i.e. the
inclusion map of Sn(a) in Sn+1 is biharmonic, if and only if a = 1/

√
2 and

b = ±1/
√

2.
Now, we consider a Riemannian submersion ϕ : (M,g) → Sn(a), the

canonical inclusion i : Sn(a) → Sn+1, and φ = i ◦ ϕ : (M,g) → Sn+1. The
rank of φ is constant, equal to n.
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Theorem 2.1. Assume that ϕ : (M,g) → Sn(a) is a harmonic Rie-
mannian submersion. Then φ : (M,g) → Sn+1 is not harmonic, and it is
biharmonic if and only if a = 1/

√
2 and b = ±1/

√
2.

Proof. Let p ∈ M . We have TpM = T Vp M ⊕ THp M , where T Vp M =
ker dϕp and THp M is the orthogonal complement of T Vp M in TpM with
respect to the metric g. Let W be an open subset of Sn(a) such that ϕ(p) ∈
W and let {Yα}nα=1 be an orthonormal frame field of W . Set U = ϕ−1(W ),
{Xα} = {Y H

α }, and consider an orthonormal frame field {Xs}ms=n+1 on T V U .
The tension field of ϕ is given by

τ(ϕ)p = −
m∑

s=n+1

dϕp(∇XsXs)(2.2)

(see [8]). Computing the tension field of φ we obtain

τ(φ) = di(τ(ϕ)) + trace∇di(dϕ·, dϕ·) =
n∑

α=1

B(Yα, Yα) = −n
c
η,

i.e. φ is not harmonic.
To simplify the notation, we denote the Levi-Civita connection ∇Sn(a) of

Sn(a) by ∇N . Computing ∆φτ(φ) we get

−∆φτ(φ) =
m∑

k=1

{∇φXk∇
φ
Xk
τ(φ)−∇φ∇XkXkτ(φ)}(2.3)

=
n∑

α=1

{∇φXα∇
φ
Xα
τ(φ)−∇φ∇XαXατ(φ)}

+
m∑

s=n+1

{∇φXs∇
φ
Xs
τ(φ)−∇φ∇XsXsτ(φ)}.

But
∇φXατ(φ) = −n

c
∇Sn+1

Yα η = − n
c2 Yα,

and using (2.1) we obtain

∇φXα∇
φ
Xα
τ(φ) = − n

c2 ∇
Sn+1

Yα Yα = − n
c2

(
∇NYαYα −

1
c
η

)
(2.4)

= − n
c2 ∇

N
YαYα +

n

c3 η.

Further, we have

∇φ∇XαXατ(φ) = −n
c
∇Sn+1

∇NYαYα
η = − n

c2 ∇
N
YαYα,(2.5)

∇φXs∇
φ
Xs
τ(φ) = 0,(2.6)

∇φ∇XsXsτ(φ) = −n
c
∇Sn+1

dϕ(∇XsXs)η = − n
c2 dϕ(∇XsXs).(2.7)
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Inserting (2.4)–(2.7) in (2.3), and using (2.2), we obtain

−∆φτ(φ) =
n2

c3 η.(2.8)

A direct computation shows

traceRS
n+1

(dφ·, τ(φ))dφ· = n2

c
η.(2.9)

Thus, (2.8), (2.9) and (1.1) give us

τ2(φ) =
n2

c3 (1− c2)η,

so φ is biharmonic if and only if c = 1, i.e. a = 1/
√

2 and b = ±1/
√

2.

Since the radial projection

Sn → Sn(a), x 7→ ax,

is homothetic, a harmonic Riemannian submersion ϕ : (M,g) → Sn be-
comes a harmonic Riemannian submersion ϕ : (M,a2g) → Sn(a), and us-
ing the above theorem, we obtain a nonharmonic biharmonic subimmersion
φ : M → Sn+1. For example, the Hopf map induces a nonharmonic bihar-
monic map φ : S3(

√
2) = {(z1, z2) ∈ C2 | (z1)2 + (z2)2 = 2} → S3 given by

φ(z1, z2) =
1

2
√

2
(2z1z2, |z1|2 − |z2|2, 1).

We now give a converse of Theorem 2.1.

Proposition 2.2. Assume that ϕ : (M,g) → Sn(1/
√

2) is a Rieman-
nian submersion with basic tension field , i.e. τ(ϕ)(p) = τ(ϕ)(q) whenever
ϕ(p) = ϕ(q). Then the map φ is biharmonic if and only if ϕ is harmonic.

Proof. From the composition law we have

τ(φ) = τ(ϕ)− nη.
As τ(ϕ) is basic we can think of it as a vector field on Sn(1/

√
2). Denoting

∇Sn(1/
√

2) by ∇N , we obtain

∇φXατ(φ) = ∇NYατ(ϕ)− 〈Yα, τ(ϕ)〉η − nYα,
∇φXα∇

φ
Xα
τ(φ) = ∇NYα∇NYατ(ϕ)− 2〈Yα,∇NYατ(ϕ)〉η

− 〈∇NYαYα, τ(ϕ)〉η − 〈Yα, τ(ϕ)〉Yα
− n∇NYαYα + nη,

∇φ∇XαXατ(φ) = ∇N∇NYαYατ(ϕ)− 〈∇NYαYα, τ(ϕ)〉η − n∇NYαYα,

∇φXs∇
φ
Xs
τ(φ) = 0,

∇φ∇XsXsτ(φ) = ∇Ndϕ(∇XsXs)τ(ϕ)− 〈dϕ(∇XsXs), τ(ϕ)〉η
− ndϕ(∇XsXs),
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and
traceRS

n+1
(dφ·, τ(φ))dφ· = (1− n)τ(ϕ) + n2η.

It follows that the normal part of τ2(φ) to Sn(1/
√

2) is

− (2 div τ(ϕ) + |τ(ϕ)|2)η.(2.10)

If φ is biharmonic, then (2.10) implies

div τ(ϕ) = −1
2
|τ(ϕ)|2,

and using the Stokes theorem, we get τ(ϕ) = 0, i.e. ϕ is harmonic.
The converse is immediate.

Let n1, n2 be two positive integers such that n = n1 +n2 and let r1, r2 be
two positive real numbers such that r2

1 +r2
2 = 1. Let ϕ1 : (M1, g1)→ Sn1(r1)

and ϕ2 : (M2, g2) → Sn2(r2) be harmonic Riemannian submersions, and
φ = i ◦ (ϕ1 × ϕ2), where i : Sn1(r1) × Sn2(r2) → Sn+1 is the canonical
inclusion.

Theorem 2.3. The map φ is a nonharmonic biharmonic subimmersion
if and only if r1 = r2 = 1/

√
2 and n1 6= n2.

Proof. We set

ξ(p) =
(
r2

r1
p1,−

r1

r2
p2

)
,

where p = (p1, p2) ∈ Sn1(r1)×Sn2(r2). Then ξ is a unit section in the normal
bundle of Sn1(r1)× Sn2(r2) in Sn+1.

By a straightforward computation we obtain

τ(φ) =
r2

1n2 − r2
2n1

r1r2
ξ,

τ2(φ) =
r2

2 − r2
1

r1r2

(
r2

1n2 − r2
2n1

r1r2

)2

ξ =
r2

2 − r2
1

r1r2
|τ(φ)|2ξ.

Thus τ(φ) 6= 0 and τ2(φ) = 0 if and only if r1 = r2 = 1/
√

2 and n1 6= n2.

3. Biharmonic submanifolds of (Sn, e2%〈 , 〉). We start with the well
known results about the conformal changes of the metrics.

Let (N,h) be a Riemannian manifold and let % ∈ C∞(N) be a smooth
real map. Set h̃ = e2%h and denote by ∇N the Levi-Civita connection of the
metric h and by ∇̃N the Levi-Civita connection of h̃. We have

∇̃NXY = ∇NXY + P (X,Y ),

where the tensor field P is given by

P (X,Y ) = (X%)Y + (Y %)X − h(X,Y ) grad %.
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For the corresponding curvature tensor fields we have

R̃N (X,Y )Z = RN (X,Y )Z + (∇NXP )(Y,Z)− (∇NY P )(X,Z)(3.1)

+ P (X,P (Y,Z))− P (Y, P (X,Z)).

Suppose that (N,h) = Sn with the canonical metric 〈 , 〉 and %(x) =
〈u, x〉, for x ∈ Sn, where u is a constant vector in Rn+1 and u 6= 0. Then
∇SnX grad % = −%X and grad % = u − %r, where r = x1e1 + . . . + xn+1en+1
is the radial vector field and {e1, . . . , en+1} denotes the canonical frame of
Rn+1. For this choice of N formula (3.1) becomes

R̃S
n
(X,Y )Z = 〈Z, Y 〉X − 〈Z,X〉Y(3.2)

+ 2%{〈Z, Y 〉X − 〈Z,X〉Y }
+ (Y %)(Z%)X − (X%)(Z%)Y

+ {〈Y,Z〉(X%)− 〈X,Z〉(Y %)} grad %

+ |grad %|2{〈Z,X〉Y − 〈Z, Y 〉X}.
Now, we consider Sn−1 = Sn−1 × {0} and let

i1 : (Sn−1, 〈 , 〉)→ (Sn, 〈 , 〉) and i2 : (Sn−1, 〈 , 〉)→ (Sn, e2%〈 , 〉)
be the canonical inclusions. We have i2 = 1 ◦ i1, where 1 : (Sn, 〈 , 〉) →
(Sn, e2%〈 , 〉) is the identity map. Of course, i1 is totally geodesic, so it is
harmonic and biharmonic.

Assume that %(x) = xn+1 = 〈en+1, x〉. Concerning the biharmonicity of
i2 we obtain

Proposition 3.1. The inclusion map i2 : (Sn−1, 〈 , 〉)→ (Sn, e2%〈 , 〉) is
nonharmonic biharmonic.

Proof. From the composition law we get

τ(i2) = d1(τ(i1)) + trace∇d1(di1·, di1·) = trace∇d1(di1·, di1·)(3.3)

=
n−1∑

k=1

(∇̃Sn −∇Sn)(Xk,Xk) =
∑

k

P (Xk,Xk)

=
∑

k

{2(Xk%)Xk − grad %} = −(n− 1) grad %

= −(n− 1)en+1,

where {Xk}n−1
k=1 is a local orthonormal frame field on Sn−1. Thus i2 is not

harmonic.
To compute −∆i2τ(i2), let p ∈M and let {Xk}n−1

k=1 be a geodesic frame
at p ∈ Sn−1. At p we have

−∆i2τ(i2) =
∑

k

∇̃SnXk∇̃
Sn
Xk
τ(i2) = −(n− 1)

∑

k

∇̃SnXk∇̃
Sn
Xk
en+1.
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As

∇̃SnXken+1 = ∇SnXken+1 + (Xk%)en+1 + (en+1%)Xk − 〈Xk, en+1〉 grad %

= ∇SnXken+1 +Xk = ∇Rn+1

Xk
en+1 + 〈Xk, en+1〉r +Xk = Xk,

it follows that

−∆i2τ(i2) = −(n− 1)
∑

k

∇̃SnXkXk = −(n− 1)τ(i2)(3.4)

= (n− 1)2en+1.

Using (3.2) we get

trace R̃S
n
(di2·, τ(i2))di2· = (n− 1)2en+1.(3.5)

Inserting (3.4) and (3.5) in the biharmonic equation we deduce that i2 is
biharmonic.

To generalize the above result we consider a minimal submanifold
(M, 〈 , 〉) of (Sn−1, 〈 , 〉). Let i : M → Sn−1, j1 = i1 ◦ i : (M, 〈 , 〉)→ (Sn, 〈 , 〉)
and j2 = 1 ◦ j1 : (M, 〈 , 〉)→ (Sn, e2%〈 , 〉) be the canonical inclusions. Again
% is given by %(x) = xn+1.

The map j1 is harmonic, and following the same steps as in the proof of
Proposition 3.1, we get

• τ(j2) = −men+1,
• −∆j2τ(j2) = m2en+1,
• trace R̃S

n
(dj2·, τ(j2))dj2· = m2en+1.

Thus we get

Theorem 3.2. The inclusion map j2 : (M, 〈 , 〉) → (Sn, e2%〈 , 〉) is non-
harmonic biharmonic.

Remark 3.3. We note that:

(1) (Sn, e2%〈 , 〉) has nonconstant sectional curvature;
(2) j2 : (M, 〈 , 〉)→ (Sn, e2%〈 , 〉) is a Riemannian immersion;
(3) M is a pseudo-umbilical submanifold of (Sn, e2%〈 , 〉) and its mean

curvature vector field is parallel and of norm 1. This result is similar to
Theorem 3.4 in [2].

Theorem 3.2 allows us to construct new examples of nonminimal (non-
harmonic) biharmonic submanifolds in spaces of nonconstant sectional cur-
vature. For example, using a well known result of H. B. Lawson (see [13]),
we get

Theorem 3.4. There exist closed orientable embedded nonminimal bi-
harmonic surfaces of arbitrary genus in (S4, e2%〈 , 〉).
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Proposition 3.5. Let M be a submanifold of Sn−1. Then j2 is not har-
monic, and it is biharmonic if and only if i is harmonic, i.e. (M, 〈 , 〉) is
minimal in (Sn−1, 〈 , 〉).

Proof. We have

τ(j2) = τ(1 ◦ j1) = τ(j1) + trace∇d1(dj1·, dj1·)
= τ(1) + trace∇d1(dj1·, dj1·) = τ(1)−m grad %

= τ(i)−men+1,

so j2 is not harmonic. The biharmonic equation can be written as

τ2(j2) = −∆j2τ(j2)− trace R̃S
n
(dj2·, τ(j2))dj2 ·

= −∆j2τ(i)−∆j2(−men+1)

− trace R̃S
n
(dj2·, τ(i))dj2 · − trace R̃S

n
(dj2·,−men+1)dj2 · .

By a straightforward computation we obtain

−∆j2τ(i) = −∆iτ(i) + |τ(i)|2en+1,

−∆j2(−men+1) = −mτ(j2) = −mτ(i) +m2en+1,

and

trace R̃S
n
(dj2·, τ(i))dj2· = 0, trace R̃S

n
(dj2·,−men+1)dj2· = m2en+1.

Thus we get τ2(j2) = −∆iτ(i)−mτ(i)+ |τ(i)|2en+1, which proves the propo-
sition.

More generally, we consider Sm1 = Sm1 × {0}, 0 ∈ Rn−m1 , m1 < n − 1,
and let

i1 : (Sm1 , 〈 , 〉)→ (Sn, 〈 , 〉) and i2 : (Sm1 , 〈 , 〉)→ (Sn, e2%〈 , 〉)
be the canonical inclusions. Assume that

%(x) = 〈u, x〉 = um1+2xm1+2 + . . .+ un+1xn+1, ∀x ∈ Sn,(3.6)

where u = (0, . . . , 0, um1+2, . . . , un+1) ∈ Rn+1 and u 6= 0.

Proposition 3.6. The inclusion map i2 : (Sm1 , 〈 , 〉) → (Sn, e2%〈 , 〉) is
not harmonic, and it is biharmonic if and only if |u| = 1.

Proof. In a similar way we obtain

• τ(i2) = −m1u 6= 0,
• −∆i2τ(i2) = m2

1|u|2u,
• trace R̃S

n
(di2·, τ(i2))di2· = m2

1u.

Consequently, τ2(i2) = m2
1(|u|2 − 1)u, i.e. the map i2 is biharmonic if and

only if |u| = 1.
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Next, let (M, 〈 , 〉) be a minimal submanifold of (Sm1 , 〈 , 〉) and i : M →
Sm1 the canonical inclusion. We denote by

j1 = i1◦i : (M, 〈 , 〉)→ (Sn, 〈 , 〉) and j2 = 1◦j1 : (M, 〈 , 〉)→ (Sn, e2%〈 , 〉)
the canonical inclusions, where % is given by (3.6). Then the map j1 is
harmonic, and concerning j2 we obtain

Theorem 3.7. The inclusion map j2 : (M, 〈 , 〉) → (Sn, e2%〈 , 〉) is not
harmonic, and it is biharmonic if and only if |u| = 1.
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