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EXPONENTIALS OF NORMAL OPERATORS AND
COMMUTATIVITY OF OPERATORS: A NEW APPROACH

BY

MOHAMMED HICHEM MORTAD (Oran)

Abstract. We present a new approach to the question of when the commutativity
of operator exponentials implies that of the operators. This is proved in the setting of
bounded normal operators on a complex Hilbert space. The proofs are based on some
results on similarities by Berberian and Embry as well as the celebrated Fuglede theo-
rem.

1. Introduction. Let A and B be two bounded linear operators on a
Banach spaceH. The way of defining eA, the exponential of A, is known at an
undergraduate level. The functions sinhA, coshA can be defined similarly. It
is also an easy exercise to show that AB = BA implies eAeB = eBeA. While
the converse is not always true, it is, however, true under the hypothesis that
A and B are self-adjoint on a C-Hilbert space. This result is stated in the
following theorem (a proof may be found in [13]):

Theorem 1. Let A and B be two self-adjoint operators defined on a
Hilbert space. Then

eAeB = eBeA ⇔ AB = BA.

There have been several attempts to prove the previous theorem for
non-self-adjoint operators using the 2πi-congruence-free hypothesis (see e.g.
[7, 9, 10, 11, 13]). See also [3] for some low dimensional results without the
2πi-congruence-free hypothesis.

In this paper, we present a different approach to this problem using re-
sults about similarities due to Berberian [2] and Embry [5]. The main ques-
tion asked here is under which assumptions we have

eAeB = eBeA ⇒ AB = BA

for normal A and B.
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Another result obtained in this article is about sufficient conditions im-
plying AB = BC given that eAeB = eBeC , where A, B and C are self-adjoint
operators.

All operators considered in this paper are assumed to be bounded and
defined on a separable complex Hilbert space. The notions of normal, self-
adjoint and unitary operators are defined in the usual fashion. So is the
notion of the spectrum (with the usual notation σ). It is, however, convenient
to recall the notion of a cramped operator. A unitary operator U is said to
be cramped if its spectrum is completely contained in some open semi-circle
(of the unit circle), that is,

σ(U) ⊆ {eit : α < t < α+ π}.

While we assume the reader is familiar with other notions and results on
bounded operators (some standard references are [4, 8]), on several occasions
we will recall some results that might not be known to some readers. One of
them is the following result (first established in [1]).

Theorem 2 (Berberian, [2]). Let U be a cramped operator and let X be
a bounded operator such that UXU∗ = X∗. Then X is self-adjoint.

2. Main results. The following lemma is fundamental to our results.
Its proof follows from the holomorphic functional calculus.

Lemma 1. Let A and B be two commuting normal operators, on a Hilbert
space, having spectra contained in simply connected regions not containing 0.
Then

AiBi = BiAi

where i =
√
−1 is the usual complex number.

Lemma 2. Let A be a self-adjoint operator such that σ(A) ⊂ (0, π).
Then

(eiA)i = e−A.

Proof. The proof follows from the functional calculus.

Before stating and proving the main theorem, we first give an intermedi-
ate result.

Proposition 1. Let N be a normal operator with cartesian decomposi-
tion A+ iB. Let S be a self-adjoint operator. If σ(B) ⊂ (0, π), then

eSeN = eNeS ⇒ SN = NS.
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Proof. Since A and B are two commuting self-adjoint operators, we have
eAeiB = eiBeA. Consequently,

eSeN = eNeS ⇔ eSeAeiB = eAeiBeS

⇔ eSeAeiB = eiBeAeS

⇔ eSeAeiB = eiB(eSeA)∗.

Since B is self-adjoint, eiB is unitary. It is also cramped by the spectral
hypothesis on B. Now, Theorem 2 implies that eSeA is self-adjoint, i.e.

eSeA = eAeS .

Theorem 1 then gives us AS = SA.
It only remains to show that BS = SB. Since eSeA = eAeS , we immedi-

ately obtain

eSeN = eNeS ⇒ eSeAeiB = eAeiBeS or eAeSeiB = eAeiBeS

and so
eSeiB = eiBeS

by the invertibility of eA.
Using Lemmas 1 & 2 we immediately see that

eSe−B = e−BeS .

Theorem 1 yields BS = SB and thus

SN = S(A+ iB) = (A+ iB)S = NS.

The proof of the proposition is complete.

Remark. We could have bypassed Berberian’s result by alternatively
using some of Embry’s results (see [5]).

Similar results can be obtained too by a result due to I. H. Sheth [12].
They all more or less deduce the self-adjointness of an operator N from the
operational equation AN = N∗A (obviously under extra conditions on N
and/or A).

In the proof of the previous proposition, N is a product of self-adjoint
operators. Then a result by the author [6] can also be applied.

Now, we state and prove the main theorem in this paper:

Theorem 3. Let N and M be two normal operators with cartesian de-
compositions A+ iB and C + iD respectively. If σ(B), σ(D) ⊂ (0, π), then

eMeN = eNeM ⇒ MN = NM.

Proof. We have

eMeN = eNeM ⇒ eM
∗
eN = eNeM

∗
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by the Fuglede theorem since eM is normal. Hence by using again the nor-
mality of M ,

eM
∗
eMeN = eM

∗
eNeM ⇒ eM

∗
eMeN = eNeM

∗
eM

or
eM

∗+MeN = eNeM
∗+M .

Since M∗ +M is self-adjoint, Proposition 1 applies and gives

(M∗ +M)N = N(M∗ +M) or just CN = NC.

This implies that N∗C =CN∗ and thus (N+N∗)C =C(N+N∗). Therefore,
we have

AC = CA and hence BC = CB.

Doing the same work for N in lieu of M , very similar arguments and
Proposition 1 yield

AM = MA and hence AD = DA.

To prove the remaining bit, we go back to the equation eNeM = eMeN .
Then by the commutativity of B and C and by that of A and D, we ob-
tain

eAeiBeCeiD = eCeiDeAeiB ⇔ eAeCeiBeiD = eCeAeiDeiB.

Since A and C commute and since eAeC is invertible, we are left with

eiBeiD = eiDeiB.

Lemmas 1 & 2 yield
e−Be−D = e−De−B,

which leads to BD = DB. Hence BM = MB.
Finally, we have

NM = (A+ iB)M = AM + iBM = MA+ iMB = M(A+ iB) = MN,

completing the proof.

We finish this paper by a result on self-adjoint operators which generalizes
Theorem 1 to the case of three operators. We have

Theorem 4. Let H be a C-Hilbert space. Let A, B and C be self-adjoint
operators on H. If 

coshAeB = eB coshA,
sinhAeC = eB sinhA,
eC coshA = coshAeC ,
eC sinhA = sinhAeB,

then
AC = BA.
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Proof. Define on H⊕H the operators

Ã =
(

0 A

A 0

)
and B̃ =

(
B 0
0 C

)
One has

Ã2 =
(
A2 0
0 A2

)
, Ã3 =

(
0 A3

A3 0

)
, . . . .

Hence

eÃ =

(
I + A2

2! + A4

4! + · · · A+ A3

3! + A5

5! + · · ·

A+ A3

3! + A5

5! + · · · I + A2

2! + A4

4! + · · ·

)
. =

(
coshA sinhA
sinhA coshA

)
Similarly, we can find that

eB̃ =
(
eB 0
0 eC

)
.

The hypotheses of the theorem guarantee that eÃeB̃ = eB̃eÃ and since Ã
and B̃ are both self-adjoint, Theorem 1 then implies that ÃB̃ = B̃Ã.

Examining the entries of the matrices ÃB̃ and B̃Ã, we see thatAC = BA,
establishing the result.
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