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THE IDEAL (a) IS NOT Gδ GENERATED

BY

MARTA FRANKOWSKA and ANDRZEJ NOWIK (Gdańsk)

Abstract. We prove that the ideal (a) defined by the density topology is not Gδ

generated. This answers a question of Z. Grande and E. Strońska.

1. Preliminaries. The aim of this paper is to give a complete solution
of the following problem from the paper [GS]: Is there a set A satisfying the
condition (a) such that for each Gδ-set B ⊃ A the set B does not satisfy the
condition (a)?

The ideal (a) of subsets of the real line was defined in [G], [GS] and
examined in [G] and [N]. In [GS] the authors proved that it is Fσδ generated
(for the definition see below) and asked whether it is Gδ generated.

In [?] we reformulated the notion of the ideal (a) in the case of the Cantor
set 2ω as a basic space, instead of the real line (notice that for the Cantor
space we can also define the density topology, although these two topologies
are not compatible). The reason for doing that was the possibility of using
the natural combinatorial structure of the Cantor set. We proved that the
ideal (a) defined on 2ω is not Gδ generated. The crucial part of that proof
is a construction of some special perfect set, namely a set P ⊆ 2ω such that
Φ(P ) ∩ [t] is Fσδ-complete, where Φ(P ) denotes the set of density points of
P and [t] is any basic neighborhood such that P ∩ [t] 6= ∅.

The main part of this article is devoted to constructing a perfect set
P ⊆ R with similar properties. The construction, however, is completely
different.

Having such a special set we prove (in much the same way as in [?]) that
the ideal (a) is not Gδ generated.

Notice that the set P \ Φ(P ) is of measure zero. Other properties of this
set are also worth investigating. Recall that in [B1] and [B2] its smallness
with respect to Hausdorff measure was considered. Then in [Bu, Theorem 1]
it was proved (assuming that P is a nowhere dense perfect set) that P \Φ(P )
is a meager subset of P . It is interesting to ask about the Borel class of this
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set. Lemma 3.7 of the present article shows that P \ Φ(P ) can even be a
Fσδ-complete set.

2. Definitions

2.1. The ideal (a). Let µ denote the Lebesgue measure on the real line.
For every measurable A we denote the set of density points of A by

Φ(A) =
{
x ∈ R : lim inf

h→0+

µ(A ∩ [x− h, x+ h])
2h

= 1
}
.

The classical density topology on the real line is denoted by τd. Let us
recall that U ∈ τd ⇔ U is Lebesgue measurable and U ⊆ Φ(U). The density
topology has been considered in many papers; some of its properties were
discussed in [T].

First, let us recall the following definition:

Definition 2.1 ([GS]). A set A ⊆ R satisfies the condition (a) if for
each nonempty set U ⊆ cl(A) belonging to τd the intersection A ∩ U is a
nowhere dense subset of U (in the euclidean topology).

We will need at the outset the simple characterization of the ideal (a)
from [N, Observation 2.2]:

Characterization. A ∈ (a) iff for every U ∈ τd \ {∅} there exists an
open set W in the standard topology such that U∩W 6= ∅ and U∩W ∩A = ∅.

We will also need the following result:

Theorem 2.2 ([GS]). For every closed (in the standard topology) set
E ⊆ 2ω we have E \ Φ(E) ∈ (a).

2.2. Some facts from descriptive set theory. Suppose that X is a
Polish space and let Γ be any class in the Borel or projective hierarchy. We
say that a set A ⊆ X is Γ -complete if A ∈ Γ (X) and for every Polish space
Y and B ∈ Γ (Y ) there exists a continuous function f : Y → X such that
f−1[A] = B.

Definition 2.3. C3 = {x ∈ ωω : limn→∞ x(n) =∞}.

The following theorem will be very useful:

Theorem 2.4 ([Ke, 23A]). The set C3 is Π0
3-complete (Fσδ-complete).

In particular, it is neither Fσ or Gδ.

Suppose that I is an ideal and F is any class of sets. We say that I is
F generated if for every X ∈ I there exists Y ∈ I ∩ F such that X ⊆ Y .
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3. The perfect set. This section is devoted to the construction of a
perfect set P ⊆ R such that for any open interval W , if W ∩ Φ(P ) 6= ∅ then
W ∩ Φ(P ) is Fσδ-complete.

Definition 3.1. For k, n ∈ ω and D, s ∈ Z define

Es(n, k,D) =
(
k · s+D

2n
,
k · s+D + 1

2n

)
,

G(n, k,D) = R \
⋃
s∈Z

Es(n, k,D).

That is, we split the real line into intervals of length 1/2n, remove every
kth interval, and G(n, k,D) is what is left.

Suppose that I = [a, b] with b > a.

Estimate 3.2. Assume that |{s ∈ Z : Es(n, k,D) ∩ I 6= ∅}| ≥ 2. Then
µ(I ∩G(n, k,D))

µ(I)
≥ k − 1
k + 1

.

Proof. By suitably extending or shrinking I we can find an interval J =
[c, d] such that

µ(I ∩G(n, k,D))
µ(I)

≥ µ(J ∩G(n, k,D))
µ(J)

,

and
c =

k · sc +D

2n
, d =

k · sd +D + 1
2n

,

for some integers sc < sd. Then
µ(J ∩G(n, k,D))

µ(J)
=

(sd − sc)(k − 1)
(sd − sc) · k + 1

,

and this expression is minimal for sd − sc = 1.

From now on we assume that l ∈ ω is such that 2l + 4 < k.

Estimate 3.3. Suppose that i ∈ {2, . . . , l}, let x0 ∈ cl(Es(n, k,D + i))
and consider h > 0 such that

(1) |{s ∈ Z : Es(n, k,D) ∩ [x0 − h, x0 + h] 6= ∅}| ≤ 1

(it is sufficient to assume that h ≤ (l + 1)/2n). Then
µ([x0 − h, x0 + h] ∩G(n, k,D))

µ([x0 − h, x0 + h])
≥ 1− 1

2i
=

2i− 1
2i

.

Proof. This follows from the fact that the minimal value of the above
quotient is reached when x0 = (s · k +D + i)/2n and h = i/2n.

Estimate 3.4. Assume as before that 2l + 4 < k and x0 ∈
cl(Es(n, k,D + i)). Then there exists h > 0 such that (1) holds (we may
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even assume that h ≤ (l + 1)/2n) and such that
µ([x0 − h, x0 + h] ∩G(n, k,D))

µ([x0 − h, x0 + h])
≤ 1− 1

2i+ 2
=

2i+ 1
2i+ 2

.

Proof. Put h = x0 − (s · k +D)/2n. Then
µ([x0 − h, x0 + h] ∩G(n, k,D))

µ([x0 − h, x0 + h])
=

2h− 1/2n

2h
= 1− 1

2n · 2h
≤ 1− 1

2i+ 2
,

since h ≤ (i+ 1)/2n.

Fact 3.5. Assume that n, n′, k, k′ ∈ Z are such that n−n′ ≥ 2, 4 | k, 4 | k′.
Then the intervals Es(n, k, 2) and Es′(n′, k′, 2) are such that either one is
contained in the other or they have disjoint closures.

Proof. Striving for a contradiction, suppose that the beginning of
Es′(n′, k′, 2) is the end of Es(n, k, 2). Then (k ·s+2+1)/2n = (k′ ·s′+2)/2n

′,
hence k · s+ 2 + 1 = 2n−n

′ · (k′ · s′ + 2), which is impossible.
On the other hand, suppose that the beginning of Es(n, k, 2) is equal

to the end of Es′(n′, k′, 2). Then (k′ · s′ + 2 + 1)/2n
′

= (k · s+ 2)/2n, hence
2n−n

′ · (k′ · s′ + 2 + 1) = k · s+ 2, which is impossible.

From now on we shall use the sequences 〈20l : l ∈ ω〉, 〈10l+2 : l ∈ ω〉. The
following can be easily proved:

Estimate 3.6.

(i) 10(l + 1) < 10l+2, in particular 2l + 4 < 10l+2;
(ii) 20l+1 − 20l ≥ 2, 4 | 10l+2;
(iii)

∑∞
l=0

2
10l+2+1

< 3
100 ;

(iv) 220l+1−20l

10l+3 > 100.

To simplify notation, set Gl = G(20l, 10l+2, 2), Es,l = Es(20l, 10l+2, 2)
and for i = 2, . . . , l, E(i)

s,l = Es(20l, 10l+2, 2 + i).
Define P =

⋂
l∈ω Gl. We conclude from Estimates 3.6(iii),(iv) and from

Fact 3.5 that P is a perfect set.
From our assumptions we can deduce that if I is any interval, then

(2) |{s ∈ Z : Es,l ∩ I 6= ∅}| ≥ 2 ⇒ |{s ∈ Z : Es,l+1 ∩ I 6= ∅}| ≥ 2.

Suppose that (a, b) ⊆ R is an interval such that (a, b)∩P 6= ∅. Then there
exist L ∈ ω and J ∈ {2, . . . , L} and s ∈ Z such that L > 2 and E(J)

s,L ⊆ (a, b).

Define K∅ = cl(E(J)
s,L).

Then find s∅ ∈ Z such that
2⋃

i=−2

Es∅+i,L+1 ⊆ K∅

(use Estimate 3.6(iv)).



THE IDEAL (a) IS NOT Gδ GENERATED 11

For r = 〈n〉 define

K〈n〉 = cl(E(min{n+2,L+1})
s∅,L+1 )

and then choose s〈n〉 ∈ Z such that
2⋃

i=−2

Es〈n〉+i,L+2 ⊆ K〈n〉.

For r = 〈n0, n1〉 define

K〈n0,n1〉 = cl(E(min{n1+2,L+2})
s〈n0〉,L+2 ).

Then find s〈n0,n1〉 ∈ Z such that
2⋃

i=−2

Es〈n0,n1〉+i,L+3 ⊆ K〈n0,n1〉.

In general, for r = 〈n0, . . . , nq−1〉 define

(3) K〈n0,...,nq−1〉 = cl(E(min{nq−1+2,L+q})
s〈n0,...,nq−2〉,L+q ).

Then find s〈n0,...,nq−1〉 ∈ Z such that

(4)
2⋃

i=−2

Es〈n0,...,nq−1〉+i,L+q+1 ⊆ K〈n0,...,nq−1〉.

Define φ : ωω → P by {φ(x)} =
⋂
n∈ωKx�n. It is easy to see that φ is

continuous.
Suppose that h > 0 and x0 = φ(x) for some x ∈ ωω. Assume for simplicity

that [x0 − h, x0 + h] ⊆ K〈x(0)〉. Denote

Ξ = min{l ∈ ω : |{s ∈ Z : Es,l ∩ [x0 − h, x0 + h] 6= ∅} ≥ 2}.

Since [x0 − h, x0 + h] ⊆ K〈x(0)〉 ⊆ cl(E(min{x(0)+2,L+1})
s∅,L+1 ) we conclude that

[x0−h, x0 +h] ⊆ GL+1 and moreover, since x0 ∈ P and P ⊆ Gl for all l ∈ ω,
we have

(5) [x0 − h, x0 + h] ⊆ Gl for l ≤ L.

Thus Ξ > L+ 1. For l0 = Ξ − 1 we have

|{s ∈ Z : Es,l0 ∩ [x0 − h, x0 + h] 6= ∅}| ≤ 1;

moreover, x0 ∈ Kx�l0−L implies that

(6) [x0 − h, x0 + h] ⊆ Kx�p for p < l0 − L.
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Indeed, put p = l0 − L− 1 and q = p+ 1 in (3). Then

x0 ∈ Kx�l0−L = K〈x(0),...,x(l0−L−1)〉 = K〈x(0),...,x(q−1)〉

= cl(E(min{x(q−1)+2,L+q})
s〈x(0),...,x(q−2)〉,L+q ) = cl(E(min{x(l0−L−1)+2,l0})

sx�q−1,l0
)

= cl(E(min{x(p)+2,l0})
sx�p,l0

).

From (4) we deduce that (by putting q = p)
⋃2
i=−2Es〈x(0),...,x(p−1)〉+i,l0 ⊆

K〈x(0),...,x(p−1)〉 = Kx�p. This proves (6).

Next, putting q = Ξ −L− 1 in (3) we obtain x0 ∈ E(min{x(Ξ−L−2),Ξ−1})
sx�Ξ−L−2,Ξ−1

and hence
µ(GΞ−1 ∩ [x0 − h, x0 + h])

2h
≥ 2 ·min{x(Ξ − L− 2) + 2;Ξ − 1} − 1

2 ·min{x(Ξ − L− 2) + 2;Ξ − 1}

= 1− 1
2 ·min{x(Ξ − L− 2) + 2;Ξ − 1}

by Estimate 3.3.
For l < Ξ − 1 we have

µ(Gl ∩ [x0 − h, x0 + h])
2h

= 1

by (5) and (6).
For l ≥ Ξ we have

µ(Gl ∩ [x0 − h, x0 + h])
2h

≥ 10l+2 − 1
10l+2 + 1

= 1− 2
10l+2 + 1

by Estimate 3.2. Hence

µ(P ∩ [x0 − h, x0 + h])
2h

=
µ(
⋂
l∈ω Gl ∩ [x0 − h, x0 + h])

2h

= 1−
µ(
⋃
l∈ω G

c
l ∩ [x0 − h, x0 + h])

2h

≥ 1−
∑
l∈ω

µ(Gcl ∩ [x0 − h, x0 + h])
2h

= 1−
∑
l∈ω

(
1− µ(Gl ∩ [x0 − h, x0 + h])

2h

)
≥ 1−

∑
l≥Ξ

2
10l+2 + 1

+
1

2 ·min{x(Ξ − L− 2) + 2;Ξ − 1}
.

Then if h→ 0 and limn→∞ x(n) =∞ then Ξ →∞, thus x0 ∈ Φ(P ). On the
other hand, let x0 ∈ P be such that φ(x) = x0 for some x ∈ ωω and x 6∈ C3.
Then for some subsequence 〈mν : ν ∈ ω〉 and M ∈ ω we have x(mν) ≤ M
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for all ν ∈ ω. Since x0 ∈ Kx�(mν+1), we have

x0 ∈ cl(E(min{x(mν)+2,L+mν+1})
sx�mν ,L+mν+1 )

(put 〈n0, . . . , nq−1〉 = x�(mν + 1) in (3), so nq−1 = x(mν) and q − 1 = mν).
By Estimate 3.4 there exists hµ > 0 such that

µ(GL+mν+1 ∩ [x0 − hν , x0 + hν ])
2h

≤ 2 ·min{x(mν) + 2, L+mν + 1}+ 1
2 ·min{x(mν) + 2, L+mν + 1}+ 2

≤ 2M + 5
2M + 6

.

Because of Estimate 3.4 we may assume hν ≤ (L+mν + 1)/220L+mν+1 . Ob-
viously liml→∞ l/220l → 0, so limν→∞ hν = 0. Hence x0 6∈ Φ(P ).

Putting all these results together, we get φ−1[(a, b) ∩ Φ(P )] = C3.
Finally, we obtain the following lemma:

Lemma 3.7. There exists a perfect set P ⊆ R such that for every interval
(a, b) with (a, b) ∩ P 6= ∅ the set Φ(P ) ∩ (a, b) is Fσδ-complete.

As a corollary we have:

Corollary 3.8. There exists a perfect set P ⊆ R such that for every
interval (a, b) with (a, b) ∩ P 6= ∅ the set Φ(P ) ∩ (a, b) is neither Fσ nor Gδ.

Notice that this result is similar to the following result of S. Głąb [Gl]:

Theorem 3.9 (S. Głąb, [Gl, Theorem 6]). The set D+
1 is Π0

3-complete.
(D+

1 denotes the set of all compact subsets of R whose right density at 0 is
equal to 1.)

In the proof of this theorem the author also uses the set C3. Of course,
our result is different, since we do not study the hyperspace K(R) of all
nonempty compact sets.

4. The solution. We end this paper by showing that the ideal (a) is not
Gδ generated. In the proof we use the perfect set constructed in the previous
section and we mimic the argument from [?].

Theorem 4.1. Suppose that G is a Gδ-set such that P \Φ(P ) ⊆ G. Then
G 6∈ (a).

Proof. Suppose, towards a contradiction, that G ∈ (a). Then by the
Characterization from Section 2.1 there exists an open set W ⊆ R such that
W ∩ Φ(P ) 6= ∅ and W ∩ Φ(P ) ∩ G = ∅. We may assume that W = (a, b)
for some a < b. Hence (a, b) ∩ Φ(P ) 6= ∅ and (a, b) ∩ Φ(P ) ∩ G = ∅. We
have (a, b)∩P \G = (a, b)∩Φ(P ) (and this set is nonempty). Indeed, if x ∈
(a, b)∩P \G and x 6∈ Φ(P ) then x ∈ P \Φ(P ) ⊆ G, which is impossible. On
the other hand, if x ∈ (a, b)∩Φ(P ) and x ∈ G then x ∈ (a, b) ∩ Φ(P ) ∩G = ∅,
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which is impossible. But then (a, b) ∩ P 6= ∅, thus from Corollary 3.8 we
know that (a, b) ∩ Φ(P ) is not an Fσ-set, which contradicts the equality
(a, b) ∩ P \G = (a, b) ∩ Φ(P ).

From Theorem 2.2 we obtain the following corollary which is a solution
of the Problem from [GS, p. 311]:

Corollary 4.2. The ideal (a) is not Gδ generated.
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