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SEMIREGULAR ENDOMORPHISM RINGS
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Abstract. Starting with some observations on (strong) lifting of idempotents, we
characterize a module whose endomorphism ring is semiregular with respect to the ideal
of endomorphisms with small image. This is the dual of Yamagata’s work [Colloq. Math.
113 (2008)] on a module whose endomorphism ring is semiregular with respect to the ideal
of endomorphisms with large kernel.

1. Introduction. In this paper, rings R are associative with identity
and modules M are unitary right modules. Homomorphisms of modules are
written on the left of their arguments. For a submodule X of a module M ,
we write X ≤e M and X � M to indicate that X is a large, respectively
small, submodule of M . For an R-module M , S denotes the endomorphism
ring of M , and we let

∆ = {u ∈ S : Keru ≤e M} and ∇ = {u ∈ S : uM �M}.
Note that ∆ and ∇ are proper ideals of S. The Jacobson radical of a ring
R is denoted by J(R). A ring R is semiregular if R/J(R) is (von Neumann)
regular and idempotents lift modulo J(R). It is well-known from Utumi
[14] that S is semiregular and ∆ = J(S) for an injective module M . This
result was generalized to quasi-injective modules by Faith and Utumi [2],
to continuous modules by Utumi [15], and later to direct-injective, kernel-
extending modules by Nicholson [9]. Dually, S is semiregular and ∇ = J(S)
for a discrete module (also called d-continuous module) M as shown by
Mohamed and Singh [8], and more generally for a direct-projective, image-
lifting module M by Nicholson [9].

This paper is motivated by recent work of Yamagata [16] who character-
ized a module M for which S/∆ is regular and idempotents lift modulo ∆.
His results are used to obtain characterizations of a module M for which
S is semiregular and J(S) = ∆. Dually, we characterize a module M for
which S/∇ is regular and idempotents lift modulo ∇, and further a module
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M for which S is semiregular and J(S) = ∇. Because of the role of lifting
and strong lifting of idempotents in this paper, Section 2 is devoted to some
basic relations between lifting and strong lifting of idempotents. If I is an
ideal of R, we write R = R/I and r̄ = r + I for r ∈ R.

2. Lifting and strong lifting of idempotents. Lifting idempotents
is a basic method in determining the structure of a ring. For a left ideal I
of a ring R, we say that idempotents lift modulo I if, whenever a2 − a ∈ I,
there exists e2 = e ∈ R such that a − e ∈ I. Following [12], we say that
idempotents lift strongly modulo I if a2 − a ∈ I implies that a − e ∈ I for
some e2 = e ∈ aR (equivalently e2 = e ∈ aRa, or e2 = e ∈ Ra). By [12,
Proposition 16], for an ideal I of R, idempotents lift strongly modulo I if
and only if every direct sum decomposition of R into left ideals lifts to a
direct sum decomposition of R into left ideals, that is, R = Rā1⊕ · · · ⊕Rān
implies that R = T1 ⊕ · · · ⊕ Tn where Ti ⊆ Rai is a left ideal for each i.
Lifting and strong lifting of idempotents are the same for several ideals
including I = J(R), but they differ in general (see [12]). In this section, we
discuss basic relations between the two conditions through a third condition
of lifting regular elements.

Following [5], we say that regular elements lift modulo a left ideal I of
R if, whenever a− aba ∈ I, there exists a regular element r of R such that
a− r ∈ I.

Lemma 2.1. Let I be an ideal of a ring R. The following are equivalent:

(1) Idempotents lift modulo I.
(2) Each idempotent of R/I lifts to a regular element of R.

Proof. Obviously, (1) implies (2). Suppose (2) holds and let a2 − a ∈ I.
By (2), there exist r, s ∈ R such that r = rsr and r − a ∈ I. Let e = rs.
Then er = r and f := e + er(1 − e) is an idempotent. Thus, r̄ē = r̄2s̄ =
ā2s̄ = ās̄ = r̄s̄ = ē and

f̄ = ē+er(1̄− ē) = ē+ r̄(1̄− ē) = ē+ ā(1̄− ē) = ā+(1̄− ā)ē = ā+(1̄− r̄)ē = ā

in R/I. This proves (1).

Hence, regular elements lifting modulo an ideal I implies that idempo-
tents lift modulo I. But the converse is false.

Example 2.2. Let R = Z and let I = 5Z. Then idempotents lift modulo
I by [12, Example 2]. Notice that 3−3·2·3 ∈ I. Assume that regular elements
lift modulo I. Then there exist a, b ∈ R such that a = aba and 3 − a ∈ I.
Since a 6= 0, we have ab = 1; so a = 1 or a = −1. But this contradicts that
3− a ∈ I.
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Lemma 2.3. The following are equivalent for a left ideal I of R:

(1) If a − aba ∈ I, there exists a regular element r ∈ aR such that
a− r ∈ I.

(2) If a − aba ∈ I, there exists a regular element r ∈ aRa such that
a− r ∈ I.

Proof. Suppose that (1) holds and let a− aba ∈ I. Then

aba− (aba)b(aba) = (1 + ab)(ab)(a− aba) ∈ I.
By (1), there exists a regular element r ∈ (aba)R such that r− aba ∈ I, i.e.,
r − a ∈ I. Write r = rsr with s ∈ R and r = (aba)c with c ∈ R. Define
d = rsa ∈ aRa. Then d− a = rsa− a = (rs− 1)(a− r) ∈ I and moreover

d(bacs)d = rsa · bacs · rsa = rs · abac · srsa = rsr · srsa = rsa = d.

This proves (2).

We say that regular elements lift strongly modulo a left ideal I if the
conditions in Lemma 2.3 are satisfied. Clearly, regular elements lift strongly
modulo an ideal I if and only if, whenever a−aba ∈ I, there exists a regular
element r ∈ Ra such that a − r ∈ I. An ideal I of R is called an enabling
ideal if whenever a − e ∈ I with e2 = e ∈ R there exists f2 = f ∈ aR
(equivalently f2 = f ∈ aRa or f2 = f ∈ Ra) such that a− f ∈ I ([1]).

The next theorem shows that, for an ideal I of R, regular elements lift
strongly modulo I if and only if idempotents lift strongly modulo I.

Theorem 2.4. The following are equivalent for an ideal I of R:

(1) Idempotents lift strongly modulo I.
(2) Regular elements lift strongly modulo I.
(3) Idempotents lift modulo I and I is an enabling ideal.
(4) Regular elements lift modulo I and I is an enabling ideal.

Proof. (1)⇔(3). This is [1, Theorem 2].
(1)⇒(2). Suppose that a−aba ∈ I. Then (ab)2−ab ∈ I. By hypothesis,

there exists e2 = e ∈ (ab)R such that e−ab ∈ I. Write e = (ab)c with c ∈ R
and let d = ea ∈ aR. Then a− d = a− ea = (a− aba) + (ab− e)a ∈ I and
moreover d(bc)d = e(abc)d = e2d = d.

(2)⇒(4). Let a − e ∈ I with e2 = e. Then ā3 = ā2 = ā. Thus, by
hypothesis, there exists a regular element r ∈ aR such that a− r ∈ I. Write
r = rsr where s ∈ R. Then f := rs+ r(1− rs) ∈ aR is an idempotent and
moreover

f̄ = r̄s̄+ r̄ − r̄r̄s̄ = r̄s̄+ ā− ā2s̄ = r̄s̄+ ā− ās̄ = r̄s̄+ ā− r̄s̄ = ā;

so a− f ∈ I. This shows that I is an enabling ideal.
(4)⇒(3). Apply Lemma 2.1.
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There exists a ring R with an ideal I such that regular elements lift
modulo I, but not strongly.

Example 2.5. Let R = Z and I = 2Z. Then regular elements lift mod-
ulo I, but not strongly.

Proof. The ring R has only three regular elements: 0, 1 and −1. If a ∈ R
is even, a − 0 ∈ I; if a ∈ R is odd, a − 1 ∈ I. So regular elements lift
modulo I. We see that 3− 3 · 1 · 3 ∈ I. The only regular element in 3R is 0,
but 3− 0 /∈ I. Thus there does not exist a regular element r ∈ 3R such that
3− r ∈ I. So regular elements do not lift strongly modulo I.

Corollary 2.6. Let I be an enabling ideal of a ring R. Then idempo-
tents lift modulo I if and only if regular elements lift modulo I if and only
if regular elements lift strongly modulo I.

Various examples of enabling ideals of a ring are given in [1]. In partic-
ular, every ideal contained in J(R) is an enabling ideal of R by [1, Proposi-
tion 5]. So Corollary 2.6 has the following consequence.

Corollary 2.7 ([5, Corollary 9.4], [17, Lemma 2.4]). Let I ⊆ J(R) be
an ideal of R. Then idempotents lift modulo I if and only if regular elements
lift modulo I.

Khurana and Lam [5, Theorem 9.3] proved that, for an ideal I of R, if
idempotents lift modulo every left ideal contained in I then regular elements
lift modulo every left ideal contained in I. The equivalence (1)⇔(3) of our
next theorem proves the converse, and extends the result to the case when
I is a left ideal.

Theorem 2.8. Let I be a left ideal of R. The following are equivalent:

(1) Idempotents lift modulo every left ideal contained in I.
(2) Idempotents lift strongly modulo every left ideal contained in I.
(3) Regular elements lift modulo every left ideal contained in I.
(4) Regular elements lift strongly modulo every left ideal contained in I.

Proof. (1)⇒(2). Let K ⊆ I be a left ideal of R and suppose that a2− a
∈ K. Then R(a2 − a) ⊆ I. By hypothesis, there exists e2 = e ∈ R such that
e−a ∈ R(a2−a). Thus, e−a ∈ K and e ∈ Ra. This shows that idempotents
lift strongly modulo K.

(2)⇒(4). Suppose that a − aba ∈ K, where K ⊆ I is a left ideal of R.
Then ba − (ba)2 ∈ K. By hypothesis and by [12, Lemma 1], there exists
e2 = e ∈ R(ba) such that e − ba ∈ K. Write e = c(ba) with c ∈ R and
let d = ae ∈ aRa. Then a − d = (a − aba) + a(ba − e) ∈ K and moreover
d(cb)d = d(cba)e = de2 = d. So (4) holds.

(4)⇒(3). This is clear.
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(3)⇒(1). Suppose that a2−a ∈ K where K ⊆ I is a left ideal of R. Then
a3−a = (a+1)(a2−a) ∈ R(a3−a) ⊆ K. By hypothesis, there exist r, s ∈ R
such that r = rsr and a− r ∈ R(a3 − a). Let e = sr and f = e+ (1− e)re.
Then f is an idempotent of R. It suffices to show that f − a ∈ K. Since
a− r ∈ R(a3 − a), write a− r = b(a3 − a) with b ∈ R. Then

(a− r)a = b(a3 − a)a = ba(a3 − a) ∈ R(a3 − a) ⊆ K,
so a2 − r2 = (a− r)a+ r(a− r) ∈ K. It follows that

f − a = (sr + r − sr2)− a = (1 + s)(r − a) + s(a− a2) + s(a2 − r2) ∈ K.
This proves (1).

By Nicholson [10, Theorem 2.1], a ring R is an exchange ring if and only
if idempotents lift modulo every left ideal. Thus, letting I = R in Theorem
2.8 yields the following

Corollary 2.9 ([3, Corollary 5]). A ring R is an exchange ring if and
only if regular elements lift modulo every left ideal of R.

3. Yamagata’s theorem and consequences. For an ideal I of a
ring R, [12, Theorem 28] gives equivalent conditions on R such that R/I is
regular and idempotents lift strongly modulo I. In this section, we review
Yamagata’s theorem which gives characterizations of a module M for which
S/∆ is regular and idempotents lift modulo ∆, and show that S/∆ is regular
and idempotents lift strongly modulo ∆ if and only if S is semiregular with
J(S) = ∆. As a consequence of Yamagata’s theorem, characterizations are
obtained for a module M with the latter condition.

Lemma 3.1. If u, v ∈ S, then Ker(u − uvu) = Keru ⊕ Ker(1 − vu). In
particular, Ker(u− u2) = Keru⊕Ker(1− u).

Proof. It is clear that Ker(u − uvu) ⊇ Keru + Ker(1 − vu) and that
Keru∩Ker(1−vu) = 0. For x ∈ Ker(u−uvu), x = vux+(1−vu)x with vux ∈
Ker(1−vu) and (1−vu)x ∈ Keru; so Ker(u−uvu) = Keru+Ker(1−vu).

Let X,Y be submodules of a module M . Following Yamagata [16], X is
called a semicomplement of Y in M if X ∩ Y = 0 and X + Y ≤e M .
A submodule N of a module M is said to lie under a direct summand of M
if N is large in a direct summand of M .

Lemma 3.2 ([16]). The following are equivalent for an idempotent ū ∈
S/∆:

(1) ū lifts to an idempotent of S.
(2) There is a semicomplement N of Keru in M such that uN lies under

a direct summand of M .
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If N is a submodule of M , we write N ↪→ M for the inclusion. Let
u ∈ S. If N is a semicomplement of Keru in M , then u|N : N → uN is an
isomorphism, so (u|N )−1 : uN → N is well defined.

Lemma 3.3 ([16]). The following are equivalent for u ∈ S:

(1) ū is regular in S/∆.
(2) There exist v ∈ S and a semicomplement N of Keru in M such that

the following diagram is commutative:

uN
� � //

(u|N )−1

��

M

v

��
N

� � // M

(3) There exists a semicomplement N of Keru in M such that N ⊆
Ker(1− vu) for some v ∈ S.

For u ∈ S, Ker(1− u) ≤e M implies that u is a monomorphism because
Keru ∩Ker(1− u) = 0.

Lemma 3.4 ([16]). For a module M , ∆ ⊆ J(S) iff every u ∈ S with
Ker(1− u) ≤e M is an isomorphism.

Theorem 3.5 ([16]). The following are equivalent for a module M :

(1) S/∆ is regular, and idempotents lift modulo ∆.
(2) For any u ∈ S, there exist semicomplements N1, N2 of Keru in M

such that

(a) (u|N1)−1 : uN1 → N1 extends to an endomorphism of M ,
(b) uN2 lies under a direct summand of M if u2 − u ∈ ∆.

(3) For any u ∈ S, there exists a semicomplement N of Keru in M such
that

(a) (u|N )−1 : uN → N extends to an endomorphism of M ,
(b) uN lies under a direct summand of M if u2 − u ∈ ∆.

Next we discuss some consequences of Theorem 3.5. In the literature, var-
ious sufficient conditions on a module M are obtained so that S is semireg-
ular and ∆ = J(S); for example, see [2], [7], [9], [11], [14], [15] and [16].
Here we characterize a module M for which S is semiregular and ∆ = J(S).
A submodule X of M is called a kernel submodule if X = Keru for some
u ∈ S. The module M is called kernel-extending if every kernel submodule
of M lies under a direct summand. For MR = RR, the equivalence (1)⇔(2)
in Corollary 3.6 below is obtained in [12, Corollary 35].

Corollary 3.6. Let M be a module. The following are equivalent:

(1) S/∆ is regular, and idempotents lift strongly modulo ∆.
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(2) S is semiregular and J(S) = ∆.
(3) The following hold:

(a) M is kernel-extending.
(b) Every monomorphism in S with essential image is onto.
(c) For any u ∈ S, there exists a semicomplement N of Keru in

M such that (u|N )−1 : uN → N extends to an endomorphism
of M .

Proof. (2)⇒(1). Apply [12, Lemma 5].
(1)⇒ (2). Since S/∆ is regular, J(S) ⊆ ∆. So to show (2), it suffices to

show that J(S) ⊇ ∆. Assume that u ∈ S with Ker(1 − u) ≤e M . We only
need to show that u is an isomorphism by Lemma 3.4. Since u− 1 ∈ ∆, by
(1) there exists e2 = e ∈ uSu with u−e ∈ ∆. So N := Ker(u−e)∩Ker(1−u)
≤e M . Thus N = uN = eN ≤e eM . This implies that eM ≤e M . So M =
eM ⊆ uM (as e ∈ uSu). Hence uM = M . But Keru = 0 by Lemma 3.1.
Hence u ∈ S is an automorphism.

(3)⇒(2). By Lemma 3.3, (c) means that S/∆ is regular, so it follows
that J(S) ⊆ ∆. Moreover, (b) implies that ∆ ⊆ J(S). In fact, for u ∈ S
with Ker(1 − u) ≤e M , we have Keru = 0 and uM ≤e M , because
Keru∩Ker(1−u) = 0 and Ker(1−u) ⊆ uM . So u is an isomorphism by (b).
Thus, by Lemma 3.4, ∆ ⊆ J(S). Lastly, (a) implies Lemma 3.2(2). To see
this, let u2−u ∈ ∆. Then Ker(1−u) is a semicomplement of Keru in M by
Lemma 3.1. Moreover uKer(1−u) = Ker(1−u) is a kernel submodule of M
and it lies under a direct summand of M by (a). Hence Lemma 3.2(2) holds.

(2)⇒(3). Suppose that S is semiregular and J(S) = ∆. Then (c) holds
by Theorem 3.5. To verify (a), let u ∈ S. Since S is semiregular, there
exists v ∈ S such that v = vuv and u − uvu ∈ J(S) by [9, Theorem 2.9].
So M = vuM ⊕ (1 − vu)M . It is clear that Keru ⊆ (1 − vu)M . Since
Ker(u− uvu) ≤e M , Ker(u− uvu) ∩ (1− vu)M ≤e (1− vu)M . But

Ker(u− uvu) ∩ (1− vu)M = [Keru⊕Ker(1− vu)] ∩ (1− vu)M
= Keru⊕ (Ker(1− vu) ∩ (1− vu)M)
= Keru⊕ 0 = Keru,

so Keru ≤e (1 − vu)M . This proves that M is kernel-extending. Assume
further that Keru = 0 and uM ≤e M and let N := Ker(u − uvu). Since
u is monic, uN ≤e uM and hence uN ≤e M because uM ≤e M . Since
(1− uv)uN = 0, 1− uv ∈ ∆ = J(S) and this shows that uv is a unit of S.
Hence uM = M and (b) holds.

A module M is called extending if every submodule of M lies under a
direct summand. It is worth noting that there exists a module M such that S
is semiregular and J(S) = ∆, but M is not extending (see [11, Examples (4),
p. 186]). A module M is called direct-injective if every submodule that is
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isomorphic to a direct summand of M is itself a direct summand (see [9]).
Such modules are also called C2-modules in [7].

Corollary 3.7 ([9]). If a module M is direct-injective and kernel-
extending, then S is semiregular and J(S) = ∆.

Proof. By Corollary 3.6, it suffices to show that (3)(c) of Corollary 3.6
holds. Let u ∈ S. Since M is kernel-extending, there exists a decomposition
M = X ⊕ Y such that Keru ≤e X. Thus Y is a semicomplement of Keru
in M . Since M is direct-injective, uY is a direct summand of M , and hence
(u|Y )−1 : uY → Y extends to an endomorphism of M .

A module M is called mono-injective if, for any submodule N of M ,
every monomorphism N → M can be extended to M ([4]). Mono-injective
modules are also called pseudo-injective by Jain and Singh [13].

Corollary 3.8. If M is a mono-injective module, then S/J(S) is reg-
ular and J(S) = ∆.

Proof. For any u ∈ S, there exists N ≤ M such that N ⊕ Keru ≤e M .
Since M is mono-injective, (u|N )−1 : uN → N extends to an endomorphism
of M ; so S/∆ is regular by Lemma 3.3. It follows that J(S) ⊆ ∆. To finish
the proof, it suffices to show that ∆ ⊆ J(S). Let u ∈ S with Ker(1−u) ≤e M .
We only need to show that u is onto by Lemma 3.4. Since u is monic,
u−1 : uM → M is a monomorphism, so there exists v ∈ S such that vx =
u−1(x) for all x ∈ uM . That is, vu = 1M . Hence M = Ker v ⊕ uM . If
y ∈ Ker v∩Ker(1−u), then vy = 0 and y = uy; so 0 = vy = vuy = y. Hence
Ker v ∩Ker(1− u) = 0. It follows that Ker v = 0 since Ker(1− u) ≤e M . So
v is a unit of S and hence u = v−1 is certainly onto.

By Yamagata [16], for a module M which is a direct sum of indecom-
posable injective modules, S/∆ is regular and idempotents lift modulo ∆,
but idempotents do not lift strongly modulo ∆ in general. We include
two easy examples of the same kind. Recall that the trivial extension of
a ring R by an R-bimodule M is the ring R ∝ M = {(a, x) : a ∈ R,
x ∈M} with addition defined componentwise and multiplication defined by
(a, x)(b, y) = (ab, ay + xb). For a subset I of R and a subset X of M , we
write I ∝ X = {(a, x) : a ∈ I, x ∈ X} for convenience. The right singular
ideal of R is denoted by Zr(R).

Example 3.9. Let R = Z ∝ Z5∞, where Z5∞ is the Prüfer group. Then
R/Zr(R) is regular and idempotents lift modulo Zr(R), but regular elements
do not lift modulo Zr(R).

Proof. It is easily seen that J(R) = 0 ∝ Z5∞ and Zr(R) = 5Z ∝ Z5∞ ; so
R/Zr(R) ∼= Z5. Moreover, R/Zr(R) has only two trivial idempotents which
are the images of the two trivial idempotents of R. Hence every idempotent
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of R/Zr(R) can be lifted to an idempotent of R. For a = (3, 0) ∈ R and
b = (2, 0), a − aba = (−15, 0) ∈ Zr(R). But, for any regular element c =
(n,m) ∈ R, either n = 0 or n = 1 or n = −1, so a− d /∈ Zr(R).

Example 3.10. Let R = Z ∝ Z2∞, where Z2∞ is the Prüfer group. Then
R/Zr(R) is regular and regular elements lift modulo Zr(R), but idempotents
do not lift strongly modulo Zr(R).

Proof. As above, J(R) = 0 ∝ Z2∞ , Zr(R) = 2Z ∝ Z2∞ , and R/Zr(R)
∼= Z2. Moreover, every element of R/Zr(R) can be lifted to an idempotent
of R. For a = (3, 0) ∈ R, we have a − 1 ∈ Zr(R). But, for any idempotent
e = (n,m) ∈ aR, n = 0, so a− e /∈ Zr(R).

4. The dual of Yamagata’s theorem and consequences. As the
dual of Yamagata’s theorem, we characterize a module M for which S/∇ is
regular and idempotents lift modulo ∇. We further characterize a module
M for which S is semiregular and J(S) = ∇.

Lemma 4.1. Let u, v ∈ S. Then

(u− uvu)M = uM ∩ (1− uv)M and M = uM + (1− uv)M.

In particular,

(u− u2)M = uM ∩ (1− u)M and M = uM + (1− u)M.

Proof. It is clear that (u − uvu)M ⊆ uM ∩ (1 − uv)M and uM +
(1 − uv)M = M . For x ∈ uM ∩ (1 − uv)M , write x = uy = (1 − uv)z
with y, z ∈M . Then z = u(y + vz) and hence

x = (1− uv)z = (u− uvu)(y + vz) ∈ (u− uvu)M.

Let X,Y be submodules of a module M . We call Y a semisupplement
of X in M if M = X + Y and X ∩ Y � M . A submodule N of a module
M is said to lie over a direct summand of M if there exists a decomposition
M = P ⊕Q such that P ⊆ N and N ∩Q�M .

Lemma 4.2. The following are equivalent for an idempotent ū ∈ S/∇:

(1) ū lifts to an idempotent of S.
(2) There is a semisupplement N of uM in M such that uN �M and

N lies over a direct summand of M .

Proof. We may assume ū 6= 0, because the conditions hold trivially for
ū = 0.

(1)⇒(2). Let e2 = e ∈ S be such that ē = ū. Let

L1 = (u2 − u)M, L2 = (e− u)M, X = (1− u)M,

N = X + L1 + L2 = X + L2.
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We first show that N is a semisupplement of uM in M . Clearly, N +uM =
X+L2 +uM = M . Let m ∈ N ∩uM and write m = uz = (1−u)x+(u−e)y
with x, y, z ∈M . Then x = u(x+ z)− (u− e)y, and so

(1− u)x = (u− u2)(x+ z)− (1− u)(u− e)y.

Hence N ∩ uM ⊆ L1 + (1 − u)L2 + L2 � M , because L1 and L2 are
small in M . So N is a semisupplement of uM in M . Moreover, uN ⊆
uL2 +(u2−u)M �M . Next we show that N lies over (1−e)M . For x ∈M ,
(1−e)x = (1−u)x−(e−u)x ∈ N , so (1−e)M ⊆ N . For m ∈ N ∩eM , write
m = ez = (1−u)x+(e−u)y where x, y, z ∈M . Then x = ez+ux− (e−u)y
and so

(1− u)x = (1− u)ez + (1− u)ux− (1− u)(e− u)y

= (e− u)ez − (u2 − u)x− (1− u)(e− u)y
∈ L2 + L1 + (1− u)L2.

Hence m = (1 − u)x + (e − u)y ∈ L2 + L1 + (1 − u)L2 � M , which gives
N ∩ eM �M . So N lies over (1− e)M .

(2)⇒(1). By hypothesis, there exist e2 = e ∈ S and a submodule N of
M such that

N + uM = M, N ∩ uM �M,

(1− e)M ⊆ N, N ∩ eM �M, and uN �M.

Then N = (1 − e)M + (N ∩ eM) and M = uM + N = uM + (1 − e)M +
(N ∩ eM). Since N ∩ eM �M , we have

M = uM + (1− e)M.

Since (u− ue)M = u(1− e)M ⊆ uN � M , ū = ue = ūē. Since ū2 = ū, we
obtain (ēū)2 = ēūēū = ēū2 = ēū. Let f = e + (1 − e)ue. Then f2 = f ∈ S,
and

(ue− f)M = (ue− e− (1− e)ue)(uM + (1− e)M)
= (−e+ eue)(uM)

= (−eu+ eueu)M �M (as (ēū)2 = ēū).

Hence ū = ūē = f̄ .

If N is a submodule of M , we write πN : M → M/N for the natural
epimorphism.

Lemma 4.3. The following are equivalent for u ∈ S:

(1) ū is regular in S/∇.
(2) There exist v ∈ S and a semisupplement N of uM in M such that
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the following diagram is commutative:

M
u // M

πN

��
M

v

OO

πN // M/N

(3) There exists a semisupplement N of uM in M such that (1− uv)M
⊆ N for some v ∈ S.

Proof. (1)⇒(2). Assume that u − uvu ∈ ∇ where v ∈ S. Then L :=
(u−uvu)M �M . So, by Lemma 4.1, N := (1−uv)M is a semisupplement
of uM in M . Since L ⊆ N , uvux+N = ux+N in M/N for all x ∈M , i.e.,
(πNuv)(ux) = πN (ux). Since M = uM +N , it follows that πNuv = πN .

(2)⇔(3). It is clear.
(3)⇒(1). By (3), there exists a semisupplement N of uM in M such

that (1− uv)M ⊆ N where v ∈ S. Then uM ∩N �M and

(u− uvu)M = uM ∩ (1− uv)M ⊆ uM ∩N �M,

so ū = ūv̄ū.

For u ∈ S, (1 − u)M � M implies that u is an epimorphism because
uM + (1− u)M = M .

Lemma 4.4 ([6]). For a module M , ∇ ⊆ J(S) iff every u ∈ S with
(1− u)M �M is an isomorphism.

The following theorem is the dual of Theorem 3.5.

Theorem 4.5. The following are equivalent for a module M :

(1) S/∇ is regular, and idempotents lift modulo ∇.
(2) For any u ∈ S, there exist semisupplements N1, N2 of uM in M

such that

(a) (1− uv)M ⊆ N1 for some v ∈ S,
(b) uN2 �M and N2 lies over a direct summand of M if u2−u ∈ ∇.

(3) For any u ∈ S, there exists a semisupplement N of uM in M such
that

(a) (1− uv)M ⊆ N for some v ∈ S,
(b) uN �M and N lies over a direct summand of M if u2−u ∈ ∇.

Proof. The implications (1)⇒(2) and (3)⇒(1) follow from Lemmas 4.2
and 4.3.

(2)⇒(3). Let u ∈ S. If u2 − u /∈ ∇, then we simply take N = N1. So we
can assume that u2 − u ∈ ∇, and let N1, N2 be given as in (2). It is enough
to show that we can choose a common submodule N as N1 and N2. Let
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N = N2 +uN2 +(u−u2)M . To see that N satisfies (3)(a), let v = 1M . Then

(1− uv)M = (1− uv)(N2 + uM) = (1− u)(N2 + uM)

= (1− u)N2 + (u− u2)M ≤ N.
Next we show that N satisfies (3)(b). One sees that N ∩ uM = N2 ∩ uM +
[uN2 + (u − u2)M ] is small in M , because N2 ∩ uM, uN2, (u − u2)M are
all small in M . Since N + uM = M , N is a semisupplement of uM in M .
Moreover, uN = uN2+u[uN2+(u−u2)M ]�M . By our assumption on N2,
there exists e2 = e ∈ S such that (1− e)M ⊆ N2 and N2 ∩ eM �M . Then
(1− e)M ⊆ N , and

eM ∩N = eM ∩ [N2 + uN2 + (u− u2)M ]

= eM ∩ [N2 ∩ eM + (1− e)M + uN2 + (u− u2)M ]

= N2 ∩ eM + eM ∩ [(1− e)M + uN2 + (u− u2)M ]

≤ N2 ∩ eM + e(uN2 + (u− u2)M)�M.

So N lies over (1−e)M and hence N satisfies (3)(b). The proof is complete.

Next we show that S/∇ is regular and idempotents lift strongly modulo
∇ if and only if S is semiregular with J(S) = ∇, and characterize modules
M with the latter condition. We refer to [7], [8] and [9] for some sufficient
conditions on a module M for which S is semiregular and J(S) = ∇. A sub-
module X of M is called an image submodule if X = uM for some u ∈ S.
The module M is called image-lifting if every image submodule of M lies
over a direct summand.

Corollary 4.6. Let M be a module. The following are equivalent:

(1) S/∇ is regular, and idempotents lift strongly modulo ∇.
(2) S is semiregular and J(S) = ∇.
(3) The following hold:

(a) M is image-lifting.
(b) Every epimorphism in S with small kernel is one-to-one.
(c) For any u ∈ S, there exists a semisupplement N of uM in M

such that (1− uv)M ⊆ N for some v ∈ S.

Proof. (2)⇒(1). Apply [12, Lemma 5].
(1)⇒(2). Since S/∇ is regular, J(S) ⊆ ∇. So to show (2), it suffices to

show that J(S) ⊇ ∇. Assume that u ∈ S with (1−u)M �M . We only need
to show that u is an isomorphism by Lemma 4.4. Since u−1 ∈ ∇, by (1) there
exists e2 = e ∈ uSu such that u−e ∈ ∇. So N := (u−e)M+(1−u)M �M .
For x ∈M , (1−e)x = (u−e)x+(1−u)x, so (1−e)M ⊆ (u−e)M+(1−u)M .
Thus (1− e)M �M . It follows that eM = M . So 1 = e ∈ uSu. This shows
that u ∈ S is an automorphism.
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(3)⇒(2). By Lemma 4.3, (c) means that S/∇ is regular, so it follows
that J(S) ⊆ ∇. Moreover, (b) implies that ∇ ⊆ J(S). In fact, for u ∈ S
with (1 − u)M � M , we have uM = M and Keru � M , because M =
uM + (1 − u)M and Keru ⊆ (1 − u)M . So u is an isomorphism by (b).
Thus, by Lemma 4.4, ∇ ⊆ J(S). Lastly, (a) implies Lemma 4.2(2). To see
this, let u2 − u ∈ ∇. Then (1 − u)M is a semisupplement of uM in M by
Lemma 4.1, u(1− u)M �M , and (1− u)M lies over a direct summand of
M by (a). Hence Lemma 4.2(2) holds.

(2)⇒(3). Suppose that S is semiregular and J(S) = ∇. Then (c) holds
by Theorem 4.5. To verify (a), let u ∈ S. Since S is semiregular, there
exists v ∈ S such that v = vuv and u− uvu ∈ J(S) by [9, Theorem 2.9]. So
M = uvM⊕(1−uv)M . Since uvM ⊆ uM and uM∩(1−uv)M = (u−uvu)M
�M , uM lies over uvM . This proves that M is image-lifting. To verify (b),
we assume further that uM = M and Keru � M , and prove Keru = 0.
Since J(S) = ∇, it suffices to show (1 − vu)M � M . Let M = (1 − vu)M
+N for some submodule N . Then M = uM = u(1− vu)M + uN , and this
implies that uM = uN since u(1− vu)M �M . Hence M = N + Keru, and
this shows that M = N since Keru�M . So (1− vu)M �M .

A module M is called lifting if every submodule of M lies over a di-
rect summand. There exists a module M such that S is semiregular with
J(S) = ∇, but M is not lifting. Indeed, if R is a semiregular ring that is not
semiperfect, then M := RR is such a module by [7, 4.38, p. 69; 4.42, p. 71].
A module M is called direct-projective if, whenever a factor module M/K is
isomorphic to a direct summand of M , K is a direct summand of M ([9]).
These modules are also called D2-modules in [7].

Corollary 4.7 ([9]). If a module M is direct-projective and image-
lifting, then S is semiregular and J(S) = ∇.

Proof. By Corollary 4.6, it suffices to show that (3)(c) of Corollary 4.6
holds. Let u ∈ S. Since M is image-lifting, there exists e2 = e ∈ S such that
eM ⊆ uM and uM ∩ (1− e)M � M . Thus (1 − e)M is a semisupplement
of uM in M . Since eu : M → eM is onto and since M is direct-projective,
Ker(eu) is a direct summand of M . Write M = Ker(eu) ⊕ Z. Then eu|Z :
Z → eM is an isomorphism. Define v ∈ S by v(x + y) = (eu|Z)−1(x) for
x ∈ eM, y ∈ (1 − e)M . Then, for x ∈ eM , euv(x) = x so (1 − uv)x =
euvx − uvx = −(1 − e)uvx ∈ (1 − e)M . Moreover, (1 − uv)y = y for all
y ∈ (1− e)M . So (1−uv)M ⊆ (1− e)M . This shows (3)(c) of Corollary 4.6.
Hence S is semiregular and J(S) = ∇.

A module M is said to be epi-projective if, for any submodule N of M ,
every epimorphism f : M → M/N can be lifted to M , that is, there exists
g ∈ S such that πN = fg (see [4]).
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Corollary 4.8. Suppose that every submodule of M has a semisupple-
ment in M . If M is an epi-projective module, then S/J(S) is regular and
J(S) = ∇.

Proof. For any u ∈ S, there exists N ≤M such that M = N + uM and
N ∩ uM �M . Thus πNu : M →M/N is an epimorphism. Since M is epi-
projective, πN = πNuv for some v ∈ S; so S/∇ is regular by Lemma 4.3. It
follows that J(S) ⊆ ∇. To finish the proof, it suffices to show that∇ ⊆ J(S).
Let u ∈ S with (1− u)M �M . We only need to show that u is one-to-one
by Lemma 4.4. Since u is onto and since M is epi-projective, there exists
v ∈ S such that uv = 1M . Hence M = Keru⊕ vM . But Keru ⊆ (1− u)M ,
so Keru�M . It follows that M = vM , and hence Keru = 0.

In contrast to Corollary 3.8, the assumption in Corollary 4.8 that every
submodule of M has a semisupplement in M is not superfluous. In fact,
it is easy to check that the module ZZ is epi-projective, End(ZZ) ∼= Z is
semiprimitive, but Z is not regular. As seen in Section 3, there exist modules
M for which S/∆ is regular, idempotents lift modulo ∆, but ∆ 6= J(S).
We do not know an example of a module M such that S/∇ is regular,
idempotents lift modulo ∇, but ∇ 6= J(S).
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