STOCHASTIC DYNAMICAL SYSTEMS WITH WEAK CONTRACTIVITY PROPERTIES I. STRONG AND LOCAL CONTRACTIVITY

BY
MARC PEIGNÉ (Tours) and WOLFGANG WOESS (Graz)
(with a chapter featuring results of Martin Benda)

Abstract

Consider a proper metric space X and a sequence $\left(F_{n}\right)_{n \geq 0}$ of i.i.d. random continuous mappings $X \rightarrow X$. It induces the stochastic dynamical system (SDS) $X_{n}^{x}=$ $F_{n} \circ \cdots \circ F_{1}(x)$ starting at $x \in \mathrm{X}$. In this and the subsequent paper, we study existence and uniqueness of invariant measures, as well as recurrence and ergodicity of this process.

In the present first part, we elaborate, improve and complete the unpublished work of Martin Benda on local contractivity, which merits publicity and provides an important tool for studying stochastic iterations. We consider the case when the F_{n} are contractions and, in particular, discuss recurrence criteria and their sharpness for the reflected random walk.

1. Introduction. We start by reviewing two well known models.

First, let $\left(B_{n}\right)_{n \geq 0}$ be a sequence of i.i.d. real valued random variables. Then the reflected random walk starting at $x \geq 0$ is the stochastic dynamical system given recursively by $X_{0}^{x}=x$ and $X_{n}^{x}=\left|X_{n-1}^{x}-B_{n}\right|$. The absolute value becomes meaningful when B_{n} assumes positive values with positive probability; otherwise we get an ordinary random walk on \mathbb{R}. The reflected random walk was described and studied by Feller [20]; apparently, it was first considered by von Schelling [36] in the context of telephone networks. In the case when $B_{n} \geq 0$, Feller [20] and Knight [28] have computed an invariant measure for the process when the Y_{n} are non-lattice random variables, while Boudiba [8], [9] has provided such a measure when the Y_{n} are lattice variables. Leguesdron [29], Boudiba [9] and Benda [4] have also studied its uniqueness (up to constant factors). When the invariant measure has finite total mass-which holds if and only if $\mathrm{E}\left(B_{1}\right)<\infty$ - the process is (topologically) recurrent: with probability 1 , it returns infinitely often to each open set that is charged by the invariant measure. Indeed, it is positive recurrent

[^0]in the sense that the mean return time is finite. More general recurrence criteria were provided by Smirnov [37] and Rabeherimanana [34], and also in our unpublished paper [33]: basically, recurrence holds when $E\left(\sqrt{B_{1}}\right)$ or quantities of more or less the same order are finite. In the present paper, we shall briefly touch the situation when the B_{n} are not necessarily positive.

Second, let $\left(A_{n}, B_{n}\right)_{n \geq 0}$ be a sequence of i.i.d. random variables in $\mathbb{R}_{*}^{+} \times \mathbb{R}$. (We shall always write $\mathbb{R}^{+}=[0, \infty)$ and $\mathbb{R}_{*}^{+}=(0, \infty)$, the latter usually seen as a multiplicative group.) The associated affine stochastic recursion on \mathbb{R} is given by $Y_{0}^{x}=x \in \mathbb{R}$ and $Y_{n}^{x}=A_{n} Y_{n-1}^{x}+B_{n}$. There is ample literature on this process, which can be interpreted in terms of a random walk on the affine group. That is, one applies products of affine matrices:

$$
\binom{Y_{n}^{x}}{1}=\left(\begin{array}{cc}
A_{n} & B_{n} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A_{n-1} & B_{n-1} \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
A_{1} & B_{1} \\
0 & 1
\end{array}\right)\binom{x}{1} .
$$

Products of affine transformations were one of the first examples of random walks on non-commutative groups (see Grenander [22]). Among the large body of further work, we mention Kesten [27], Grincevičjus [23], [24], Elie [17], [18, [19], and in particular the papers by Babillot, Bougerol and Elie [3] and Brofferio [10. See also the more recent work of Buraczewski [11] and Buraczewski, Damek, Guivarc'h, Hulanicki and Urban [12].

The hardest and most interesting case is when A_{n} is log-centered, that is, $\mathrm{E}\left(\log A_{n}\right)=0$. The development of tools for handling this case, beyond affine recursions, is the main focus of the present work. The easier and well-understood case is the contractive one, where $\mathrm{E}\left(\log A_{n}\right)<0$.

In this work, stochastic dynamical systems are considered in the following general setting. Let (X, d) be a proper metric space (i.e., closed balls are compact), and let \mathfrak{G} be the monoid of all continuous mappings $\mathrm{X} \rightarrow \mathrm{X}$. It carries the topology of uniform convergence on compact sets. Now let $\widetilde{\mu}$ be a regular probability measure on \mathfrak{G}, and let $\left(F_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. \mathfrak{G}-valued random variables (functions) with common distribution $\widetilde{\mu}$, defined on a suitable probability space $(\Omega, \mathfrak{A}, \operatorname{Pr})$. The measure $\widetilde{\mu}$ gives rise to the stochastic dynamical system (SDS) $\omega \mapsto X_{n}^{x}(\omega)$ defined by

$$
\begin{equation*}
X_{0}^{x}=x \in \mathrm{X}, \quad \text { and } \quad X_{n}^{x}=F_{n}\left(X_{n-1}^{x}\right), \quad n \geq 1 . \tag{1.1}
\end{equation*}
$$

There is ample literature on processes of this type: see e.g. Arnold [2] or Bhattacharya and Majumdar (7). Any SDS (1.1) is a Markov chain. The transition kernel is

$$
P(x, U)=\operatorname{Pr}\left[X_{1}^{x} \in U\right]=\widetilde{\mu}(\{f \in \mathfrak{G}: f(x) \in U\}),
$$

where U is a Borel set in X . The associated transition operator is given by

$$
P \varphi(x)=\int_{\mathrm{X}} \varphi(y) P(x, d y)=\mathrm{E}\left(\varphi\left(X_{1}^{x}\right)\right),
$$

where $\varphi: X \rightarrow \mathbb{R}$ is a measurable function for which this integral exists. The operator is Fellerian, that is, $P \varphi$ is continuous when φ is bounded and continuous. We shall write $\mathcal{C}_{c}(\mathrm{X})$ for the space of compactly supported continuous functions $X \rightarrow \mathbb{R}$.

The SDS is called transient if every compact set is visited only finitely often, that is,

$$
\operatorname{Pr}\left[d\left(X_{n}^{x}, x\right) \rightarrow \infty\right]=1 \quad \text { for every } x \in \mathrm{X}
$$

We call it (topologically) recurrent if there is a non-empty, closed set $\mathrm{L} \subset \mathrm{X}$ such that for every open set U that intersects L ,

$$
\operatorname{Pr}\left[X_{n}^{x} \in U \text { infinitely often }\right]=1 \quad \text { for every } x \in \mathrm{~L}
$$

In our situation, we shall even have this for every starting point $x \in \mathbf{X}$, so that L is an attractor for the SDS. As an intermediate notion, we call the SDS conservative if

$$
\operatorname{Pr}\left[\liminf _{n} d\left(X_{n}^{x}, x\right)<\infty\right]=1 \quad \text { for every } x \in \mathrm{X}
$$

Besides the question whether the SDS is recurrent, we shall mainly be interested in the question of existence and uniqueness (up to constant factors) of an invariant measure. This is a Radon measure ν on X such that for any Borel set $U \subset \mathrm{X}$,

$$
\nu(U)=\int_{\mathrm{X}} \operatorname{Pr}\left[X_{1}^{x} \in U\right] d \nu(x)
$$

We can construct the trajectory space of the SDS starting at x. This is

$$
\left(\mathrm{X}^{\mathbb{N}_{0}}, \mathfrak{B}\left(\mathrm{X}^{\mathbb{N}_{0}}\right), \operatorname{Pr}_{x}\right)
$$

where $\mathfrak{B}\left(X^{\mathbb{N}_{0}}\right)$ is the product Borel σ-algebra on $X^{\mathbb{N}}$, and Pr_{x} is the image of the measure Pr under the mapping

$$
\Omega \rightarrow \mathrm{X}^{\mathbb{N}_{0}}, \quad \omega \mapsto\left(X_{n}^{x}(\omega)\right)_{n \geq 0}
$$

If we have an invariant Radon measure, then we can construct the measure

$$
\operatorname{Pr}_{\nu}=\int_{\mathrm{L}} \operatorname{Pr}_{x} d \nu(x)
$$

on the trajectory space. It is a probability measure only when ν is a probability measure on X. In general, it is σ-finite and invariant with respect to the time shift $T: X^{\mathbb{N}}{ }^{0} \rightarrow X^{\mathbb{N}}$. Conservativity of the SDS will be used to get conservativity of the shift. We shall study ergodicity of T, which in turn will imply uniqueness of ν (up to multiplication with constants).

As often in this field, ideas that were first developed by Furstenberg, e.g. [21], play an important role at least in the background.
(1.2) Proposition (Furstenberg's contraction principle). Let $\left(F_{n}\right)_{n \geq 1}$ be i.i.d. continuous random mappings $\mathrm{X} \rightarrow \mathrm{X}$, and define the right process

$$
R_{n}^{x}=F_{1} \circ \cdots \circ F_{n}(x) .
$$

If there is an X -valued random variable Z such that

$$
\lim _{n \rightarrow \infty} R_{n}^{x}=Z \quad \text { almost surely for every } x \in \mathrm{X},
$$

then the distribution ν of the limit Z is the unique invariant probability measure for the $S D S X_{n}^{x}=F_{n} \circ \cdots \circ F_{1}(x)$.

A proof can be found, e.g., in Letac [30] or in Diaconis and Freedman [16]. In [21], it is displayed in a more specific setting, but all ideas are clearly present. While being ideally applicable to the contractive case, this contraction principle is not the right tool for handling the log-centered case mentioned above. In the context of affine stochastic recursion, Babillot, Bougerol and Elie [3] introduced the notion of local contractivity (see Definition (2.1) below). This is not the same as the local contractivity property of Steinsaltz [38] and Jarner and Tweedie [25]. Local contractivitiy as defined in [3] was then exploited systematically by Benda in interesting and useful work in his PhD thesis [4 (in German) and the two subsequent preprints [5], 6] which were accepted for publication, circulated (not very widely) in preprint version but have remained unpublished. In a personal communication, Benda also gives credit to unpublished work of his late PhD advisor Kellerer (cf. the posthumous publication [26]).

We think that this material deserves to be documented in a publication, whence we include - with the consent of M. Benda whom we managed to contact - the next section on weak contractivity ($(\sqrt[2]{2})$. The proofs that we give are "streamlined", and new aspects and results are added, such as, in particular, ergodicity of the shift on the trajectory space with respect to Pr_{ν} (Theorem (2.13)). Ergodicity yields uniqueness of the invariant measure. Before that, we explain the alternative between recurrence and transience and the limit set (attractor) L, which is the support of the invariant measure ν.

We display briefly the classical results regarding stochastic affine recursion in $\S 3$. Then, in $\S 4$, we consider the situation when the F_{n} are contractions with Lipschitz constants $A_{n}=\mathfrak{l}\left(F_{n}\right) \leq 1$ (not necessarily assuming that $\left.\mathrm{E}\left(\log A_{n}\right)<0\right)$. We provide a tool for getting strong contractivity in the recurrent case (Theorem (4.2)). A typical example is the reflected random walk. In $\$ 5$, we discuss some of its properties, in particular sharpness of recurrence criteria.

This concludes Part I. In the second paper, we shall examine in detail the iteration of general Lipschitz mappings.

Since we want to present a sufficiently comprehensive picture, we have included the statements - mostly without proof-of a few known results, in
particular on cases where one has strong contractivity. We also remark that the assumption of properness of the space X can be relaxed in several parts of the material presented here.

2. Local contractivity and the work of Benda

(2.1) Definition.
(i) The SDS is called strongly contractive if for every $x \in \mathrm{X}$,

$$
\operatorname{Pr}\left[d\left(X_{n}^{x}, X_{n}^{y}\right) \rightarrow 0 \text { for all } y \in \mathrm{X}\right]=1
$$

(ii) The SDS is called locally contractive if for every $x \in \mathrm{X}$ and every compact $K \subset X$,

$$
\operatorname{Pr}\left[d\left(X_{n}^{x}, X_{n}^{y}\right) \cdot \mathbf{1}_{K}\left(X_{n}^{x}\right) \rightarrow 0 \text { for all } y \in \mathrm{X}\right]=1
$$

Let $\mathrm{B}(r)$ and $\overline{\mathrm{B}}(r), r \in \mathbb{N}$, be the open and closed balls in X with radius r and fixed center $o \in \mathrm{X}$, respectively. $\overline{\mathrm{B}}(r)$ is compact by properness of X .

Using Kolmogorov's 0-1 law, one gets the following alternative.
(2.2) Lemma. For a locally contractive $S D S$,

$$
\begin{array}{lll}
\text { either } & \operatorname{Pr}\left[d\left(X_{n}^{x}, x\right) \rightarrow \infty\right]=0 & \text { for all } x \in \mathbf{X}, \\
\text { or } & \operatorname{Pr}\left[d\left(X_{n}^{x}, x\right) \rightarrow \infty\right]=1 & \text { for all } x \in \mathbf{X} .
\end{array}
$$

Proof. Consider

$$
\begin{equation*}
X_{m, m}^{x}=x \quad \text { and } \quad X_{m, n}^{x}=F_{n} \circ F_{n-1} \circ \cdots \circ F_{m+1}(x) \quad \text { for } n>m \tag{2.3}
\end{equation*}
$$

so that $X_{n}^{x}=X_{0, n}^{x}$. Then local contractivity implies that for each $x \in \mathrm{X}$, we have $\operatorname{Pr}\left(\Omega_{0}\right)=1$ for the event Ω_{0} consisting of all $\omega \in \Omega$ with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{1}_{\mathrm{B}(r)}\left(X_{m, n}^{x}(\omega)\right) \cdot d\left(X_{m, n}^{x}(\omega), X_{m, n}^{y}(\omega)\right)=0 \tag{2.4}
\end{equation*}
$$

$$
\text { for each } r \in \mathbb{N}, m \in \mathbb{N}_{0}, y \in \mathrm{X}
$$

Clearly, Ω_{0} is invariant with respect to the shift of the sequence $\left(F_{n}\right)$.
Let $\omega \in \Omega_{0}$ be such that the sequence $\left(X_{n}^{x}(\omega)\right)_{n \geq 0}$ accumulates at some $z \in \mathrm{X}$. Fix m and set $v=X_{m}^{x}(\omega)$. Then also $\left(X_{m, n}^{v}(\omega)\right)_{n \geq m}$ accumulates at z. Now let $y \in \mathrm{X}$ be arbitrary. Then there is r such that $v, y, z \in \mathrm{~B}(r)$. Therefore also $\left(X_{m, n}^{y}(\omega)\right)_{n \geq m}$ accumulates at z. In particular, the fact that $\left(X_{n}^{x}(\omega)\right)_{n \geq 0}$ accumulates at some point does not depend on the initial trajectory, i.e., on the specific realization of F_{1}, \ldots, F_{m}. We infer that the set

$$
\left\{\omega \in \Omega_{0}:\left(X_{n}^{x}(\omega)\right)_{n \geq 0} \text { accumulates in } X\right\}
$$

is a tail event of $\left(F_{n}\right)_{n \geq 1}$. On its complement in Ω_{0}, we have $d\left(X_{n}^{x}, x\right) \rightarrow \infty$.
If $d\left(X_{n}^{x}, x\right) \rightarrow \infty$ almost surely, then we call the SDS transient.
For $\omega \in \Omega$, let $\mathrm{L}^{x}(\omega)$ be the set of accumulation points of $\left(X_{n}^{x}(\omega)\right)$ in X . The following proof is much simpler than the one in [5].
(2.5) Lemma. For any conservative, locally contractive SDS, there is a set $\mathrm{L} \subset \mathrm{X}$-the attractor or limit set - such that

$$
\operatorname{Pr}\left[\mathrm{L}^{x}(\cdot)=\mathrm{L} \text { for all } x \in \mathrm{X}\right]=1,
$$

Proof. The argument of the proof of Lemma (2.2) also shows the following. For every open $U \subset \mathrm{X}$,

$$
\operatorname{Pr}\left[X_{n}^{x} \text { accumulates in } U \text { for all } x \in \mathrm{X}\right] \in\{0,1\} .
$$

X being proper, we can find a countable basis $\left\{U_{k}: k \in \mathbb{N}\right\}$ of the topology of X, where each U_{k} is an open ball. Let $\mathbb{K} \subset \mathbb{N}$ be the (deterministic) set of all k such that the above probability is 1 for $U=U_{k}$. Then there is $\Omega_{0} \subset \Omega$ such that $\operatorname{Pr}\left(\Omega_{0}\right)=1$, and for every $\omega \in \Omega_{0}$, the sequence $\left(X_{n}^{x}(\omega)\right)_{n \geq 0}$ accumulates in U_{k} for some (and equivalently all) x precisely when $k \in \mathbb{K}$. Now, if $\omega \in \Omega_{0}$, then $y \in \mathrm{~L}^{x}(\omega)$ if and only if $k \in \mathbb{K}$ for every k with $U_{k} \ni y$. We see that $\mathrm{L}^{x}(\omega)$ is the same set for every $\omega \in \Omega_{0}$.

Thus, $\left(X_{n}^{x}\right)$ is (topologically) recurrent on L when $\operatorname{Pr}\left[d\left(X_{n}^{x}, x\right) \rightarrow \infty\right]$ $=0$, that is, every open set that intersects L is visited infinitely often with probability 1 .

For a Radon measure ν on X , its transform under P is written as νP, that is, for any Borel set $U \subset \mathrm{X}$,

$$
\nu P(U)=\int_{\mathbf{X}} P(x, U) d \nu(x) .
$$

Recall that ν is called excessive when $\nu P \leq \nu$, and invariant when $\nu P=\nu$.
For two transition kernels P, Q, their product is defined as

$$
P Q(x, U)=\int_{\mathbf{x}} Q(y, U) P(x, d y) .
$$

In particular, P^{k} is the k-fold iterate. The first part of the following is well-known; we outline the proof because it is needed in the second part, regarding supp (ν).
(2.6) Lemma. If the locally contractive SDS is recurrent, then every excessive measure ν is invariant. Furthermore, $\operatorname{supp}(\nu)=\mathrm{L}$.

Proof. For any pair of Borel sets $U, V \subset \mathrm{X}$, define the transition kernel $P_{U, V}$ and the measure ν_{U} by

$$
P_{U, V}(x, B)=\mathbf{1}_{U}(x) P(x, B \cap V) \quad \text { and } \quad \nu_{U}(B)=\nu(U \cap B),
$$

where $B \subset \mathrm{X}$ is a Borel set. We abbreviate $P_{U, U}=P_{U}$. Also, consider the stopping time $\tau_{x}^{U}=\inf \left\{n \geq 1: X_{n}^{x} \in U\right\}$, and for $x \in U$ let

$$
P^{U}(x, B)=\operatorname{Pr}\left[\tau_{x}^{U}<\infty, X_{\tau_{x}^{U}}^{x} \in B\right]
$$

be the probability that the first return of X_{n}^{x} to the set U occurs at a point of $B \subset \mathrm{X}$. Then we have

$$
\nu_{U} \geq \nu_{U} P_{U}+\nu_{U^{c}} P_{U^{c}, U}
$$

and by a typical inductive ("balayage") argument,

$$
\nu_{U} \geq \nu_{U}\left(P_{U}+\sum_{k=0}^{n-1} P_{U, U^{c}} P_{U^{c}}^{k} P_{U^{c}, U}\right)+\nu_{U^{c}} P_{U^{c}}^{n} P_{U^{c}, U}
$$

In the limit,

$$
\nu_{U} \geq \nu_{U}\left(P_{U}+\sum_{k=0}^{\infty} P_{U, U^{c}} P_{U^{c}}^{k} P_{U^{c}, U}\right)=\nu_{U} P^{U}
$$

Now suppose that U is open and relatively compact, and $U \cap \mathbf{L} \neq \emptyset$. Then, by recurrence, for any $x \in U$, we have $\tau_{x}^{U}<\infty$ almost surely. This means that P^{U} is stochastic, that is, $P^{U}(x, U)=1$. But then $\nu_{U} P^{U}(U)=\nu_{U}(U)=$ $\nu(U)<\infty$. Therefore $\nu_{U}=\nu_{U} P^{U}$. We now can set $U=\mathrm{B}(r)$ and let $r \rightarrow \infty$. Then monotone convergence implies $\nu=\nu P$, and ν is invariant.

Let us next show that $\operatorname{supp}(\nu) \subset \mathrm{L}$.
Take an open, relatively compact set V such that $V \cap \mathrm{~L}=\emptyset$. Choose r large enough such that $U=\mathrm{B}(r)$ contains V and intersects L. Let $Q=P^{U}$. We know from the above that $\nu_{U}=\nu_{U} Q=\nu_{U} Q^{n}$. We get

$$
\nu(V)=\nu_{U}(V)=\int_{U} Q^{n}(x, V) d \nu_{U}(x)
$$

Now $Q^{n}(x, V)$ is the probability that the SDS starting at x visits V at the instant when it returns to U for the nth time. As

$$
\operatorname{Pr}\left[X_{n}^{x} \in V \text { for infinitely many } n\right]=0
$$

it is an easy exercise to show that $Q^{n}(x, V) \rightarrow 0$. Since the measure ν_{U} has finite total mass, we can use dominated convergence to see that $\int_{U} Q^{n}(x, V) d \nu_{U}(x) \rightarrow 0$ as $n \rightarrow \infty$.

We conclude that $\nu(V)=0$, and $\operatorname{supp}(\nu) \subset \mathrm{L}$.
Since $\nu P=\nu$, we have $f(\operatorname{supp}(\nu)) \subset \operatorname{supp}(\nu)$ for every $f \in \operatorname{supp}(\widetilde{\mu})$, where (recall) $\widetilde{\mu}$ is the distribution of the random functions F_{n} in \mathfrak{G}. But then almost surely $X_{n}^{x} \in \operatorname{supp}(\nu)$ for all $x \in \operatorname{supp}(\nu)$ and all n, that is, $\mathrm{L}^{x}(\omega) \subset \operatorname{supp}(\nu)$ for Pr-almost every ω. Lemma (2.5) implies that $\mathrm{L} \subset$ $\operatorname{supp}(\nu)$.

The following holds in more generality than just for recurrent locally contractive SDS.
(2.7) Proposition. If the locally contractive $S D S$ is recurrent, then it possesses an invariant Radon measure ν.

Proof. Fix $\psi \in \mathcal{C}_{c}^{+}(\mathrm{X})$ such that its support intersects L. Recurrence implies that

$$
\sum_{k=1}^{\infty} P^{k} \psi(x)=\infty \quad \text { for every } x \in \mathbf{X}
$$

The statement now follows from a result of Lin [31, Thm. 5.1].
Thus we have an invariant Radon measure ν with $\nu P=\nu$ and $\operatorname{supp}(\nu)=\mathrm{L}$. It is now easy to see that the attractor depends only on $\operatorname{supp}(\widetilde{\mu}) \subset \mathfrak{G}$.
(2.8) Corollary. In the recurrent case, L is the smallest non-empty closed subset of X with the property that $f(\mathrm{~L}) \subset \mathrm{L}$ for every $f \in \operatorname{supp}(\widetilde{\mu})$.

Proof. The reasoning at the end of the proof of Lemma (2.6) shows that L is indeed a closed set with that property. On the other hand, if $C \subset \mathrm{X}$ is closed, non-empty and such that $f(C) \subset C$ for all $f \in \operatorname{supp}(\widetilde{\mu})$ then $\left(X_{n}^{x}(\omega)\right)$ evolves almost surely within C when the starting point x is in C. But then $\mathrm{L}^{x}(\omega) \subset C$ almost surely, and on the other hand $\mathrm{L}^{x}(\omega)=\mathrm{L}$ almost surely.
(2.9) Remark. Suppose that the SDS induced by the probability measure $\widetilde{\mu}$ on \mathfrak{G} is not necessarily locally contractive, resp. recurrent, but that there is another probability measure $\widetilde{\mu}^{\prime}$ on \mathfrak{G} which does induce a locally contractive, recurrent SDS and which satisfies $\operatorname{supp}(\widetilde{\mu})=\operatorname{supp}\left(\widetilde{\mu}^{\prime}\right)$. Let L be the limit set of this second SDS. Since it depends only on $\operatorname{supp}\left(\widetilde{\mu}^{\prime}\right)$, the results that we have so far imply that also for the SDS $\left(X_{n}^{x}\right)$ associated with $\widetilde{\mu}$, the attractor L is the unique "essential class" in the following sense: it is the unique minimal non-empty closed subset of X such that
(i) for every open set $U \subset \mathrm{X}$ that intersects L and every starting point $x \in \mathrm{X}$, the sequence (X_{n}^{x}) visits U with positive probability, and
(ii) if $x \in \mathrm{~L}$ then $X_{n}^{x} \in \mathrm{~L}$ for all n.

For $\ell \geq 2$, we can lift each $f \in \mathfrak{G}$ to a continuous mapping

$$
f^{(\ell)}: \mathrm{X}^{\ell} \rightarrow \mathrm{X}^{\ell}, \quad f^{(\ell)}\left(x_{1}, \ldots, x_{\ell}\right)=\left(x_{2}, \ldots, x_{\ell}, f\left(x_{\ell}\right)\right) .
$$

In this way, the random mappings F_{n} induce the SDS

$$
\left(F_{n}^{(\ell)} \circ \cdots \circ F_{1}^{(\ell)}\left(x_{1}, \ldots, x_{\ell}\right)\right)_{n \geq 0}
$$

on X^{ℓ}. For $n \geq \ell-1$ this is just $\left(X_{n-\ell+1}^{x_{\ell}}, \ldots, X_{n}^{x_{\ell}}\right)$.
(2.10) Lemma. Let $x \in \mathrm{X}$, and let $U_{0}, \ldots, U_{\ell-1} \subset \mathrm{X}$ be Borel sets such that

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{n}^{x} \in U_{0} \text { for infinitely many } n\right]=1, \\
& \operatorname{Pr}\left[X_{1}^{y} \in U_{j}\right] \geq \alpha>0 \quad \text { for every } y \in U_{j-1}, j=1, \ldots, \ell-1 .
\end{aligned}
$$

Then also

$$
\operatorname{Pr}\left[X_{n}^{x} \in U_{0}, X_{n+1}^{x} \in U_{1}, \ldots, X_{n+\ell-1}^{x} \in U_{\ell-1} \text { for infinitely many } n\right]=1 .
$$

Proof. This is quite standard and true for general Markov chains and not just SDS. Let $\tau(n), n \geq 1$, be the stopping times of the successive visits of $\left(X_{n}^{x}\right)$ in U_{0}. They are all a.s. finite by assumption. We consider the events

$$
\Lambda_{n}=\left[X_{\tau(\ell n)+1}^{x} \in U_{1}, \ldots, X_{\tau(\ell n)+\ell-1}^{x} \in U_{\ell-1}\right] \quad \text { and } \quad \Lambda_{k, m}=\bigcup_{n=k+1}^{m-1} \Lambda_{n}
$$

where $k<m$. We need to show that $\operatorname{Pr}\left(\limsup \sin _{n}\right)=1$. By the strong Markov property, we have

$$
\operatorname{Pr}\left(\Lambda_{n} \mid X_{\tau(\ell n)}^{x}=y\right) \geq \alpha^{\ell} \quad \text { for every } y \in U_{0}
$$

Let $k, m \in \mathbb{N}$ with $k<m$. Just for the purpose of the next lines of the proof, consider the measure on X defined by

$$
\sigma(B)=\operatorname{Pr}\left(\left[X_{\tau(\ell m)}^{x} \in B\right] \cap \Lambda_{k, m-1}^{c}\right)
$$

It is concentrated on U_{0}, and using the Markov property,

$$
\begin{aligned}
\operatorname{Pr}\left(\Lambda_{k, m}^{c}\right) & =\int_{U_{0}} \operatorname{Pr}\left(\Lambda_{m}^{c} \mid X_{\tau(\ell m)}^{x}=y\right) d \sigma(y) \\
& \leq\left(1-\alpha^{\ell}\right) \sigma\left(U_{0}\right)=\left(1-\alpha^{\ell}\right) \operatorname{Pr}\left(\Lambda_{k, m-1}^{c}\right) \leq \cdots \leq\left(1-\alpha^{\ell}\right)^{m-k}
\end{aligned}
$$

Letting $m \rightarrow \infty$, we see that $\operatorname{Pr}\left(\bigcap_{n>k} \Lambda_{n}^{c}\right)=0$ for every k, so that

$$
\operatorname{Pr}\left(\bigcap_{k} \bigcup_{n>k} \Lambda_{n}\right)=1
$$

as required.
(2.11) Proposition. If the $S D S$ is locally contractive and recurrent on X , then so is the lifted process on X^{ℓ}. The limit set of the latter is

$$
\mathrm{L}^{(\ell)}=\left\{\left(x, f_{1}(x), f_{2} \circ f_{1}(x), \ldots, f_{\ell-1} \circ \cdots \circ f_{1}(x)\right): x \in \mathrm{~L}, f_{i} \in \operatorname{supp}(\widetilde{\mu})\right\}^{-}
$$ and if the Radon measure ν is invariant for the original $S D S$ on X , then the measure $\nu^{(\ell)}$ is invariant for the lifted $S D S$ on X^{ℓ}, where

$$
\begin{aligned}
& \int_{\mathrm{X}^{\ell}} f d \nu^{(\ell)} \\
& \quad=\int_{\mathrm{X}} \cdots \int_{\mathrm{X}} f\left(x_{1}, \ldots, x_{\ell}\right) P\left(x_{\ell-1}, d x_{\ell}\right) P\left(x_{\ell-2}, d x_{\ell-1}\right) \cdots P\left(x_{1}, d x_{2}\right) d \nu\left(x_{1}\right)
\end{aligned}
$$

Proof. It is a straightforward exercise to verify that the lifted SDS is locally contractive and has $\nu^{(\ell)}$ as an invariant measure. We have to prove that it is recurrent. For this purpose, we just have to show that there is some relatively compact subset of X^{ℓ} that is visited infinitely often with positive probability. We can find relatively compact open subsets $U_{0}, \ldots, U_{\ell-1}$ of X that intersect L such that

$$
\operatorname{Pr}\left[F_{1}\left(U_{j-1}\right) \subset U_{j}\right] \geq \alpha>0 \quad \text { for } j=1, \ldots, \ell-1
$$

We know that for an arbitrary starting point $x \in \mathrm{X}$, with probability 1 , the SDS $\left(X_{n}^{x}\right)$ visits U_{0} infinitely often. Lemma 2.10 implies that the lifted SDS on X^{ℓ} visits $U_{0} \times \cdots \times U_{\ell-1}$ infinitely often with probability 1.

By Lemma (2.2), the lifted SDS on X^{ℓ} is recurrent. Now that we know this, it is clear from Corollary (2.8) that its attractor is the set $\mathrm{L}^{(\ell)}$, as stated.

As outlined in the introduction, we can equip the trajectory space $X^{\mathbb{N}_{0}}$ of our SDS with the infinite product σ-algebra and the measure Pr_{ν}, which is in general σ-finite.
(2.12) Lemma. If the $S D S$ is locally contractive and recurrent, then the shift T is conservative on $\left(X^{\mathbb{N}_{0}}, \mathfrak{B}\left(\mathrm{X}^{\mathbb{N}_{0}}\right), \operatorname{Pr}_{\nu}\right)$.

Proof. Let $\varphi=\mathbf{1}_{U}$, where $U \subset \mathrm{X}$ is open, relatively compact, and intersects L. We can extend it to a positive function in $L^{1}\left(X^{\mathbb{N}_{0}}, \operatorname{Pr}_{\nu}\right)$ by setting $\varphi(\mathbf{x})=\varphi\left(x_{0}\right)$ for $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$. We know from recurrence that

$$
\sum_{n} \varphi\left(X_{n}^{x}\right)=\infty \quad \text { Pr-almost surely, for every } x \in X
$$

This translates into

$$
\sum_{n} \varphi\left(T^{n} \mathbf{x}\right)=\infty \quad \operatorname{Pr}_{\nu} \text {-almost surely, for every } \mathbf{x} \in X^{\mathbb{N}_{0}}
$$

Conservativity follows; see e.g. [35, Thm. 5.3].
The uniqueness part of the following theorem is contained in [4] and [5]; see also Brofferio [10, Thm. 3], who considers SDS of affine mappings. We modify and extend the proof in order to be able to conclude that our SDS is ergodic with respect to T. (This, as well as Proposition 2.11), is new with respect to Benda's work.)
(2.13) Theorem. For a recurrent locally contractive $S D S$, let ν be the measure of Proposition (2.7). Then the shift T on $X^{\mathbb{N}_{0}}$ is ergodic with respect to Pr_{ν}. In particular, ν is the unique invariant Radon measure for the $S D S$ up to multiplication with constants.

Proof. Let \mathfrak{I} be the σ-algebra of T-invariant sets in $\mathfrak{B}\left(\mathrm{X}^{\mathbb{N}_{0}}\right)$. For $\varphi \in$ $L^{1}\left(\mathrm{X}^{\mathbb{N}_{0}}, \operatorname{Pr}_{\nu}\right)$, we write $\mathrm{E}_{\nu}(\varphi)=\int \varphi d \operatorname{Pr}_{\nu}$ and $\mathrm{E}_{\nu}(\varphi \mid \mathfrak{I})$ for the conditional "expectation" of φ with respect to \mathfrak{I}. The quotation marks refer to the fact that it does not have the meaning of an expectation when ν is not a probability measure. As a matter of fact, what is well defined in the latter case are the quotients $\mathrm{E}_{\nu}(\varphi \mid \mathfrak{I}) / \mathrm{E}_{\nu}(\psi \mid \mathfrak{I})$ for suitable $\psi \geq 0$; compare with the explanations in Revuz [35, pp. 133-134].

In view of Lemma (2.12), we can apply the ergodic theorem of Chacon and Ornstein [13] (see also [35, Thm. 3.3]). Choosing an arbitrary function
$\psi \in L^{1}\left(X^{\mathbb{N}_{0}}, \operatorname{Pr}_{\nu}\right)$ with

$$
\begin{equation*}
\operatorname{Pr}_{\nu}\left(\left\{\mathbf{x} \in \mathrm{X}^{\mathbb{N}_{0}}: \sum_{n=0}^{\infty} \psi\left(T^{n} \mathbf{x}\right)<\infty\right\}\right)=0 \tag{2.14}
\end{equation*}
$$

one has, for every $\varphi \in L^{1}\left(X^{\mathbb{N}_{0}}, \operatorname{Pr}_{\nu}\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n} \varphi\left(T^{k} \mathbf{x}\right)}{\sum_{k=0}^{n} \psi\left(T^{k} \mathbf{x}\right)}=\frac{\mathrm{E}_{\nu}(\varphi \mid \mathfrak{I})}{\mathrm{E}_{\nu}(\psi \mid \mathfrak{I})} \text { for } \operatorname{Pr}_{\nu} \text {-almost every } \mathbf{x} \in \mathbf{X}^{\mathbb{N}_{0}} \tag{2.15}
\end{equation*}
$$

In order to show ergodicity of T, we need to show that the right hand side is just

$$
\frac{\mathrm{E}_{\nu}(\varphi)}{\mathrm{E}_{\nu}(\psi)}
$$

It is sufficient to show this for non-negative functions that depend only on finitely many coordinates. For a function φ on X^{ℓ}, we also write φ for its extension to $\mathrm{X}^{\mathbb{N}_{0}}$, given by $\varphi(\mathbf{x})=\varphi\left(x_{0}, \ldots, x_{\ell-1}\right)$.

That is, we need to show that for every $\ell \geq 1$ and non-negative Borel functions φ, ψ on X^{ℓ}, with ψ satisfying (2.14),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n} \varphi\left(X_{k}^{x}(\omega), \ldots, X_{k+\ell-1}^{x}(\omega)\right)}{\sum_{k=0}^{n} \psi\left(\left(X_{k}^{x}(\omega), \ldots, X_{k+\ell-1}^{x}(\omega)\right)\right)}=\frac{\int_{L} \mathrm{E}\left(\varphi\left(X_{0}^{y}, \ldots, X_{\ell-1}^{y}\right)\right) d \nu(y)}{\int_{L} \mathrm{E}\left(\psi\left(X_{0}^{y}, \ldots, X_{\ell-1}^{y}\right)\right) d \nu(y)} \tag{2.16}
\end{equation*}
$$

for ν-almost every $x \in \mathrm{X}$ and Pr-almost every $\omega \in \Omega$, when the integrals on the right hand side are finite.

At this point, we observe that we need to prove 2.16 only for $\ell=1$. Indeed, once we have the proof for this case, we can reconsider our SDS on X^{ℓ}, and using Proposition (2.11), our proof for $\ell=1$ applies to the new SDS as well.

So now let $\ell=1$. By regularity of ν, we may assume that φ and ψ are non-negative, compactly supported, continuous functions on L that both are non-zero.

We consider the random variables $S_{n}^{x} \varphi(\omega)=\sum_{k=0}^{n} \varphi\left(X_{k}^{x}(\omega)\right)$ and $S_{n}^{x} \psi(\omega)$. Since the SDS is recurrent, both functions satisfy (2.14), i.e., almost surely we have $S_{n}^{x} \varphi, S_{n}^{x} \psi>0$ for all but finitely many n and all x. We shall show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}^{x} \varphi}{S_{n}^{x} \psi}=\frac{\int_{\mathrm{L}} \varphi d \nu}{\int_{\mathrm{L}} \psi d \nu} \quad \operatorname{Pr} \text {-almost surely and for every } x \in \mathrm{~L} \tag{2.17}
\end{equation*}
$$

which is more than what we need (namely that it just holds for ν-almost every x). We know from (2.15 that the limit exists in terms of conditional expectations for ν-almost every x, so that we only have to show that it is $\operatorname{Pr} \otimes \nu$-almost everywhere constant.

Step 1: Independence of x. Let $K_{0} \subset \mathrm{~L}$ be compact such that the support of φ is contained in K_{0}. Define $K=\left\{x \in \mathrm{~L}: d\left(x, K_{0}\right) \leq 1\right\}$. Given $\varepsilon>0$, let $0<\delta \leq 1$ be such that $|\varphi(x)-\varphi(y)|<\varepsilon$ whenever $d(x, y)<\delta$.

By (2.15), there is x such that the limits $\lim _{n} S_{n}^{x} 1_{K} / S_{n}^{x} \varphi$ and $Z_{\varphi, \psi}=$ $\lim _{n} S_{n}^{x} \varphi / S_{n}^{x} \psi$ exist and are finite Pr-almost surely.

Local contractivity implies that for this specific x and each $y \in \mathrm{X}$, we have the following. Pr-almost surely, there is a random $N \in \mathbb{N}$ such that

$$
\left|\varphi\left(X_{k}^{x}\right)-\varphi\left(X_{k}^{y}\right)\right| \leq \varepsilon \cdot \mathbf{1}_{K}\left(X_{k}^{x}\right) \quad \text { for all } k \geq N .
$$

Therefore, for every $\varepsilon>0$ and $y \in \mathrm{X}$,

$$
\limsup _{n \rightarrow \infty} \frac{\left|S_{n}^{x} \varphi-S_{n}^{y} \varphi\right|}{S_{n}^{x} \varphi} \leq \varepsilon \cdot \lim _{n \rightarrow \infty} \frac{S_{n}^{x} 1_{K}}{S_{n}^{x} \varphi} \quad \text { Pr-almost surely. }
$$

This implies that for every $y \in \mathrm{~L}$,

$$
\lim _{n \rightarrow \infty} \frac{S_{n}^{x} \varphi-S_{n}^{y} \varphi}{S_{n}^{x} \varphi}=0, \quad \text { that is, } \quad \lim _{n \rightarrow \infty} \frac{S_{n}^{y} \varphi}{S_{n}^{x} \varphi}=1 \quad \text { Pr-almost surely. }
$$

The same applies to ψ in place of φ. We deduce that for all y,

$$
\frac{S_{n}^{x} \varphi}{S_{n}^{x} \psi}-\frac{S_{n}^{y} \varphi}{S_{n}^{y} \psi}=\frac{S_{n}^{y} \varphi}{S_{n}^{y} \psi}\left(\frac{S_{n}^{x} \varphi}{S_{n}^{y} \varphi} \frac{S_{n}^{y} \psi}{S_{n}^{x} \psi}-1\right) \rightarrow 0 \quad \text { Pr-almost surely } .
$$

In other terms, for the positive random variable $Z_{\varphi, \psi}$ given above in terms of our x,

$$
\lim _{n \rightarrow \infty} \frac{S_{n}^{y} \varphi}{S_{n}^{y} \psi}=Z_{\varphi, \psi} \quad \text { Pr-almost surely, for every } y \in \mathrm{~L}
$$

Step 2: $Z_{\varphi, \psi}$ is a.s. constant. Recall the random variables $X_{m, n}^{x}$ of (2.3) and set $S_{m, n}^{x} \varphi(\omega)=\sum_{k=m}^{n} \varphi\left(X_{m, k}^{x}(\omega)\right), n>m$. Then Step 1 also shows that for our given x and each m,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{m, n}^{y} \varphi}{S_{m, n}^{y} \psi}=\lim _{n \rightarrow \infty} \frac{S_{m, n}^{x} \varphi}{S_{m, n}^{x} \psi} \quad \text { Pr-almost surely, for every } x \in \mathrm{~L} \text {. } \tag{2.18}
\end{equation*}
$$

Let $\Omega_{0} \subset \Omega$ be the set on which the convergence in (2.18) holds for all m, and both $S_{n}^{x} \varphi, S_{n}^{x} \psi \rightarrow \infty$ on Ω_{0}. We have $\operatorname{Pr}\left(\Omega_{0}\right)=1$. For fixed $\omega \in \Omega_{0}$ and $m \in \mathbb{N}$, let $y=X_{m}^{x}(\omega)$. Then (because in the ratio limit we can omit the first m terms of the sums)

$$
Z_{\varphi, \psi}(\omega)=\lim _{n \rightarrow \infty} \frac{S_{n}^{x} \varphi(\omega)}{S_{n}^{x} \psi(\omega)}=\lim _{n \rightarrow \infty} \frac{S_{m, n}^{y} \varphi(\omega)}{S_{m, n}^{y} \psi(\omega)}=\lim _{n \rightarrow \infty} \frac{S_{m, n}^{x} \varphi(\omega)}{S_{m, n}^{x} \psi(\omega)} .
$$

Thus, $Z_{\varphi, \psi}$ is independent of F_{1}, \ldots, F_{m}, whence it is constant by Kolmogorov's 0-1 law. This completes the proof of ergodicity. It is immediate from (2.17) that ν is unique up to multiplication by constants.
(2.19) Corollary. Let the locally contractive $S D S\left(X_{n}^{x}\right)$ be recurrent with invariant Radon measure ν. For relatively compact, open $U \subset X$ which intersects L , consider the probability measure m_{U} on X defined by $\mathrm{m}_{U}(B)=$ $\nu(B \cap U) / \nu(U)$. Consider the $S D S$ with initial distribution m_{U}, and let τ^{U} be its return time to U.
(a) If $\nu(\mathrm{L})<\infty$ then the $S D S$ is positive recurrent, that is,

$$
\mathrm{E}\left(\tau^{U}\right)=\nu(\mathrm{L}) / \nu(U)<\infty
$$

(b) If $\nu(\mathrm{L})=\infty$ then the $S D S$ is null recurrent, that is,

$$
\mathrm{E}\left(\tau^{U}\right)=\infty
$$

This follows from the well known formula of Kac (see e.g. Aaronson [1, 1.5.5, p. 44]).
(2.20) Lemma. In the positive recurrent case, let the invariant measure be normalized so that $\nu(\mathrm{L})=1$. Then, for every starting point $x \in X$, the sequence $\left(X_{n}^{x}\right)$ converges in law to ν.

Proof. Let $\varphi: X \rightarrow \mathbb{R}$ be continuous and compactly supported. Since φ is uniformly continuous, local contractivity implies for all $x, y \in X$ that $\varphi\left(X_{n}^{x}\right)-\varphi\left(X_{n}^{y}\right) \rightarrow 0$ almost surely. By dominated convergence, $\mathrm{E}\left(\varphi\left(X_{n}^{x}\right)-\right.$ $\left.\varphi\left(X_{n}^{y}\right)\right) \rightarrow 0$. Thus,

$$
\begin{aligned}
P^{n} \varphi(x)-\int \varphi d \nu & =\int\left(P^{n} \varphi(x)-P^{n} \varphi(y)\right) d \nu(y) \\
& =\int \mathrm{E}\left(\varphi\left(X_{n}^{x}\right)-\varphi\left(X_{n}^{y}\right)\right) d \nu(y) \rightarrow 0
\end{aligned}
$$

3. Basic example: affine stochastic recursion. Here we briefly review the main known results regarding the SDS on $X=\mathbb{R}$ given by

$$
\begin{equation*}
Y_{0}^{x}=x, \quad Y_{n+1}^{x}=A_{n} Y_{n}^{x}+B_{n+1} \tag{3.1}
\end{equation*}
$$

where $\left(A_{n}, B_{n}\right)_{n \geq 0}$ is a sequence of i.i.d. random variables in $\mathbb{R}_{*}^{+} \times \mathbb{R}$. The following results are known.
(3.2) Proposition. If $\mathrm{E}\left(\log ^{+} A_{n}\right)<\infty$ and

$$
-\infty \leq \mathrm{E}\left(\log A_{n}\right)<0
$$

then $\left(Y_{n}^{x}\right)$ is strongly contractive on \mathbb{R}. If in addition $\mathrm{E}\left(\log ^{+}\left|B_{n}\right|\right)<\infty$ then the affine $S D S$ has a unique invariant probability measure ν, and is (positive) recurrent on $\mathrm{L}=\operatorname{supp}(\nu)$. Furthermore, the shift on the trajectory space is ergodic with respect to the probability measure Pr_{ν}.

Proof (outline). This is the classical application of Furstenberg's contraction principle. One verifies that for the associated right process,

$$
R_{n}^{x} \rightarrow Z=\sum_{n=1}^{\infty} A_{1} \cdots A_{n-1} B_{n}
$$

almost surely for every $x \in \mathbb{R}$. The series that defines Z is almost surely abolutely convergent by the assumptions on the two expectations. Recurrence is easily deduced via Lemma (2.2). Indeed, we cannot have $\left|Y_{n}^{x}\right| \rightarrow \infty$ almost surely, because then by dominated convergence $\nu(U)=\nu P^{n}(U) \rightarrow 0$ for every relatively compact set U. Ergodicity now follows from strong contractivity.
(3.3) Proposition. Suppose that $\operatorname{Pr}\left[A_{n}=1\right]<1$ and $\operatorname{Pr}\left[A_{n} x+B_{n}=x\right]$ <1 for all $x \in \mathbb{R}$ (non-degeneracy). If $\mathrm{E}\left(\left|\log A_{n}\right|\right)<\infty$ and $\mathrm{E}\left(\log ^{+} B_{n}\right)$ $<\infty$, and if

$$
\mathrm{E}\left(\log A_{n}\right)=0
$$

then $\left(Y_{n}^{x}\right)$ is locally contractive on \mathbb{R}. If in addition $\mathrm{E}\left(\left|\log A_{n}\right|^{2}\right)<\infty$ and $\mathrm{E}\left(\left(\log ^{+}\left|B_{n}\right|\right)^{2+\varepsilon}\right)<\infty$ for some $\varepsilon>0$ then the affine $S D S$ has a unique invariant Radon measure ν with infinite mass, and it is (null) recurrent on $\mathrm{L}=\operatorname{supp}(\nu)$.

This goes back to [3], with a small gap that was later filled in [5]. With the moment conditions as stated here, a nice and complete "geometric" proof is given in [10]: it is shown that under the stated hypotheses,

$$
A_{1} \cdots A_{n} \cdot \mathbf{1}_{K}\left(Y_{n}\right) \rightarrow 0 \quad \text { almost surely }
$$

for every compact set K. Recurrence was shown earlier in [18, Lemma 5.49].
(3.4) Proposition. If $\left.\mathrm{E}\left(\left|\log A_{n}\right|\right)<\infty\right)$ and $\mathrm{E}\left(\log ^{+} B_{n}\right)<\infty$, and if

$$
\mathrm{E}\left(\log A_{n}\right)>0
$$

then $\left(Y_{n}^{x}\right)$ is transient, that is, $\left|Y_{n}^{x}\right| \rightarrow \infty$ almost surely for every starting point $x \in \mathbb{R}$.

A proof is given, e.g., by Elie [19].
4. Iteration of random contractions. Let us now consider a more specific class of SDS: within \mathfrak{G}, we consider the closed submonoid \mathfrak{L}_{1} of all contractions of X , i.e., mappings $f: \mathrm{X} \rightarrow \mathrm{X}$ with Lipschitz constant $\mathfrak{l}(f) \leq 1$. We suppose that the probability measure $\widetilde{\mu}$ that governs the SDS is supported by \mathfrak{L}_{1}, that is, each random function F_{n} of 1.1$)$ satisfies $\mathfrak{l}\left(F_{n}\right) \leq$ 1. In this case, one does not need local contractivity in order to obtain Lemma (2.2); this follows directly from properness of X and the inequality

$$
D_{n}(x, y) \leq d(x, y), \quad \text { where } \quad D_{n}(x, y)=d\left(X_{n}^{x}, X_{n}^{y}\right)
$$

When $\operatorname{Pr}\left[d\left(X_{n}^{x}, x\right) \rightarrow \infty\right]=0$ for every x, we can in general only speak of conservativity, since we do not yet have an attractor on which the SDS is topologically recurrent. Let $\mathfrak{S}(\widetilde{\mu})$ be the closed subsemigroup of \mathfrak{L}_{1} generated by $\operatorname{supp}(\widetilde{\mu})$.
(4.1) Remark. For strong contractivity it is sufficient that $\operatorname{Pr}\left[D_{n}(x, y)\right.$ $\rightarrow 0]=1$ pointwise for all $x, y \in \mathrm{X}$.

Indeed, by properness, X has a dense, countable subset Y. If $K \subset \mathrm{X}$ is compact and $\varepsilon>0$ then there is a finite $W \subset Y$ such that $d(y, W)<\varepsilon$ for every $y \in K$. Therefore

$$
\sup _{y \in K} D_{n}(x, y) \leq \underbrace{\max _{w \in W} D_{n}(x, w)}_{\rightarrow 0 \text { a.s. }}+\varepsilon
$$

since $D_{n}(x, y) \leq D_{n}(x, w)+D_{n}(w, y) \leq D_{n}(x, w)+d(w, y)$.
The following key result of [4] (whose statement and proof is slightly strengthened here) is inspired by [28, Thm. 2.2], where reflected random walk is studied; see also [29].
(4.2) ThEOREM. If the $S D S$ of contractions is conservative, then it is strongly contractive if and only if $\mathfrak{S}(\widetilde{\mu}) \subset \mathfrak{L}_{1}$ contains a constant function.

Proof. Keeping Remark (4.1) in mind, first assume that $D_{n}(x, y) \rightarrow 0$ almost surely for all x, y. We can apply all previous results on (local) contractivity, and the SDS has the non-empty attractor L . If $x_{0} \in \mathrm{~L}$, then with probability 1 there is a random subsequence $\left(n_{k}\right)$ such that $X_{n_{k}}^{x} \rightarrow x_{0}$ for every $x \in \mathrm{X}$, and by the above, this convergence is uniform on compact sets. Thus, the constant mapping $x \mapsto x_{0}$ is in $\mathfrak{S}(\widetilde{\mu})$.

Conversely, assume that $\mathfrak{S}(\widetilde{\mu})$ contains a constant function. Since $D_{n+1}(x, y) \leq D_{n}(x, y)$, the limit $D_{\infty}(x, y)=\lim _{n} D_{n}(x, y)$ exists and is between 0 and $d(x, y)$. We set $w(x, y)=\mathrm{E}\left(D_{\infty}(x, y)\right)$. First of all, we claim that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} w\left(X_{m}^{x}, X_{m}^{y}\right)=D_{\infty}(x, y) \quad \text { almost surely. } \tag{4.3}
\end{equation*}
$$

To see this, consider $X_{m, n}^{x}$ as in (2.3). Then $D_{m, \infty}(x, y)=\lim _{n} d\left(X_{m, n}^{x}, X_{m, n}^{y}\right)$ has the same distribution as $D_{\infty}(x, y)$, whence $\mathrm{E}\left(D_{m, \infty}(x, y)\right)=w(x, y)$. Therefore, we also have

$$
\mathrm{E}\left(D_{m, \infty}\left(X_{m}^{x}, X_{m}^{y}\right) \mid F_{1}, \ldots, F_{m}\right)=w\left(X_{m}^{x}, X_{m}^{y}\right)
$$

On the other hand, $D_{m, \infty}\left(X_{m}^{x}, X_{m}^{y}\right)=D_{\infty}(x, y)$, and the bounded martingale

$$
\left(\mathrm{E}\left(D_{\infty}(x, y) \mid F_{1}, \ldots, F_{m}\right)\right)_{m \geq 1}
$$

converges almost surely to $D_{\infty}(x, y)$. Statement 4.3 follows.
Now let $\varepsilon>0$ be arbitrary, and fix $x, y \in X$. We have to show that the event $\Lambda=\left[D_{\infty}(x, y) \geq \varepsilon\right]$ has probability 0 .
(i) By conservativity,

$$
\operatorname{Pr}\left(\bigcup_{r \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m}\left[X_{n}^{x}, X_{n}^{y} \in \mathrm{~B}(r)\right]\right)=1
$$

On Λ, we have $D_{n}(x, y) \geq \varepsilon$ for all n. Therefore we need to show that $\operatorname{Pr}\left(\Lambda_{r}\right)=0$ for each $r \in \mathbb{N}$, where

$$
\Lambda_{r}=\bigcap_{m \in \mathbb{N} n \geq m} \bigcup_{n}\left[X_{n}^{x}, X_{n}^{y} \in \mathrm{~B}(r), D_{n}(x, y) \geq \varepsilon\right] .
$$

(ii) By assumption, there is $x_{0} \in X$ which can be approximated uniformly on compact sets by functions of the form $f_{k} \circ \cdots \circ f_{1}$, where $f_{j} \in$ $\operatorname{supp}(\widetilde{\mu})$. Therefore, given r there is $k \in \mathbb{N}$ such that

$$
\operatorname{Pr}\left(\Gamma_{k, r}\right)>0, \quad \text { where } \quad \Gamma_{k, r}=\left[\sup _{u \in \mathbf{B}(r)} d\left(X_{k}^{u}, x_{0}\right) \leq \varepsilon / 4\right] .
$$

On $\Gamma_{k, r}$ we have $D_{\infty}(u, v) \leq D_{k}(u, v) \leq \varepsilon / 2$ for all $u, v \in \mathrm{~B}(r)$. Therefore, setting $\delta=\operatorname{Pr}\left(\Gamma_{k, r}\right) \cdot(\varepsilon / 2)$, we find for all $u, v \in \mathrm{~B}(r)$ with $d(u, v) \geq \varepsilon$ that

$$
\begin{aligned}
w(u, v) & =\mathrm{E}\left(\mathbf{1}_{\Gamma_{k, r}} D_{\infty}(u, v)\right)+\mathrm{E}\left(\mathbf{1}_{\Omega \backslash \Gamma_{k, r}} D_{\infty}(u, v)\right) \\
& \leq \operatorname{Pr}\left(\Gamma_{k, r}\right) \cdot(\varepsilon / 2)+\left(1-\operatorname{Pr}\left(\Gamma_{k, r}\right)\right) \cdot d(u, v) \leq d(u, v)-\delta .
\end{aligned}
$$

We conclude that on Λ_{r}, there is a (random) sequence $\left(n_{\ell}\right)$ such that

$$
w\left(X_{n_{\ell}}^{x}, X_{n_{\ell}}^{y}\right) \leq D_{n_{\ell}}(x, y)-\delta .
$$

Passing to the limit on both sides, we see that 4.3) is violated on Λ_{r}, since $\delta>0$. Therefore $\operatorname{Pr}\left(\Lambda_{r}\right)=0$ for each r.
(4.4) Corollary. If the semigroup $\mathfrak{S}(\widetilde{\mu}) \subset \mathfrak{L}_{1}$ contains a constant function, then the SDS is locally contractive.

Proof. In the transient case, X_{n}^{x} can visit any compact K only finitely often, whence $d\left(X_{n}^{x}, X_{n}^{y}\right) \cdot \mathbf{1}_{K}\left(X_{n}^{x}\right)=0$ for all but finitely many n. In the conservative case, we even have strong contractivity by Proposition 4.2).
5. Some remarks on reflected random walk. As outlined in the introduction, the reflected random walk on \mathbb{R}^{+}induced by a sequence $\left(B_{n}\right)_{n \geq 0}$ of i.i.d. real valued random variables is given by

$$
\begin{equation*}
X_{0}^{x}=x \geq 0, \quad X_{n+1}^{x}=\left|X_{n}^{x}-B_{n+1}\right| . \tag{5.1}
\end{equation*}
$$

Let μ be the distribution of the B_{n}, a probability measure on \mathbb{R}. The transition probabilities of the reflected random walk are

$$
P(x, U)=\mu(\{y:|x-y| \in U\}),
$$

where $U \subset \mathbb{R}^{+}$is a Borel set. If $B_{n} \leq 0$ almost surely, then $\left(X_{n}^{x}\right)$ is an ordinary random walk (resulting from a sum of i.i.d. random variables). We shall exclude this, and we shall always assume to be in the non-lattice situation. That is,

$$
\begin{equation*}
\operatorname{supp}(\mu) \cap(0, \infty) \neq \emptyset, \quad \text { and } \quad \operatorname{supp}(\mu) \subset \kappa \cdot \mathbb{Z} \quad \text { for no } \kappa>0 \tag{5.2}
\end{equation*}
$$

For the lattice case, see [33], and for higher-dimensional variants, see [32].

For $b \in \mathbb{R}$, consider $g_{b} \in \mathfrak{L}_{1}\left(\mathbb{R}^{+}\right)$given by $g_{b}(x)=|x-b|$. Then our reflected random walk is the SDS on \mathbb{R}^{+}induced by the random continuous contractions $F_{n}=g_{B_{n}}, n \geq 1$. The law $\widetilde{\mu}$ of the F_{n} is the image of μ under the mapping $b \mapsto g_{b}$.

In [29, Prop. 3.2], it is shown that $\mathfrak{S}(\widetilde{\mu})$ contains the constant function $x \mapsto 0$. Note that this statement and its proof in [29] are completely deterministic, regarding topological properties of the set $\operatorname{supp}(\mu)$. In view of Theorem (4.2) and Corollary (4.4), we get the following.
(5.3) Proposition. Under the assumptions (5.2), the reflected random walk on \mathbb{R}^{+}is locally contractive, and strongly contractive if it is recurrent.
A. Non-negative B_{n}. We first consider the case when $\operatorname{Pr}\left[B_{n} \geq 0\right]=1$. Let

$$
N=\sup \operatorname{supp}(\mu) \quad \text { and } \quad \mathrm{L}= \begin{cases}{[0, N]} & \text { if } N<\infty, \\ \mathbb{R}^{+} & \text {if } N=\infty\end{cases}
$$

The distribution function of μ is

$$
F_{\mu}(x)=\operatorname{Pr}\left[B_{n} \leq x\right]=\mu([0, x]), \quad x \geq 0 .
$$

We next summarize basic properties that are due to [20], [28] and [29]; they do not depend on recurrence.
(5.4) Lemma. Suppose that (5.2) is satisfied and that $\operatorname{supp}(\mu) \subset \mathbb{R}^{+}$. Then the following holds.
(a) The reflected random walk with any starting point is absorbed after finitely many steps by the interval L .
(b) The reflected random walk is topologically irreducible on L , that is, for every $x \in \mathbf{L}$ and open set $U \subset \mathrm{~L}$, there is n such that $P^{n}(x, U)=$ $\operatorname{Pr}\left[X_{n}^{x} \in U\right]>0$.
(c) The measure ν on L given by

$$
\nu(d x)=\left(1-F_{\mu}(x)\right) d x,
$$

where $d x$ is Lebesgue measure, is an invariant measure for the transition kernel P.

At this point Lemma (2.6) implies that in the recurrent case, the above set is indeed the attractor, and ν is the unique invariant measure up to multiplication with constants. We now want to understand when we have recurrence.
(5.5) Theorem. Suppose that (5.2) is satisfied and $\operatorname{supp}(\mu) \subset \mathbb{R}^{+}$. Then each of the following conditions implies the next one and is sufficient for
recurrence of the reflected random walk on L :

$$
\begin{gather*}
\mathrm{E}\left(B_{1}\right)<\infty \tag{i}\\
\mathrm{E}\left(\sqrt{B_{1}}\right)<\infty \tag{ii}
\end{gather*}
$$

$$
\begin{equation*}
\int_{\mathbb{R}^{+}}\left(1-F_{\mu}(x)\right)^{2} d x<\infty \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{y \rightarrow \infty}\left(1-F_{\mu}(y)\right) \int_{0}^{y}\left(F_{\mu}(y)-F_{\mu}(x)\right) d x=0 \tag{iv}
\end{equation*}
$$

In particular, one has positive recurrence precisely when $\mathrm{E}\left(B_{1}\right)<\infty$.
The proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{iv})$ is a basic exercise. For condition (i), see [28]. The implication (ii) \Rightarrow recurrence is due to [37], while the recurrence condition (iii) was proved by ourselves in [33]. However, we had not been aware of [37], as well as of [34], where it is proved that already (iv) implies recurrence on L . Since ν has finite total mass precisely when $\mathrm{E}\left(B_{1}\right)<\infty$, the statement on positive recurrence follows from Corollary (2.19). In this case, also Lemma 2.20 applies and shows that X_{n}^{x} converges in law to $(1 / \nu(\mathrm{L})) \nu$. This was already obtained by [28].

Note that the "margin" between conditions (ii), (iii) and (iv) is quite narrow.
B. General reflected random walk. We now drop the restriction that the random variables B_{n} are non-negative. Thus, the "ordinary" random walk $S_{n}=B_{1}+\cdots+B_{n}$ on \mathbb{R} may visit the positive as well as the negative half-axis. Since we assume that μ is non-lattice, the closed group generated by $\operatorname{supp}(\mu)$ is \mathbb{R}.

We start with a simple observation ([6] has a more complicated proof).
(5.6) Lemma. If μ is symmetric, then the reflected random walk is (topologically) recurrent if and only if the random walk $\left(S_{n}\right)$ is recurrent.

Proof. If μ is symmetric, then also $\left|S_{n}\right|$ is a Markov chain. Indeed, for a Borel set $U \subset \mathbb{R}^{+}$,

$$
\begin{aligned}
\operatorname{Pr}\left[\left|S_{n+1}\right| \in U \mid S_{n}=x\right] & =\mu(-x+U)+\mu(-x-U)-\mu(-x) \delta_{0}(U) \\
& =\operatorname{Pr}\left[\left|S_{n+1}\right| \in U \mid S_{n}=-x\right]
\end{aligned}
$$

and we see that $\left|S_{n}\right|$ has the same transition probabilities as the reflected random walk governed by μ.

Recall the classical result that when $\mathrm{E}\left(\left|B_{1}\right|\right)<\infty$ and $\mathrm{E}\left(B_{1}\right)=0$ then $\left(S_{n}\right)$ is recurrent; see Chung and Fuchs [15].
(5.7) Corollary. If μ is symmetric and has finite first moment then the reflected random walk is recurrent.

Let $B_{n}^{+}=\max \left\{B_{n}, 0\right\}$ and $B_{n}^{-}=\max \left\{-B_{n}, 0\right\}$, so that $B_{n}=B_{n}^{+}-B_{n}^{-}$. The following is well-known.
(5.8) Lemma. If (a) $\mathrm{E}\left(B_{1}^{-}\right)<\mathrm{E}\left(B_{1}^{+}\right) \leq \infty$, or if (b) $0<\mathrm{E}\left(B_{1}^{-}\right)=$ $\mathrm{E}\left(B_{1}^{+}\right)<\infty$, then $\lim \sup S_{n}=\infty$ almost surely, so that there are infinitely many reflections.

In general, we should exclude that $S_{n} \rightarrow-\infty$, since in that case there are only finitely many reflections, and the reflected random walk tends to $+\infty$ almost surely. In what follows, we assume that $\lim \sup S_{n}=\infty$ almost surely. Then the (non-strictly) ascending ladder epochs

$$
\mathbf{s}(0)=0, \quad \mathbf{s}(k+1)=\inf \left\{n>\mathbf{s}(k): S_{n} \geq S_{\mathbf{s}(k)}\right\}
$$

are all almost surely finite, and the random variables $\mathbf{s}(k+1)-\mathbf{s}(k)$ are i.i.d. We can consider the embedded random walk $S_{\mathbf{s}(k)}, k \geq 0$, which tends to ∞ almost surely. Its increments $\bar{B}_{k}=S_{\mathbf{s}(k)}-S_{\mathbf{s}(k-1)}, k \geq 1$, are i.i.d. non-negative random variables with distribution denoted $\bar{\mu}$. Furthermore, if \bar{X}_{k}^{x} denotes the reflected random walk associated with the sequence $\left(\bar{B}_{k}\right)$, while X_{n}^{x} is our original reflected random walk associated with $\left(B_{n}\right)$, then

$$
\bar{X}_{k}^{x}=X_{\mathbf{s}(k)}^{x}
$$

since no reflection can occur between times $\mathbf{s}(k)$ and $\mathbf{s}(k+1)$. When $\operatorname{Pr}\left[B_{n}<0\right]$ >0, one clearly has sup supp $(\bar{\mu})=+\infty$. Lemma (5.4) implies the following. (5.9) Corollary. Suppose that (5.2) is satisfied, $\operatorname{Pr}\left[B_{n}<0\right]>0$ and $\limsup S_{n}=\infty$. Then
(a) the reflected random walk is topologically irreducible on $\mathrm{L}=\mathbb{R}^{+}$,
(b) the embedded reflected random walk \bar{X}_{k}^{x} is recurrent if and only the original reflected random walk is recurrent.
Proof. Statement (a) is clear.
Since both processes are locally contractive, each of them is transient if and only if it tends to $+\infty$ almost surely: If $\lim _{n} X_{n}^{x}=\infty$ then clearly also $\lim _{k} X_{\mathbf{s}(k)}^{x}=\infty$ a.s. Conversely, suppose that $\lim _{k} \bar{X}_{k}^{x} \rightarrow \infty$ a.s. If $\mathbf{s}(k) \leq n<\mathbf{s}(k+1)$ then $X_{n}^{x} \geq X_{\mathbf{s}(k)}^{x}$. (Here, k is random, depending on n and $\omega \in \Omega$, and when $n \rightarrow \infty$ then $k \rightarrow \infty$ a.s.) Therefore, also $\lim _{n} X_{n}^{x}=\infty$ a.s., so that (b) is also true.

We can now deduce the following.
(5.10) Theorem. Suppose that (5.2) is satisfied and $\operatorname{Pr}\left[B_{1}<0\right]>0$. Then the reflected random walk (X_{n}^{x}) is (topologically) recurrent on $\mathrm{L}=\mathbb{R}^{+}$if
(a) $\mathrm{E}\left(B_{1}^{-}\right)<\mathrm{E}\left(B_{1}^{+}\right)$and $\mathrm{E}\left(\sqrt{B_{1}^{+}}\right)<\infty$, or
(b) $0<\mathrm{E}\left(B_{1}^{-}\right)=\mathrm{E}\left(B_{1}^{+}\right)$and $\mathrm{E}\left({\sqrt{B_{1}^{+}}}^{3}\right)<\infty$.

Proof. We show that in each case the assumptions imply that $\mathrm{E}\left(\sqrt{\bar{B}_{1}}\right)$ $<\infty$. Then we can apply Theorem (5.5) to deduce recurrence of $\left(\bar{X}_{k}^{x}\right)$. This in turn yields recurrence of $\left(X_{n}^{x}\right)$ by Corollary (5.9).
(a) Under the first set of assumptions,

$$
\begin{aligned}
\mathrm{E}\left(\sqrt{\bar{B}_{1}}\right) & =\mathrm{E}\left(\sqrt{B_{1}+\cdots+B_{\mathrm{s}(1)}}\right) \leq \mathrm{E}\left(\sqrt{B_{1}^{+}+\cdots+B_{\mathrm{s}(1)}^{+}}\right) \\
& \leq \mathrm{E}\left(\sqrt{B_{1}^{+}}+\cdots+\sqrt{B_{\mathrm{s}(1)}^{+}}\right)=\mathrm{E}\left(\sqrt{B_{1}^{+}}\right) \cdot \mathrm{E}(\mathrm{~s}(1))
\end{aligned}
$$

by Wald's identity. Thus, we now are left with proving $\mathrm{E}(\mathbf{s}(1))<\infty$. If $\mathrm{E}\left(B_{1}^{+}\right)<\infty$, then $\mathrm{E}\left(\left|B_{1}\right|\right)<\infty$ and $\mathrm{E}\left(B_{1}\right)>0$ by assumption, and in this case it is well known that $\mathrm{E}(\mathrm{s}(1))<\infty$; see e.g. [20, Thm. 2 in §XII.2, pp. 396-397]. If $\mathrm{E}\left(B_{1}^{+}\right)=\infty$ then there is $M>0$ such that $B_{n}^{(M)}=\min \left\{B_{n}, M\right\}$ (which has finite first moment) satisfies $\mathrm{E}\left(B_{n}^{(M)}\right)=\mathrm{E}\left(B_{1}^{(M)}\right)>0$. The first increasing ladder epoch $\mathbf{s}^{(M)}(1)$ associated with $S_{n}^{(M)}=B_{1}^{(M)}+\cdots+B_{n}^{(M)}$ has finite expectation by what we just said, and $\mathbf{s}(1) \leq \mathbf{s}^{(M)}(1)$. Thus, $\mathbf{s}(1)$ is integrable.
(b) If the B_{n} are centered, non-zero and $\mathrm{E}\left(\left(B_{1}^{+}\right)^{1+a}\right)<\infty$, where $a>0$, then $\mathrm{E}\left(\left(\bar{B}_{1}\right)^{a}\right)<\infty$, as was shown by Chow and Lai [14]. In our case, $a=1 / 2$.

We conclude our remarks on the reflected random walk by discussing sharpness of the sufficient recurrence conditions $\mathrm{E}\left({\left.\sqrt{{B_{1}^{+}}^{3}}\right)<\infty \text { in the }}^{3}\right.$ centered case, resp. $\mathrm{E}\left(\sqrt{B_{1}}\right)<\infty$ in the case when $B_{1} \geq 0$.
(5.11) Example. Define a symmetric probability measure μ on \mathbb{R} by

$$
\mu(d x)=\frac{d x}{(1+|x|)^{1+a}},
$$

where $a>0$ and c is the proper normalizing constant (and $d x$ is Lebesgue measure). Then it is well known and quite easy to prove via Fourier analysis that the associated symmetric random walk S_{n} on \mathbb{R} is recurrent if and only if $a \geq 1$. By Lemma (5.6), the associated reflected random walk is also recurrent, but if $1 \leq a \leq 3 / 2$ then condition (b) of Theorem (5.10) does not hold.

Nevertheless, we can also show that in general, the sufficient condition $\mathrm{E}\left(\sqrt{\overline{B_{1}}}\right)<\infty$ for recurrence of the reflected random walk with non-negative increments \bar{B}_{n} is very close to being sharp. (We write \bar{B}_{n} because we shall represent this as an embedded random walk in the next example.)
(5.12) Proposition. Let μ_{0} be a probability measure on \mathbb{R}^{+}which has a density $\phi_{0}(x)$ with respect to Lebesgue measure that is decreasing and satis-
fies

$$
\phi(x) \sim c(\log x)^{b} / x^{3 / 2} \quad \text { as } x \rightarrow \infty
$$

where $b>1 / 2$ and $c>0$. Then the associated reflected random walk on \mathbb{R}^{+} is transient.

Note that μ_{0} has finite moment of order $1 / 2-\varepsilon$ for every $\varepsilon>0$, while the moment of order $1 / 2$ is infinite.

The proof needs some preparation. Let $\left(B_{n}\right)$ be i.i.d. random variables with values in \mathbb{R} that have finite first moment and are non-constant and centered, and let μ be their common distribution.

The first strictly ascending and strictly descending ladder epochs of the random walk $S_{n}=B_{1}+\cdots+B_{n}$ are

$$
\mathbf{t}_{+}(1)=\inf \left\{n>0: S_{n}>0\right\} \quad \text { and } \quad \mathbf{t}_{-}(1)=\inf \left\{n>0: S_{n}<0\right\},
$$

respectively. They are almost surely finite. Let μ_{+}be the distribution of $S_{\mathbf{t}_{+}(1)}$ and μ_{-}the distribution of $S_{\mathbf{t}_{-}(1)}$, and-as above- $\bar{\mu}$ the distribution of $\bar{B}_{1}=S_{\mathbf{s}(1)}$. We denote the characteristic function associated with any probability measure σ on \mathbb{R} by $\widehat{\sigma}(t), t \in \mathbb{R}$. Then, following Feller [20, (3.11) in §XII.3], Wiener-Hopf factorization tells us that

$$
\mu=\bar{\mu}+\mu_{-}-\bar{\mu} * \mu_{-} \quad \text { and } \quad \bar{\mu}=u \cdot \delta_{0}+(1-u) \cdot \mu_{+},
$$

where

$$
u=\bar{\mu}(0)=\sum_{n=1}^{\infty} \operatorname{Pr}\left[S_{1}<0, \ldots, S_{n-1}<0, S_{n}=0\right]<1
$$

Here $*$ is convolution. Note that when μ is absolutely continuous (with respect to Lebesgue measure) then $u=0$, so that

$$
\begin{equation*}
\bar{\mu}=\mu_{+} \quad \text { and } \quad \mu=\mu_{+}+\mu_{-}-\mu_{+} * \mu_{-} \tag{5.13}
\end{equation*}
$$

(5.14) Lemma. Let μ_{0} be a probability measure on \mathbb{R}^{+}which has a decreasing density $\phi_{0}(x)$ with respect to Lebesgue measure. Then there is an absolutely continuous symmetric probability measure μ on \mathbb{R} such that the associated first (non-strictly) ascending ladder random variable has distribution μ_{0}.

Proof. If μ_{0} is the law of the first strictly ascending ladder random variable associated with some absolutely continuous, symmetric measure μ, then by (5.13) we must have $\mu_{+}=\mu_{0}$ and $\mu_{-}=\check{\mu}_{0}$, the reflection of μ_{0} at 0 , and

$$
\begin{equation*}
\mu=\mu_{0}+\check{\mu}_{0}-\mu_{0} * \check{\mu}_{0} \tag{5.15}
\end{equation*}
$$

We define μ in this way. The monotonicity assumption on μ_{0} implies that μ is a probability measure: indeed, by the monotonicity assumption it is straightforward to check that the function $\phi=\phi_{0}+\check{\phi}_{0}-\phi_{0} * \check{\phi}_{0}$ is nonnegative; this is the density of μ.

The measure μ of (5.15) is non-degenerate and symmetric. If it induces a recurrent random walk $\left(S_{n}\right)$, then the ascending and descending ladder epochs are a.s. finite. If $\left(S_{n}\right)$ is transient, then $\left|S_{n}\right| \rightarrow \infty$ almost surely, but it cannot be that $\operatorname{Pr}\left[S_{n} \rightarrow \infty\right]>0$ since in that case this probability would have to be 1 by Kolmogorov's $0-1$-law, while symmetry would yield $\operatorname{Pr}\left[S_{n} \rightarrow-\infty\right]=\operatorname{Pr}\left[S_{n} \rightarrow \infty\right] \leq 1 / 2$. Therefore $\liminf S_{n}=-\infty$ and $\limsup S_{n}=+\infty$ almost surely, a well-known fact (see e.g. [20, Thm. 1 in §XII.2, p. 395]). Consequently, the ascending and descending ladder epochs are again a.s. finite. Therefore the probability measures μ_{+}and $\mu_{-}=\check{\mu}_{+}$ (the laws of $\left.S_{\mathbf{t}_{ \pm}(1)}\right)$ are well defined. By the uniqueness theorem for WienerHopf factorization [20, Thm. 1 in $\S X I I .3$, p. 401], it follows that $\mu_{-}=\check{\mu}_{0}$ and that the distribution of the first (non-strictly) ascending ladder random variable is $\bar{\mu}=\mu_{0}$.

Proof of Proposition (5.12). Let μ be the symmetric measure associated with μ_{0} according to (5.15) in Lemma (5.14). Then its characteristic function $\widehat{\mu}(t)$ is non-negative real. A well-known criterion says that the random walk S_{n} associated with μ is transient if and only if (the real part of) $1 /(1-\widehat{\mu}(t))$ is integrable in a neighbourhood of 0 . Returning to $\mu_{0}=\mu_{+}$, it is a standard exercise (see [20, Ex. 12 in Ch. XVII, Section 12]) to show that there is $A \in \mathbb{C}, A \neq 0$, such that the characteristic function satisfies

$$
\widehat{\mu_{0}}(t)=1+A \sqrt{t}(\log t)^{b}(1+o(t)) \quad \text { as } t \rightarrow 0 .
$$

By (5.13),

$$
1-\widehat{\mu}(t)=\left(1-\widehat{\mu_{+}}(t)\right)\left(1-\widehat{\mu_{-}}(t)\right) .
$$

We deduce

$$
\widehat{\mu}(t)=1-|A|^{2}|t|(\log |t|)^{2 b}(1+o(t)) \quad \text { as } t \rightarrow 0 .
$$

The function $1 /(1-\widehat{\mu}(t))$ is integrable near 0 . By Lemma (5.6), the associated reflected random walk is transient. But then also the embedded reflected random walk associated with $S_{\mathbf{s}(n)}$ is transient by Corollary (5.9). This is the reflected random walk governed by μ_{0}.

Acknowledgments. The first author acknowledges support by a visiting professorship at TU Graz. The second author acknowledges support by a visiting professorship at Université de Tours and by the Austrian Science Fund project FWF-P19115-N18.

REFERENCES

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., Providence, RI, 1997.
[2] L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer, Berlin, 1998.
[3] M. Babillot, Ph. Bougerol, and L. Elie, The random difference equation $X_{n}=$ $A_{n} X_{n-1}+B_{n}$ in the critical case, Ann. Probab. 25 (1997), 478-493.
[4] M. Benda, Schwach kontraktive dynamische Systeme, Ph.D. Thesis, Ludwig-Maxi-milians-Universität München, 1998.
[5] -, Contractive stochastic dynamical systems, unpublished preprint, Ludwig-Maxi-milians-Universität München, 1999.
[6] -, A reflected random walk on the half line, unpublished preprint, Ludwig-Maxi-milians-Universität München, 1999.
[7] R. Bhattacharya and M. Majumdar, Random Dynamical Systems. Theory and Applications, Cambridge Univ. Press, Cambridge, 2007.
[8] M. A. Boudiba, La chaîne de Feller $X_{n+1}=\left|X_{n}-Y_{n+1}\right|$ où les $\left(Y_{n}\right)_{n \geq 1}$ sont indépendantes et identiquement distribuées, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 517-519.
[9] —, La chaîne de Feller $X_{n+1}=\left|X_{n}-Y_{n+1}\right|$ et les chaînes associées, Ann. Sci. Univ. Clermont-Ferrand II Probab. Appl. 5 (1986), 91-132.
[10] S. Brofferio, How a centred random walk on the affine group goes to infinity, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 371-384.
[11] D. Buraczewski, On invariant measures of stochastic recursions in a critical case, Ann. Appl. Probab. 17 (2007), 1245-1272.
[12] D. Buraczewski, E. Damek, Y. Guivarc'h, A. Hulanicki, and R. Urban, Tail-homogeneity of stationary measures for some multidimensional stochastic recursions, Probab. Theory Related Fields 145 (2009), 385-420.
[13] R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160.
[14] Y. S. Chow and T. L. Lai, Moments of ladder variables for driftless random walks, Z. Wahrsch. Verw. Gebiete 48 (1979), 253-257.
[15] K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random variables, Mem. Amer. Math. Soc. 6 (1951).
[16] P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev. 41 (1999), 45-76.
[17] L. Elie, Étude du renouvellement sur le groupe affine de la droite réelle, Ann. Sci. Univ. Clermont 65 (1977), 47-62.
[18] -, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Ann. École Norm. Sup. 15 (1982), 257-364.
[19] -, Noyaux potentiels associés aux marches aléatoires sur les espaces homogènes. Quelques exemples clefs dont le groupe affine, in: Théorie du potentiel (Orsay, 1983), Lecture Notes in Math. 1096, Springer, Berlin, 1984, 223-260.
[20] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed., Wiley, New York, 1971.
[21] H. Furstenberg, Non-commuting random products, Trans. Amer. Math. Soc. 108 (1963), 377-428.
[22] U. Grenander, Stochastic groups, Ark. Mat. 4 (1961), 189-207.
[23] A. K. Grincevičjus, A central limit theorem for the group of linear transformations of the real axis, Soviet Math. Doklady 15 (1974), 1512-1515.
[24] -, Limit theorems for products of random linear transformations of a straight line, Litovsk. Mat. Zh. 15 (1975), 61-77 (in Russian).
[25] S. F. Jarner and R. L. Tweedie, Locally contracting iterated functions and stability of Markov chains, J. Appl. Probab. 38 (2001), 494-507.
[26] H. G. Kellerer, Random dynamical systems on ordered topological spaces, Stoch. Dynam. 6 (2006), 255-300.
[27] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973), 207-248.
[28] F. B. Knight, On the absolute difference chains, Z. Wahrsch. Verw. Gebiete 43 (1978), 57-63.
[29] J. P. Leguesdron, Marche aléatoire sur le semi-groupe des contractions de \mathbb{R}^{d}. Cas de la marche aléatoire sur \mathbb{R}_{+}avec choc élastique en zéro, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), 483-502.
[30] G. Letac, A contraction principle for certain Markov chains and its applications, in: Random Matrices and Their Applications (Brunswick, ME, 1984), Contemp. Math. 50, Amer. Math. Soc., Providence, RI, 1986, 263-273.
[31] M. Lin, Conservative Markov processes on a topological space, Israel J. Math. 8 (1970), 165-186.
[32] M. Peigné, Marches de Markov sur le semi-groupe des contractions de \mathbb{R}^{d}. Cas de la marche aléatoire à pas markoviens sur $\left(\mathbb{R}_{+}\right)^{d}$ avec chocs élastiques sur les axes, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), 63-94.
[33] M. Peigné and W. Woess, On recurrence of reflected random walk on the half-line, preprint, TU Graz, 2006; arXiv:math/0612306v1.
[34] T. J. Rabeherimanana, Résultats sur l'irréductibilité et la conservativité de la chaîne de différences absolues, Ann. Fac. Sci. Toulouse Math. 11 (2002), 177-199.
[35] D. Revuz, Markov Chains, 2nd ed., North-Holland Math. Library 11, North-Holland, Amsterdam, 1984.
[36] H. von Schelling, Über die Verteilung der Kopplungswerte in gekreuzten Fernmeldekabeln großer Länge, Elektrische Nachrichten-Technik 20 (1943), 251-259.
[37] S. N. Smirnov, The recurrence of an absolute difference chain, Mat. Zametki 42 (1987), 336-342, 347 (in Russian); Engl. transl.: Math. Notes 42 (1988), 685-688.
[38] D. Steinsaltz, Locally contractive iterated function systems, Ann. Probab. 27 (1999), 1952-1979.

Marc Peigné
Laboratoire de Mathématiques et Physique Théorique
Université François Rabelais Tours
Fédération Denis Poisson - CNRS
Parc de Grandmont
37200 Tours, France
E-mail: peigne@lmpt.univ-tours.fr

Wolfgang Woess Institut für Mathematische Strukturtheorie (Math C) Technische Universität Graz Steyrergasse 30, A-8010 Graz, Austria E-mail: woess@TUGraz.at

Received 18 May 2011;
revised 9 September 2011

[^0]: 2010 Mathematics Subject Classification: 37Hxx, 60G50, 60J05.
 Key words and phrases: stochastic iterated function system, local contractivity, recurrence, invariant measure, ergodicity, affine stochastic recursion, reflected random walk.

