# EXPONENTIALS OF NORMAL OPERATORS AND COMMUTATIVITY OF OPERATORS: A NEW APPROACH <br> By <br> MOHAMMED HICHEM MORTAD (Oran) 


#### Abstract

We present a new approach to the question of when the commutativity of operator exponentials implies that of the operators. This is proved in the setting of bounded normal operators on a complex Hilbert space. The proofs are based on some results on similarities by Berberian and Embry as well as the celebrated Fuglede theorem.


1. Introduction. Let $A$ and $B$ be two bounded linear operators on a $B$ anach space $H$. The way of defining $e^{A}$, the exponential of $A$, is known at an undergraduate level. The functions $\sinh A, \cosh A$ can be defined similarly. It is also an easy exercise to show that $A B=B A$ implies $e^{A} e^{B}=e^{B} e^{A}$. While the converse is not always true, it is, however, true under the hypothesis that $A$ and $B$ are self-adjoint on a $\mathbb{C}$-Hilbert space. This result is stated in the following theorem (a proof may be found in [13]):

Theorem 1. Let $A$ and $B$ be two self-adjoint operators defined on a Hilbert space. Then

$$
e^{A} e^{B}=e^{B} e^{A} \Leftrightarrow A B=B A .
$$

There have been several attempts to prove the previous theorem for non-self-adjoint operators using the $2 \pi i$-congruence-free hypothesis (see e.g. [7. 9, 10, 11, 13]). See also [3] for some low dimensional results without the $2 \pi i$-congruence-free hypothesis.

In this paper, we present a different approach to this problem using results about similarities due to Berberian [2] and Embry [5]. The main question asked here is under which assumptions we have

$$
e^{A} e^{B}=e^{B} e^{A} \Rightarrow A B=B A
$$

for normal $A$ and $B$.

[^0]Another result obtained in this article is about sufficient conditions implying $A B=B C$ given that $e^{A} e^{B}=e^{B} e^{C}$, where $A, B$ and $C$ are self-adjoint operators.

All operators considered in this paper are assumed to be bounded and defined on a separable complex Hilbert space. The notions of normal, selfadjoint and unitary operators are defined in the usual fashion. So is the notion of the spectrum (with the usual notation $\sigma$ ). It is, however, convenient to recall the notion of a cramped operator. A unitary operator $U$ is said to be cramped if its spectrum is completely contained in some open semi-circle (of the unit circle), that is,

$$
\sigma(U) \subseteq\left\{e^{i t}: \alpha<t<\alpha+\pi\right\} .
$$

While we assume the reader is familiar with other notions and results on bounded operators (some standard references are [4, 8]), on several occasions we will recall some results that might not be known to some readers. One of them is the following result (first established in [1).

Theorem 2 (Berberian, [2]). Let $U$ be a cramped operator and let $X$ be a bounded operator such that $U X U^{*}=X^{*}$. Then $X$ is self-adjoint.
2. Main results. The following lemma is fundamental to our results. Its proof follows from the holomorphic functional calculus.

Lemma 1. Let $A$ and $B$ be two commuting normal operators, on a Hilbert space, having spectra contained in simply connected regions not containing 0 . Then

$$
A^{i} B^{i}=B^{i} A^{i}
$$

where $i=\sqrt{-1}$ is the usual complex number.
Lemma 2. Let $A$ be a self-adjoint operator such that $\sigma(A) \subset(0, \pi)$. Then

$$
\left(e^{i A}\right)^{i}=e^{-A}
$$

Proof. The proof follows from the functional calculus.
Before stating and proving the main theorem, we first give an intermediate result.

Proposition 1. Let $N$ be a normal operator with cartesian decomposition $A+i B$. Let $S$ be a self-adjoint operator. If $\sigma(B) \subset(0, \pi)$, then

$$
e^{S} e^{N}=e^{N} e^{S} \Rightarrow S N=N S
$$

Proof. Since $A$ and $B$ are two commuting self-adjoint operators, we have $e^{A} e^{i B}=e^{i B} e^{A}$. Consequently,

$$
\begin{aligned}
e^{S} e^{N}=e^{N} e^{S} & \Leftrightarrow e^{S} e^{A} e^{i B}=e^{A} e^{i B} e^{S} \\
& \Leftrightarrow e^{S} e^{A} e^{i B}=e^{i B} e^{A} e^{S} \\
& \Leftrightarrow e^{S} e^{A} e^{i B}=e^{i B}\left(e^{S} e^{A}\right)^{*} .
\end{aligned}
$$

Since $B$ is self-adjoint, $e^{i B}$ is unitary. It is also cramped by the spectral hypothesis on $B$. Now, Theorem 2 implies that $e^{S} e^{A}$ is self-adjoint, i.e.

$$
e^{S} e^{A}=e^{A} e^{S}
$$

Theorem 1 then gives us $A S=S A$.
It only remains to show that $B S=S B$. Since $e^{S} e^{A}=e^{A} e^{S}$, we immediately obtain

$$
e^{S} e^{N}=e^{N} e^{S} \Rightarrow e^{S} e^{A} e^{i B}=e^{A} e^{i B} e^{S} \text { or } e^{A} e^{S} e^{i B}=e^{A} e^{i B} e^{S}
$$

and so

$$
e^{S} e^{i B}=e^{i B} e^{S}
$$

by the invertibility of $e^{A}$.
Using Lemmas 1 \& 2 we immediately see that

$$
e^{S} e^{-B}=e^{-B} e^{S} .
$$

Theorem 1 yields $B S=S B$ and thus

$$
S N=S(A+i B)=(A+i B) S=N S .
$$

The proof of the proposition is complete.
Remark. We could have bypassed Berberian's result by alternatively using some of Embry's results (see [5).

Similar results can be obtained too by a result due to I. H. Sheth [12]. They all more or less deduce the self-adjointness of an operator $N$ from the operational equation $A N=N^{*} A$ (obviously under extra conditions on $N$ and/or $A$ ).

In the proof of the previous proposition, $N$ is a product of self-adjoint operators. Then a result by the author [6] can also be applied.

Now, we state and prove the main theorem in this paper:
Theorem 3. Let $N$ and $M$ be two normal operators with cartesian decompositions $A+i B$ and $C+i D$ respectively. If $\sigma(B), \sigma(D) \subset(0, \pi)$, then

$$
e^{M} e^{N}=e^{N} e^{M} \Rightarrow M N=N M .
$$

Proof. We have

$$
e^{M} e^{N}=e^{N} e^{M} \Rightarrow e^{M^{*}} e^{N}=e^{N} e^{M^{*}}
$$

by the Fuglede theorem since $e^{M}$ is normal. Hence by using again the normality of $M$,

$$
e^{M^{*}} e^{M} e^{N}=e^{M^{*}} e^{N} e^{M} \Rightarrow e^{M^{*}} e^{M} e^{N}=e^{N} e^{M^{*}} e^{M}
$$

or

$$
e^{M^{*}+M} e^{N}=e^{N} e^{M^{*}+M}
$$

Since $M^{*}+M$ is self-adjoint, Proposition 1 applies and gives

$$
\left(M^{*}+M\right) N=N\left(M^{*}+M\right) \quad \text { or just } \quad C N=N C .
$$

This implies that $N^{*} C=C N^{*}$ and thus $\left(N+N^{*}\right) C=C\left(N+N^{*}\right)$. Therefore, we have

$$
A C=C A \quad \text { and hence } \quad B C=C B
$$

Doing the same work for $N$ in lieu of $M$, very similar arguments and Proposition 1 yield

$$
A M=M A \quad \text { and hence } \quad A D=D A
$$

To prove the remaining bit, we go back to the equation $e^{N} e^{M}=e^{M} e^{N}$. Then by the commutativity of $B$ and $C$ and by that of $A$ and $D$, we obtain

$$
e^{A} e^{i B} e^{C} e^{i D}=e^{C} e^{i D} e^{A} e^{i B} \Leftrightarrow e^{A} e^{C} e^{i B} e^{i D}=e^{C} e^{A} e^{i D} e^{i B}
$$

Since $A$ and $C$ commute and since $e^{A} e^{C}$ is invertible, we are left with

$$
e^{i B} e^{i D}=e^{i D} e^{i B}
$$

Lemmas 1 \& 2 yield

$$
e^{-B} e^{-D}=e^{-D} e^{-B},
$$

which leads to $B D=D B$. Hence $B M=M B$.
Finally, we have
$N M=(A+i B) M=A M+i B M=M A+i M B=M(A+i B)=M N$, completing the proof.

We finish this paper by a result on self-adjoint operators which generalizes Theorem 1 to the case of three operators. We have

Theorem 4. Let $\mathcal{H}$ be a $\mathbb{C}$-Hilbert space. Let $A, B$ and $C$ be self-adjoint operators on $\mathcal{H}$. If

$$
\left\{\begin{array}{l}
\cosh A e^{B}=e^{B} \cosh A \\
\sinh A e^{C}=e^{B} \sinh A \\
e^{C} \cosh A=\cosh A e^{C} \\
e^{C} \sinh A=\sinh A e^{B}
\end{array}\right.
$$

then

$$
A C=B A
$$

Proof. Define on $\mathcal{H} \oplus \mathcal{H}$ the operators

$$
\tilde{A}=\left(\begin{array}{cc}
0 & A \\
A & 0
\end{array}\right) \quad \text { and } \quad \tilde{B}=\left(\begin{array}{cc}
B & 0 \\
0 & C
\end{array}\right)
$$

One has

$$
\tilde{A}^{2}=\left(\begin{array}{cc}
A^{2} & 0 \\
0 & A^{2}
\end{array}\right), \quad \tilde{A}^{3}=\left(\begin{array}{cc}
0 & A^{3} \\
A^{3} & 0
\end{array}\right),
$$

Hence

$$
e^{\tilde{A}}=\left(\begin{array}{cc}
I+\frac{A^{2}}{2!}+\frac{A^{4}}{4!}+\cdots & A+\frac{A^{3}}{3!}+\frac{A^{5}}{5!}+\cdots \\
A+\frac{A^{3}}{3!}+\frac{A^{5}}{5!}+\cdots & I+\frac{A^{2}}{2!}+\frac{A^{4}}{4!}+\cdots
\end{array}\right) \cdot=\left(\begin{array}{cc}
\cosh A & \sinh A \\
\sinh A & \cosh A
\end{array}\right)
$$

Similarly, we can find that

$$
e^{\tilde{B}}=\left(\begin{array}{cc}
e^{B} & 0 \\
0 & e^{C}
\end{array}\right) .
$$

The hypotheses of the theorem guarantee that $e^{\tilde{A}} e^{\tilde{B}}=e^{\tilde{B}} e^{\tilde{A}}$ and since $\tilde{A}$ and $\tilde{B}$ are both self-adjoint, Theorem 1 then implies that $\tilde{A} \tilde{B}=\tilde{B} \tilde{A}$.

Examining the entries of the matrices $\tilde{A} \tilde{B}$ and $\tilde{B} \tilde{A}$, we see that $A C=B A$, establishing the result.

Acknowledgments. The author wishes to thank the referee for his/her remarks.

## REFERENCES

[1] W. A. Beck and C. R. Putnam, A note on normal operators and their adjoints, J. London Math. Soc. 31 (1956), 213-216.
[2] S. K. Berberian, A note on operators unitarily equivalent to their adjoints, ibid. 37 (1962), 403-404.
[3] G. Bourgeois, On commuting exponentials in low dimensions, Linear Algebra Appl. 423 (2007), 277-286.
[4] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, 1990.
[5] M. R. Embry, Similarities involving normal operators on Hilbert space, Pacific J. Math. 35 (1970), 331-336.
[6] M. H. Mortad, An application of the Putnam-Fuglede theorem to normal products of self-adjoint operators, Proc. Amer. Math. Soc. 131 (2003), 3135-3141.
[7] F. C. Paliogiannis, On commuting operator exponentials, ibid. 131 (2003), 37773781.
[8] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, 1991.
[9] C. Schmoeger, Remarks on commuting exponentials in Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 1337-1338.
[10] - , Remarks on commuting exponentials in Banach algebras II, ibid. 128 (2000), 3405-3409.
[11] -, On normal operator exponentials, ibid. 130 (2001), 697-702.
[12] I. H. Sheth, On hyponormal operators, ibid. 17 (1966), 998-1000.
[13] E. M. E. Wermuth, A remark on commuting operator exponentials, ibid. 125 (1997), 1685-1688.

Mohammed Hichem Mortad
Département de Mathématiques
Université d'Oran (Es-Senia)
BP 1524, El Menouar
Oran 31000, Algeria
E-mails: mhmortad@gmail.com, mortad@univ-oran.dz

Received 8 April 2011;
revised 30 July 2011


[^0]:    2010 Mathematics Subject Classification: Primary 47A10, 47A60.
    Key words and phrases: self-adjoint and normal operators, cramped operators, operator exponentials, commutativity, spectrum, Berberian theorem, Fuglede theorem, Hilbert space.

