COLLOQUIUM MATHEMATICUM

NEW EXAMPLES OF BIHARMONIC MAPS IN SPHERES

By
C. ONICIUC (Iaşi)

Abstract

We give some new methods to construct nonharmonic biharmonic maps in the unit n-dimensional sphere \mathbb{S}^{n}.

1. Introduction. It is known that a map $\phi:(M, g) \rightarrow(N, h)$ between two Riemannian manifolds is harmonic if it is a critical point of the energy $E(\phi)=\frac{1}{2} \int_{M}|d \phi|^{2} v_{g}$, and ϕ is harmonic if and only if its tension field $\tau(\phi)=$ trace $\nabla d \phi$ vanishes (see $[9,7,15]$). In the same way, as suggested by J. Eells and J. H. Sampson in [9], a map ϕ is biharmonic if it is a critical point of the bienergy $E_{2}(\phi)=\frac{1}{2} \int_{M}|\tau(\phi)|^{2} v_{g}$. G. Y. Jiang obtained in [11, 12] the first and second variation formula for the bienergy showing that the map ϕ is biharmonic if and only if

$$
\begin{equation*}
\tau_{2}(\phi)=-J(\tau(\phi))=0 \tag{1.1}
\end{equation*}
$$

where $J=\Delta^{\phi}+\operatorname{trace} R^{N}(d \phi \cdot), d \phi \cdot$ is the Jacobi operator of ϕ. The equation $\tau_{2}(\phi)=0$ is called the biharmonic equation. Of course, any harmonic map is biharmonic, so we are interested in nonharmonic biharmonic maps. In Jiang's papers the following example was given: the generalized Clifford torus $\mathbb{S}^{n_{1}}(1 / \sqrt{2}) \times \mathbb{S}^{n_{2}}(1 / \sqrt{2})$, where $n_{1} \neq n_{2}$, is a nonharmonic (nonminimal) biharmonic submanifold of $\mathbb{S}^{n_{1}+n_{2}+1}$.
B. Y. Chen and S. Ishikawa proved in [6] that there are no nonminimal biharmonic submanifolds of \mathbb{R}^{3}. Similarly, in [2], it was proved that there are no such submanifolds in $N^{3}(-1)$, where $N^{3}(-1)$ is a 3 -dimensional manifold with negative constant sectional curvature -1 .

In [1] a classification of nonminimal biharmonic submanifolds of \mathbb{S}^{3} was given. They are: circles, spherical helices and parallel spheres. Then, in [2], two methods were presented to construct examples of nonminimal biharmonic submanifolds of the unit n-dimensional sphere \mathbb{S}^{n} for $n>3$. In this case the family of such submanifolds is much larger.

Biharmonic submanifolds of the Heisenberg group H_{3} were studied in [4]. Examples of biharmonic helices and biharmonic integral curves were given.

2000 Mathematics Subject Classification: Primary 58E20, 53C42.
Key words and phrases: harmonic and biharmonic maps, conformal changes.

We note that H_{3} has nonconstant sectional curvature, as in the previous cases.

Biharmonic Riemannian submersions were studied in [14], and biharmonic curves on surfaces in [3].

The aim of this paper is to construct some new examples of nonharmonic biharmonic maps in the sphere \mathbb{S}^{n}. First, using harmonic Riemannian submersions, we give two classes of nonharmonic biharmonic maps in \mathbb{S}^{n} (Theorems 2.1 and 2.3). These maps have constant rank, i.e. they are subimmersions. Finally, using a particular conformal change of the canonical metric on \mathbb{S}^{n}, we get a new class of examples of biharmonic maps in \mathbb{S}^{n} endowed with the new metric (Theorem 3.7).

Notation. We work in the C^{∞} category, i.e. manifolds, metrics, connections, maps will be assumed to be smooth. $\left(M^{m}, g\right)$ will stand for a connected manifold of dimension m, without boundary, endowed with a Riemannian metric g. We denote by ∇ the Levi-Civita connection of (M, g). For the Riemann curvature operator we use the sign convention $R(X, Y)=$ $\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$. For a map $\phi:(M, g) \rightarrow(N, h)$ we denote by ∇^{ϕ} the connection in the pull-back bundle $\phi^{-1} T N$.

2. Biharmonic subimmersions in \mathbb{S}^{n}. Let

$\mathbb{S}^{n}(a)=\mathbb{S}^{n}(a) \times\{b\}$
$=\left\{p=\left(x^{1}, \ldots, x^{n+1}, b\right) \mid\left(x^{1}\right)^{2}+\ldots+\left(x^{n+1}\right)^{2}=a^{2}, a \in(0,1), a^{2}+b^{2}=1\right\}$
be a parallel hypersphere of \mathbb{S}^{n+1}. We consider on \mathbb{S}^{n+1} the canonical metric \langle,$\rangle . The set of all sections of the tangent bundle of \mathbb{S}^{n}(a)$ is given by

$$
C\left(T \mathbb{S}^{n}(a)\right)=\left\{X=\left(X^{1}, \ldots, X^{n+1}, 0\right) \mid x^{1} X^{1}+\ldots+x^{n+1} X^{n+1}=0\right\} .
$$

Let $\eta=c^{-1}\left(x^{1}, \ldots, x^{n+1},-a^{2} / b\right)$, where $c>0$ and $c^{2}=a^{2}+a^{4} / b^{2}$. Then η satisfies

$$
\langle\eta, p\rangle=0, \quad\langle\eta, X\rangle=0, \quad|\eta|=1
$$

i.e. η is a unit section in the normal bundle of $\mathbb{S}^{n}(a)$ in \mathbb{S}^{n+1}. By a direct computation we obtain

$$
\begin{equation*}
A=-\frac{1}{c} I, \quad B(X, Y)=-\frac{1}{c}\langle X, Y\rangle \eta, \quad \nabla^{\perp} \eta=0, \tag{2.1}
\end{equation*}
$$

where A is the shape operator, B is the second fundamental form of $\mathbb{S}^{n}(a)$ and ∇^{\perp} is the normal connection in the normal bundle of $\mathbb{S}^{n}(a)$ in \mathbb{S}^{n+1}. It was proved in [1] that $\mathbb{S}^{n}(a)$ is a biharmonic submanifold of \mathbb{S}^{n+1}, i.e. the inclusion map of $\mathbb{S}^{n}(a)$ in \mathbb{S}^{n+1} is biharmonic, if and only if $a=1 / \sqrt{2}$ and $b= \pm 1 / \sqrt{2}$.

Now, we consider a Riemannian submersion $\varphi:(M, g) \rightarrow \mathbb{S}^{n}(a)$, the canonical inclusion i: $\mathbb{S}^{n}(a) \rightarrow \mathbb{S}^{n+1}$, and $\phi=\mathbf{i} \circ \varphi:(M, g) \rightarrow \mathbb{S}^{n+1}$. The rank of ϕ is constant, equal to n.

Theorem 2.1. Assume that $\varphi:(M, g) \rightarrow \mathbb{S}^{n}(a)$ is a harmonic Riemannian submersion. Then $\phi:(M, g) \rightarrow \mathbb{S}^{n+1}$ is not harmonic, and it is biharmonic if and only if $a=1 / \sqrt{2}$ and $b= \pm 1 / \sqrt{2}$.

Proof. Let $p \in M$. We have $T_{p} M=T_{p}^{V} M \oplus T_{p}^{H} M$, where $T_{p}^{V} M=$ ker $d \varphi_{p}$ and $T_{p}^{H} M$ is the orthogonal complement of $T_{p}^{V} M$ in $T_{p} M$ with respect to the metric g. Let W be an open subset of $\mathbb{S}^{n}(a)$ such that $\varphi(p) \in$ W and let $\left\{Y_{\alpha}\right\}_{\alpha=1}^{n}$ be an orthonormal frame field of W. Set $U=\varphi^{-1}(W)$, $\left\{X_{\alpha}\right\}=\left\{Y_{\alpha}^{H}\right\}$, and consider an orthonormal frame field $\left\{X_{s}\right\}_{s=n+1}^{m}$ on $T^{V} U$. The tension field of φ is given by

$$
\begin{equation*}
\tau(\varphi)_{p}=-\sum_{s=n+1}^{m} d \varphi_{p}\left(\nabla_{X_{s}} X_{s}\right) \tag{2.2}
\end{equation*}
$$

(see [8]). Computing the tension field of ϕ we obtain

$$
\tau(\phi)=d \mathbf{i}(\tau(\varphi))+\operatorname{trace} \nabla d \mathbf{i}(d \varphi \cdot, d \varphi \cdot)=\sum_{\alpha=1}^{n} B\left(Y_{\alpha}, Y_{\alpha}\right)=-\frac{n}{c} \eta
$$

i.e. ϕ is not harmonic.

To simplify the notation, we denote the Levi-Civita connection $\nabla^{\mathbb{S}^{n}(a)}$ of $\mathbb{S}^{n}(a)$ by ∇^{N}. Computing $\Delta^{\phi} \tau(\phi)$ we get

$$
\begin{align*}
-\Delta^{\phi} \tau(\phi)= & \sum_{k=1}^{m}\left\{\nabla_{X_{k}}^{\phi} \nabla_{X_{k}}^{\phi} \tau(\phi)-\nabla_{\nabla_{X_{k} X_{k}}}^{\phi} \tau(\phi)\right\} \tag{2.3}\\
= & \sum_{\alpha=1}^{n}\left\{\nabla_{X_{\alpha}}^{\phi} \nabla_{X_{\alpha}}^{\phi} \tau(\phi)-\nabla_{\nabla_{X_{\alpha} X_{\alpha}}}^{\phi} \tau(\phi)\right\} \\
& +\sum_{s=n+1}^{m}\left\{\nabla_{X_{s}}^{\phi} \nabla_{X_{s}}^{\phi} \tau(\phi)-\nabla_{\nabla_{X_{s}} X_{s}}^{\phi} \tau(\phi)\right\}
\end{align*}
$$

But

$$
\nabla_{X_{\alpha}}^{\phi} \tau(\phi)=-\frac{n}{c} \nabla_{Y_{\alpha}}^{\mathbb{S}^{n+1}} \eta=-\frac{n}{c^{2}} Y_{\alpha}
$$

and using (2.1) we obtain

$$
\begin{align*}
\nabla_{X_{\alpha}}^{\phi} \nabla_{X_{\alpha}}^{\phi} \tau(\phi) & =-\frac{n}{c^{2}} \nabla_{Y_{\alpha}}^{\mathbb{S}_{\alpha}^{n+1}} Y_{\alpha}=-\frac{n}{c^{2}}\left(\nabla_{Y_{\alpha}}^{N} Y_{\alpha}-\frac{1}{c} \eta\right) \tag{2.4}\\
& =-\frac{n}{c^{2}} \nabla_{Y_{\alpha}}^{N} Y_{\alpha}+\frac{n}{c^{3}} \eta
\end{align*}
$$

Further, we have

$$
\begin{align*}
\nabla_{\nabla_{X_{\alpha}} X_{\alpha}}^{\phi} \tau(\phi) & =-\frac{n}{c} \nabla_{\nabla_{Y_{\alpha}}^{N} Y_{\alpha}}^{\mathbb{S}^{n+1}} \eta=-\frac{n}{c^{2}} \nabla_{Y_{\alpha}}^{N} Y_{\alpha} \tag{2.5}\\
\nabla_{X_{s}}^{\phi} \nabla_{X_{s}}^{\phi} \tau(\phi) & =0 \tag{2.6}\\
\nabla_{\nabla_{X_{s} X_{s}}}^{\phi} \tau(\phi) & =-\frac{n}{c} \nabla_{d \varphi\left(\nabla_{X_{s}} X_{s}\right)}^{\mathbb{S}^{n+1}} \eta=-\frac{n}{c^{2}} d \varphi\left(\nabla_{X_{s}} X_{s}\right) \tag{2.7}
\end{align*}
$$

Inserting (2.4)-(2.7) in (2.3), and using (2.2), we obtain

$$
\begin{equation*}
-\Delta^{\phi} \tau(\phi)=\frac{n^{2}}{c^{3}} \eta \tag{2.8}
\end{equation*}
$$

A direct computation shows

$$
\begin{equation*}
\operatorname{trace} R^{\mathbb{S}^{n+1}}(d \phi \cdot, \tau(\phi)) d \phi \cdot=\frac{n^{2}}{c} \eta \tag{2.9}
\end{equation*}
$$

Thus, (2.8), (2.9) and (1.1) give us

$$
\tau_{2}(\phi)=\frac{n^{2}}{c^{3}}\left(1-c^{2}\right) \eta
$$

so ϕ is biharmonic if and only if $c=1$, i.e. $a=1 / \sqrt{2}$ and $b= \pm 1 / \sqrt{2}$.
Since the radial projection

$$
\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}(a), \quad x \mapsto a x
$$

is homothetic, a harmonic Riemannian submersion $\varphi:(M, g) \rightarrow \mathbb{S}^{n}$ becomes a harmonic Riemannian submersion $\varphi:\left(M, a^{2} g\right) \rightarrow \mathbb{S}^{n}(a)$, and using the above theorem, we obtain a nonharmonic biharmonic subimmersion $\phi: M \rightarrow \mathbb{S}^{n+1}$. For example, the Hopf map induces a nonharmonic biharmonic map $\phi: \mathbb{S}^{3}(\sqrt{2})=\left\{\left(z^{1}, z^{2}\right) \in \mathbb{C}^{2} \mid\left(z^{1}\right)^{2}+\left(z^{2}\right)^{2}=2\right\} \rightarrow \mathbb{S}^{3}$ given by

$$
\phi\left(z^{1}, z^{2}\right)=\frac{1}{2 \sqrt{2}}\left(2 z^{1} \overline{z^{2}},\left|z^{1}\right|^{2}-\left|z^{2}\right|^{2}, 1\right)
$$

We now give a converse of Theorem 2.1.
Proposition 2.2. Assume that $\varphi:(M, g) \rightarrow \mathbb{S}^{n}(1 / \sqrt{2})$ is a Riemannian submersion with basic tension field, i.e. $\tau(\varphi)(p)=\tau(\varphi)(q)$ whenever $\varphi(p)=\varphi(q)$. Then the map ϕ is biharmonic if and only if φ is harmonic.

Proof. From the composition law we have

$$
\tau(\phi)=\tau(\varphi)-n \eta
$$

As $\tau(\varphi)$ is basic we can think of it as a vector field on $\mathbb{S}^{n}(1 / \sqrt{2})$. Denoting $\nabla^{\mathbb{S}^{n}}(1 / \sqrt{2})$ by ∇^{N}, we obtain

$$
\begin{aligned}
\nabla_{X_{\alpha}}^{\phi} \tau(\phi)= & \nabla_{Y_{\alpha}}^{N} \tau(\varphi)-\left\langle Y_{\alpha}, \tau(\varphi)\right\rangle \eta-n Y_{\alpha} \\
\nabla_{X_{\alpha}}^{\phi} \nabla_{X_{\alpha}}^{\phi} \tau(\phi)= & \nabla_{Y_{\alpha}}^{N} \nabla_{Y_{\alpha}}^{N} \tau(\varphi)-2\left\langle Y_{\alpha}, \nabla_{Y_{\alpha}}^{N} \tau(\varphi)\right\rangle \eta \\
& -\left\langle\nabla_{Y_{\alpha}}^{N} Y_{\alpha}, \tau(\varphi)\right\rangle \eta-\left\langle Y_{\alpha} \tau(\varphi)\right\rangle Y_{\alpha} \\
& -n \nabla_{Y_{\alpha}}^{N} Y_{\alpha}+n \eta \\
\nabla_{\nabla_{X_{\alpha}} X_{\alpha}}^{\phi} \tau(\phi)= & \nabla_{\nabla_{Y_{\alpha}}^{N} Y_{\alpha}}^{N} \tau(\varphi)-\left\langle\nabla_{Y_{\alpha}}^{N} Y_{\alpha}, \tau(\varphi)\right\rangle \eta-n \nabla_{Y_{\alpha}}^{N} Y_{\alpha}, \\
\nabla_{X_{s}}^{\phi} \nabla_{X_{s}}^{\phi} \tau(\phi)= & 0, \\
\nabla_{\nabla_{X_{s} X_{s}}}^{\phi} \tau(\phi)= & \nabla_{d \varphi\left(\nabla_{\left.X_{s} X_{s}\right)}^{N} \tau(\varphi)-\left\langle d \varphi\left(\nabla_{X_{s}} X_{s}\right), \tau(\varphi)\right\rangle \eta\right.} \quad-n d \varphi\left(\nabla_{X_{s}} X_{s}\right)
\end{aligned}
$$

and

$$
\operatorname{trace} R^{\mathbb{S}^{n+1}}(d \phi \cdot, \tau(\phi)) d \phi \cdot=(1-n) \tau(\varphi)+n^{2} \eta
$$

It follows that the normal part of $\tau_{2}(\phi)$ to $\mathbb{S}^{n}(1 / \sqrt{2})$ is

$$
\begin{equation*}
-\left(2 \operatorname{div} \tau(\varphi)+|\tau(\varphi)|^{2}\right) \eta \tag{2.10}
\end{equation*}
$$

If ϕ is biharmonic, then (2.10) implies

$$
\operatorname{div} \tau(\varphi)=-\frac{1}{2}|\tau(\varphi)|^{2}
$$

and using the Stokes theorem, we get $\tau(\varphi)=0$, i.e. φ is harmonic.
The converse is immediate.
Let n_{1}, n_{2} be two positive integers such that $n=n_{1}+n_{2}$ and let r_{1}, r_{2} be two positive real numbers such that $r_{1}^{2}+r_{2}^{2}=1$. Let $\varphi_{1}:\left(M_{1}, g_{1}\right) \rightarrow \mathbb{S}^{n_{1}}\left(r_{1}\right)$ and $\varphi_{2}:\left(M_{2}, g_{2}\right) \rightarrow \mathbb{S}^{n_{2}}\left(r_{2}\right)$ be harmonic Riemannian submersions, and $\phi=\mathbf{i} \circ\left(\varphi_{1} \times \varphi_{2}\right)$, where $\mathbf{i}: \mathbb{S}^{n_{1}}\left(r_{1}\right) \times \mathbb{S}^{n_{2}}\left(r_{2}\right) \rightarrow \mathbb{S}^{n+1}$ is the canonical inclusion.

THEOREM 2.3. The map ϕ is a nonharmonic biharmonic subimmersion if and only if $r_{1}=r_{2}=1 / \sqrt{2}$ and $n_{1} \neq n_{2}$.

Proof. We set

$$
\xi(p)=\left(\frac{r_{2}}{r_{1}} p_{1},-\frac{r_{1}}{r_{2}} p_{2}\right)
$$

where $p=\left(p_{1}, p_{2}\right) \in \mathbb{S}^{n_{1}}\left(r_{1}\right) \times \mathbb{S}^{n_{2}}\left(r_{2}\right)$. Then ξ is a unit section in the normal bundle of $\mathbb{S}^{n_{1}}\left(r_{1}\right) \times \mathbb{S}^{n_{2}}\left(r_{2}\right)$ in \mathbb{S}^{n+1}.

By a straightforward computation we obtain

$$
\begin{aligned}
\tau(\phi) & =\frac{r_{1}^{2} n_{2}-r_{2}^{2} n_{1}}{r_{1} r_{2}} \xi \\
\tau_{2}(\phi) & =\frac{r_{2}^{2}-r_{1}^{2}}{r_{1} r_{2}}\left(\frac{r_{1}^{2} n_{2}-r_{2}^{2} n_{1}}{r_{1} r_{2}}\right)^{2} \xi=\frac{r_{2}^{2}-r_{1}^{2}}{r_{1} r_{2}}|\tau(\phi)|^{2} \xi
\end{aligned}
$$

Thus $\tau(\phi) \neq 0$ and $\tau_{2}(\phi)=0$ if and only if $r_{1}=r_{2}=1 / \sqrt{2}$ and $n_{1} \neq n_{2}$.
3. Biharmonic submanifolds of $\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$. We start with the well known results about the conformal changes of the metrics.

Let (N, h) be a Riemannian manifold and let $\varrho \in C^{\infty}(N)$ be a smooth real map. Set $\widetilde{h}=e^{2 \varrho} h$ and denote by ∇^{N} the Levi-Civita connection of the metric h and by $\widetilde{\nabla}^{N}$ the Levi-Civita connection of \widetilde{h}. We have

$$
\widetilde{\nabla}_{X}^{N} Y=\nabla_{X}^{N} Y+P(X, Y),
$$

where the tensor field P is given by

$$
P(X, Y)=(X \varrho) Y+(Y \varrho) X-h(X, Y) \operatorname{grad} \varrho
$$

For the corresponding curvature tensor fields we have

$$
\begin{align*}
\widetilde{R}^{N}(X, Y) Z= & R^{N}(X, Y) Z+\left(\nabla_{X}^{N} P\right)(Y, Z)-\left(\nabla_{Y}^{N} P\right)(X, Z) \tag{3.1}\\
& +P(X, P(Y, Z))-P(Y, P(X, Z))
\end{align*}
$$

Suppose that $(N, h)=\mathbb{S}^{n}$ with the canonical metric \langle,$\rangle and \varrho(x)=$ $\langle u, x\rangle$, for $x \in \mathbb{S}^{n}$, where u is a constant vector in \mathbb{R}^{n+1} and $u \neq 0$. Then $\nabla_{X}^{\mathbb{S}^{n}} \operatorname{grad} \varrho=-\varrho X$ and $\operatorname{grad} \varrho=u-\varrho r$, where $r=x^{1} e_{1}+\ldots+x^{n+1} e_{n+1}$ is the radial vector field and $\left\{e_{1}, \ldots, e_{n+1}\right\}$ denotes the canonical frame of \mathbb{R}^{n+1}. For this choice of N formula (3.1) becomes

$$
\begin{align*}
\widetilde{R}^{\mathbb{S}^{n}}(X, Y) Z= & \langle Z, Y\rangle X-\langle Z, X\rangle Y \tag{3.2}\\
& +2 \varrho\{\langle Z, Y\rangle X-\langle Z, X\rangle Y\} \\
& +(Y \varrho)(Z \varrho) X-(X \varrho)(Z \varrho) Y \\
& +\{\langle Y, Z\rangle(X \varrho)-\langle X, Z\rangle(Y \varrho)\} \operatorname{grad} \varrho \\
& +|\operatorname{grad} \varrho|^{2}\{\langle Z, X\rangle Y-\langle Z, Y\rangle X\} .
\end{align*}
$$

Now, we consider $\mathbb{S}^{n-1}=\mathbb{S}^{n-1} \times\{0\}$ and let

$$
\mathbf{i}_{1}:\left(\mathbb{S}^{n-1},\langle,\rangle\right) \rightarrow\left(\mathbb{S}^{n},\langle,\rangle\right) \quad \text { and } \quad \mathbf{i}_{2}:\left(\mathbb{S}^{n-1},\langle,\rangle\right) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle,\rangle\right)
$$

be the canonical inclusions. We have $\mathbf{i}_{2}=\mathbf{1} \circ \mathbf{i}_{1}$, where $\mathbf{1}:\left(\mathbb{S}^{n},\langle\rangle,\right) \rightarrow$ $\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ is the identity map. Of course, \mathbf{i}_{1} is totally geodesic, so it is harmonic and biharmonic.

Assume that $\varrho(x)=x^{n+1}=\left\langle e_{n+1}, x\right\rangle$. Concerning the biharmonicity of \mathbf{i}_{2} we obtain

Proposition 3.1. The inclusion map $\mathbf{i}_{2}:\left(\mathbb{S}^{n-1},\langle\rangle,\right) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ is nonharmonic biharmonic.

Proof. From the composition law we get

$$
\begin{align*}
\tau\left(\mathbf{i}_{2}\right) & =d \mathbf{1}\left(\tau\left(\mathbf{i}_{1}\right)\right)+\operatorname{trace} \nabla d \mathbf{1}\left(d \mathbf{i}_{1} \cdot, d \mathbf{i}_{1} \cdot\right)=\operatorname{trace} \nabla d \mathbf{1}\left(d \mathbf{i}_{1} \cdot, d \mathbf{i}_{1} \cdot\right) \tag{3.3}\\
& =\sum_{k=1}^{n-1}\left(\widetilde{\nabla}^{\mathbb{S}^{n}}-\nabla^{\mathbb{S}^{n}}\right)\left(X_{k}, X_{k}\right)=\sum_{k} P\left(X_{k}, X_{k}\right) \\
& =\sum_{k}\left\{2\left(X_{k} \varrho\right) X_{k}-\operatorname{grad} \varrho\right\}=-(n-1) \operatorname{grad} \varrho \\
& =-(n-1) e_{n+1}
\end{align*}
$$

where $\left\{X_{k}\right\}_{k=1}^{n-1}$ is a local orthonormal frame field on \mathbb{S}^{n-1}. Thus \mathbf{i}_{2} is not harmonic.

To compute $-\Delta^{\mathbf{i}_{2}} \tau\left(\mathbf{i}_{2}\right)$, let $p \in M$ and let $\left\{X_{k}\right\}_{k=1}^{n-1}$ be a geodesic frame at $p \in \mathbb{S}^{n-1}$. At p we have

$$
-\Delta^{\mathbf{i}_{2}} \tau\left(\mathbf{i}_{2}\right)=\sum_{k} \widetilde{\nabla}_{X_{k}}^{\mathbb{S}_{k}^{n}} \widetilde{\nabla}_{X_{k}}^{\mathbb{S}_{k}^{n}} \tau\left(\mathbf{i}_{2}\right)=-(n-1) \sum_{k} \widetilde{\nabla}_{X_{k}}^{\mathbb{S}^{n}} \widetilde{\nabla}_{X_{k}}^{\mathbb{S}_{n}^{n}} e_{n+1}
$$

As

$$
\begin{aligned}
\widetilde{\nabla}_{X_{k}}^{\mathbb{S}_{n+1}^{n}} e_{n+1} & =\nabla_{X_{k}}^{\mathbb{S}^{n}} e_{n+1}+\left(X_{k} \varrho\right) e_{n+1}+\left(e_{n+1} \varrho\right) X_{k}-\left\langle X_{k}, e_{n+1}\right\rangle \operatorname{grad} \varrho \\
& =\nabla_{X_{k}}^{\mathbb{S}^{n}} e_{n+1}+X_{k}=\nabla_{X_{k}}^{\mathbb{R}^{n+1}} e_{n+1}+\left\langle X_{k}, e_{n+1}\right\rangle r+X_{k}=X_{k},
\end{aligned}
$$

it follows that

$$
\begin{align*}
-\Delta^{\mathbf{i}_{2}} \tau\left(\mathbf{i}_{2}\right) & =-(n-1) \sum_{k} \widetilde{\nabla}_{X_{k}}^{\mathbb{S}_{n}} X_{k}=-(n-1) \tau\left(\mathbf{i}_{2}\right) \tag{3.4}\\
& =(n-1)^{2} e_{n+1}
\end{align*}
$$

Using (3.2) we get

$$
\begin{equation*}
\operatorname{trace} \widetilde{R}^{\mathbb{S}^{n}}\left(d \mathbf{i}_{2} \cdot, \tau\left(\mathbf{i}_{2}\right)\right) d \mathbf{i}_{2} \cdot=(n-1)^{2} e_{n+1} \tag{3.5}
\end{equation*}
$$

Inserting (3.4) and (3.5) in the biharmonic equation we deduce that \mathbf{i}_{2} is biharmonic.

To generalize the above result we consider a minimal submanifold $(M,\langle\rangle$,$) of \left(\mathbb{S}^{n-1},\langle\rangle,\right)$. Let $\mathbf{i}: M \rightarrow \mathbb{S}^{n-1}, \mathbf{j}_{1}=\mathbf{i}_{1} \circ \mathbf{i}:(M,\langle\rangle,) \rightarrow\left(\mathbb{S}^{n},\langle\rangle,\right)$ and $\mathbf{j}_{2}=\mathbf{1} \circ \mathbf{j}_{1}:(M,\langle\rangle,) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ be the canonical inclusions. Again ϱ is given by $\varrho(x)=x^{n+1}$.

The map \mathbf{j}_{1} is harmonic, and following the same steps as in the proof of Proposition 3.1, we get

- $\tau\left(\mathbf{j}_{2}\right)=-m e_{n+1}$,
- $-\Delta^{\mathbf{j}_{2}} \tau\left(\mathbf{j}_{2}\right)=m^{2} e_{n+1}$,
- trace $\widetilde{R}^{\mathbb{S}^{n}}\left(d \mathbf{j}_{2} \cdot, \tau\left(\mathbf{j}_{2}\right)\right) d \mathbf{j}_{2} \cdot=m^{2} e_{n+1}$.

Thus we get
Theorem 3.2. The inclusion map $\mathbf{j}_{2}:(M,\langle\rangle,) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ is nonharmonic biharmonic.

Remark 3.3. We note that:
(1) $\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ has nonconstant sectional curvature;
(2) $\mathbf{j}_{2}:(M,\langle\rangle,) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ is a Riemannian immersion;
(3) M is a pseudo-umbilical submanifold of $\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ and its mean curvature vector field is parallel and of norm 1. This result is similar to Theorem 3.4 in [2].

Theorem 3.2 allows us to construct new examples of nonminimal (nonharmonic) biharmonic submanifolds in spaces of nonconstant sectional curvature. For example, using a well known result of H. B. Lawson (see [13]), we get

Theorem 3.4. There exist closed orientable embedded nonminimal biharmonic surfaces of arbitrary genus in $\left(\mathbb{S}^{4}, e^{2 \varrho}\langle\rangle,\right)$.

Proposition 3.5. Let M be a submanifold of \mathbb{S}^{n-1}. Then \mathbf{j}_{2} is not harmonic, and it is biharmonic if and only if \mathbf{i} is harmonic, i.e. $(M,\langle\rangle$,$) is$ minimal in $\left(\mathbb{S}^{n-1},\langle\rangle,\right)$.

Proof. We have

$$
\begin{aligned}
\tau\left(\mathbf{j}_{2}\right) & =\tau\left(\mathbf{1} \circ \mathbf{j}_{1}\right)=\tau\left(\mathbf{j}_{1}\right)+\operatorname{trace} \nabla d \mathbf{1}\left(d \mathbf{j}_{1} \cdot, d \mathbf{j}_{1} \cdot\right) \\
& =\tau(\mathbf{1})+\operatorname{trace} \nabla d \mathbf{1}\left(d \mathbf{j}_{1} \cdot, d \mathbf{j}_{1} \cdot\right)=\tau(\mathbf{1})-m \operatorname{grad} \varrho \\
& =\tau(\mathbf{i})-m e_{n+1}
\end{aligned}
$$

so \mathbf{j}_{2} is not harmonic. The biharmonic equation can be written as

$$
\begin{aligned}
\tau_{2}\left(\mathbf{j}_{2}\right)= & -\Delta^{\mathbf{j}_{2}} \tau\left(\mathbf{j}_{2}\right)-\operatorname{trace} \widetilde{R}^{\mathbb{S}^{n}}\left(d \mathbf{j}_{2} \cdot, \tau\left(\mathbf{j}_{2}\right)\right) d \mathbf{j}_{2} \\
= & -\Delta^{\mathbf{j}_{2}} \tau(\mathbf{i})-\Delta^{\mathbf{j}_{2}}\left(-m e_{n+1}\right) \\
& -\operatorname{trace} \widetilde{R}^{\mathbb{S}^{n}}\left(d \mathbf{j}_{2} \cdot, \tau(\mathbf{i})\right) d \mathbf{j}_{2} \cdot-\operatorname{trace} \widetilde{R}^{\mathbb{S}^{n}}\left(d \mathbf{j}_{2} \cdot,-m e_{n+1}\right) d \mathbf{j}_{2} \cdot
\end{aligned}
$$

By a straightforward computation we obtain

$$
\begin{aligned}
-\Delta^{\mathbf{j}_{2}} \tau(\mathbf{i}) & =-\Delta^{\mathbf{i}} \tau(\mathbf{i})+|\tau(\mathbf{i})|^{2} e_{n+1} \\
-\Delta^{\mathbf{j}_{2}}\left(-m e_{n+1}\right) & =-m \tau\left(\mathbf{j}_{2}\right)=-m \tau(\mathbf{i})+m^{2} e_{n+1}
\end{aligned}
$$

and
$\operatorname{trace} \widetilde{R}^{\mathbb{S}^{n}}\left(d \mathbf{j}_{2} \cdot, \tau(\mathbf{i})\right) d \mathbf{j}_{2} \cdot=0, \quad \operatorname{trace} \widetilde{R}^{\mathbb{S}^{n}}\left(d \mathbf{j}_{2} \cdot,-m e_{n+1}\right) d \mathbf{j}_{2} \cdot=m^{2} e_{n+1}$.
Thus we get $\tau_{2}\left(\mathbf{j}_{2}\right)=-\Delta^{\mathbf{i}} \tau(\mathbf{i})-m \tau(\mathbf{i})+|\tau(\mathbf{i})|^{2} e_{n+1}$, which proves the proposition.

More generally, we consider $\mathbb{S}^{m_{1}}=\mathbb{S}^{m_{1}} \times\{0\}, 0 \in \mathbb{R}^{n-m_{1}}, m_{1}<n-1$, and let

$$
\mathbf{i}_{1}:\left(\mathbb{S}^{m_{1}},\langle,\rangle\right) \rightarrow\left(\mathbb{S}^{n},\langle,\rangle\right) \quad \text { and } \quad \mathbf{i}_{2}:\left(\mathbb{S}^{m_{1}},\langle,\rangle\right) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle,\rangle\right)
$$

be the canonical inclusions. Assume that

$$
\begin{equation*}
\varrho(x)=\langle u, x\rangle=u^{m_{1}+2} x^{m_{1}+2}+\ldots+u^{n+1} x^{n+1}, \quad \forall x \in \mathbb{S}^{n} \tag{3.6}
\end{equation*}
$$

where $u=\left(0, \ldots, 0, u^{m_{1}+2}, \ldots, u^{n+1}\right) \in \mathbb{R}^{n+1}$ and $u \neq 0$.
Proposition 3.6. The inclusion $\operatorname{map} \mathbf{i}_{2}:\left(\mathbb{S}^{m_{1}},\langle\rangle,\right) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ is not harmonic, and it is biharmonic if and only if $|u|=1$.

Proof. In a similar way we obtain

- $\tau\left(\mathbf{i}_{2}\right)=-m_{1} u \neq 0$,
- $-\Delta^{\mathbf{i}_{2}} \tau\left(\mathbf{i}_{2}\right)=m_{1}^{2}|u|^{2} u$,
- trace $\widetilde{R}^{\mathbb{S}^{n}}\left(d \mathbf{i}_{2} \cdot, \tau\left(\mathbf{i}_{2}\right)\right) d \mathbf{i}_{2} \cdot=m_{1}^{2} u$.

Consequently, $\tau_{2}\left(\mathbf{i}_{2}\right)=m_{1}^{2}\left(|u|^{2}-1\right) u$, i.e. the map \mathbf{i}_{2} is biharmonic if and only if $|u|=1$.

Next, let $(M,\langle\rangle$,$) be a minimal submanifold of \left(\mathbb{S}^{m_{1}},\langle\rangle,\right)$ and $\mathbf{i}: M \rightarrow$ $\mathbb{S}^{m_{1}}$ the canonical inclusion. We denote by
$\mathbf{j}_{1}=\mathbf{i}_{1} \circ \mathbf{i}:(M,\langle\rangle,) \rightarrow\left(\mathbb{S}^{n},\langle\rangle,\right) \quad$ and $\quad \mathbf{j}_{2}=\mathbf{1} \circ \mathbf{j}_{1}:(M,\langle\rangle,) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ the canonical inclusions, where ϱ is given by (3.6). Then the map \mathbf{j}_{1} is harmonic, and concerning \mathbf{j}_{2} we obtain

Theorem 3.7. The inclusion map $\mathbf{j}_{2}:(M,\langle\rangle,) \rightarrow\left(\mathbb{S}^{n}, e^{2 \varrho}\langle\rangle,\right)$ is not harmonic, and it is biharmonic if and only if $|u|=1$.

REFERENCES

[1] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of \mathbb{S}^{3}, Internat. J. Math. 12 (2001), 867-876.
[2] —, 一, 一, Biharmonic submanifolds in spheres, Israel J. Math. 130 (2002), 109-123.
[3] R. Caddeo, S. Montaldo and P. Piu, Biharmonic curves on a surface, Rend. Mat. 21 (2001), 143-157.
[4] R. Caddeo, C. Oniciuc and P. Piu, Explicit formulas for biharmonic non-geodesic curves of the Heisenberg group, preprint.
[5] M. do Carmo, Riemannian Geometry, Birkhäuser Boston, 1992.
[6] B. Y. Chen and S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math. 52, (1998), 167-185.
[7] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Reg. Conf. Ser. Math. 50, Amer. Math. Soc., 1983.
[8] J. Eells and A. Ratto, Harmonic Maps and Minimal Immersions with Symmetries; Method of Ordinary Differential Equations Applied to Elliptic Variational Problems, Ann. of Math. Stud. 130, Princeton Univ. Press, 1993.
[9] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[10] Gh. Gheorghiev and V. Oproiu, Varietăṭi diferenţiabile finit şi infinit dimensionale, Vol. 2, Editura Academiei, Bucureşti, 1979.
[11] G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), 130-144.
[12] -, 2-harmonic maps and their first and second variational formulas, ibid. 7 (1986), no 4, 389-402.
[13] H. B. Lawson, Complete minimal surfaces in \mathbb{S}^{3}, Ann. of Math. (2) 92 (1970), 335-374.
[14] C. Oniciuc, Biharmonic maps between Riemannian manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi 48 (2002), 237-248.
[15] H. Urakawa, Calculus of Variations and Harmonic Maps, Transl. Math. Monogr. 132, Amer. Math. Soc., 1993.

Faculty of Mathematics
Al. I. Cuza University of Iaşi
Bd. Copou no. 11
6600 Iaşi, Romania
E-mail: oniciucc@uaic.ro

