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ON THE NEUMANN PROBLEM FOR
SYSTEMS OF ELLIPTIC EQUATIONS INVOLVING

HOMOGENEOUS NONLINEARITIES OF A CRITICAL DEGREE

BY

JAN CHABROWSKI (Brisbane)

Abstract. We establish the existence of solutions for the Neumann problem for a
system of two equations involving a homogeneous nonlinearity of a critical degree. The
existence of a solution is obtained by a constrained minimization with the aid of P.-L.
Lions’ concentration-compactness principle.

1. Introduction. In this paper we investigate the nonlinear Neumann
problem

(1.1)

 −∆u+ λu = Q(x)Hu(u, v) + Pu(u, v) in Ω,

−∆v + µv = Q(x)Hv(u, v) + Pv(u, v) in Ω,
∂u/∂ν = ∂v/∂ν = 0 on ∂Ω, u ≥ 0, u 6≡ 0, v ≥ 0, v 6≡ 0 on Ω,

where λ and µ are positive parameters, Ω ⊂ RN is a bounded domain with
a smooth boundary ∂Ω and ν is the unit outward normal to ∂Ω. The co-
efficient Q(x) is continuous and positive on Ω̄. The nonlinearities H and P
are of class C1(R+ × R+,R), where R+ = [0,∞), and are homogeneous of
degree 2∗ and 2, respectively. This means that H(λu, λv) = λ2∗H(u, v) and
P (λu, λv) = λ2H(u, v) for every λ > 0 and (u, v)∈R+×R+. Here 2∗ denotes
the critical Sobolev exponent, that is, 2∗ = 2N/(N − 2), N ≥ 3. Further as-
sumptions on H and P will be formulated later. A special case of problem
(1.1) has been considered in [8], namely, H(u, v) = uαvβ for (u, v)∈R+×R+,
with α + β = 2∗, α, β > 1, and P (u, v) ≡ 0. The corresponding problem
with the Dirichlet boundary conditions has been considered in [9], [5]. In this
paper we use some ideas from paper [9]. The nonlinear Neumann problem
involving the critical Sobolev exponent has an extensive literature. We refer
to [1]–[7] where further bibliographical references can be found.

Solutions of problem (1.1) are sought in the Sobolev spaceW := H1(Ω)×
H1(Ω). We recall that H1(Ω) is the usual Sobolev space equipped with the
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norm
‖u‖2 =

�

Ω

(|∇u|2 + u2) dx.

The norm in W is given by

‖(u, v)‖2W =
�

Ω

(|∇u|2 + |∇v|2 + u2 + v2) dx.

In a given Banach space we denote by “→” strong convergence and by “⇀”
weak convergence. The norms in the Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞,
are denoted by ‖ · ‖p.

The paper is organized as follows. In Section 2 we state our assumptions
and recall some properties of homogeneous functions of two variables that
will be used in our approach to problem (1.1). In particular, we recall an
extension of the Sobolev inequality from [9] involving homogeneous functions
of two variables of a critical degree. The existence of solutions to problem
(1.1), through a constrained minimization (3.1), is presented in Section 3
(see Theorem 3.2). The existence of minimizers of problem (3.1) depends on
the shape of the graph of the coefficient Q (see condition (3.6)). Section 4
is devoted to the verification of this condition. In the final Section 5 we
describe some properties of solutions of problem (1.1).

2. Preliminaries. The nonlinearities H and P satisfy the following
assumptions:

(H1) H ∈ C1(R+ × R+,R), H(u, v) ≥ 0, 6≡ 0 on R+ × R+ and H is
homogeneous of degree 2∗, that is, H(λu, λv) = λ2∗H(u, v) for
every λ > 0 and all (u, v) ∈ R+ × R+,

(H2) G(s2∗ , t2
∗
) = H(s, t) is a concave function for (s, t) ∈ R+ × R+.

We extend H to R2 by setting H(s, t) = H(s+, t+), where s+ =max(0, s).
This extension is of class C1 provided Hu(0, 1) = Hv(1, 0) = 0. This assump-
tion is needed in the proof of Theorem 4.1 (see (3.4)).

It is assumed that the nonlinearity P satisfies the following condition:

(P1) P ∈ C1(R+ × R+,R), and P is homogeneous of degree 2, that is,
P (λu, λv) = λ2P (u, v) for every λ > 0 and all (u, v) ∈ R+ × R+.

In Theorem 4.1 we assume that Pu(0, 1) > 0 and Pv(1, 0) > 0. So we extend
P to R2 in the following way:

P (s, t) =


P (s, t) for s, t ≥ 0,
P (0, t) + Ps(0, t)s for s ≤ 0 ≤ t,
P (s, 0) + Pt(s, 0)t for t ≤ 0 ≤ s,
0 for s, t ≤ 0.
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This extension is of class C1. From now on we mean byH and P the extended
functions.

We now give examples of homogeneous functions satisfying the above
conditions:

(1) H(s, t) = s2∗ + t2
∗

+
∑k

j=1 ajs
αj tβj for (s, t) ∈ R+ × R+, where

αj , βj > 1, aj > 0 and αj + βj = 2∗.
(2) Let H(s, t) be as in (1) and set H̃(s, t) = H(s, t)q/(s2∗ + t2

∗
)q−1 for

(s, t) ∈ R+ × R+, where q > 1.

Both functions H and H̃ satisfy (H1). As noted in [9], H is so far the only
example of a homogeneous function of degree 2∗ satisfying (H2). To obtain
the existence of a solution (u, v), with both components nonzero, of problem
(1.1) we need to assume that (see Theorem 3.2 below) Ps(0, 1) > 0 and
Pt(1, 0) > 0. As examples of homogeneous functions of degree 2 satisfying
this requirement we can give P (u, v) = uv and P1(u, v) = (u + v)

√
u2 + v2

for (u, v) ∈ R+ × R+.
We associate with a homogeneous function H satisfying (H1) and (H2)

the best Sobolev constant. First, we recall that the usual best Sobolev con-
stant is defined by

S = inf
u∈H1

0 (Ω)−{0}

	
Ω |∇u|

2 dx

(
	
Ω |u|2

∗ dx)2/2∗
,

where H1
0 (Ω) is the subspace of functions of H1(Ω) having zero trace on

the boundary ∂Ω. It is known that S is independent of Ω and it is only
attained when Ω = RN (see [11, Chapter 3, Section 1] or [12]). In this case,
as the corresponding Sobolev space we can take D1,2(RN ), the completion
of C∞0 (RN ) with respect to the norm

‖u‖2D1,2 =
�

RN
|∇u|2 dx.

It is well-known that the best Sobolev constant is attained on RN by a
family of functions

(2.1) Uε,y(x) = ε−(N−2)/2U

(
x− y
ε

)
, y ∈ RN , ε > 0,

where

U(x) =
(

N(N − 2)
N(N − 2) + |x|2

)(N−2)/2

.

The function U , called an instanton, satisfies the equation

−∆U = U2∗−1 in RN .
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We also have �

RN
|∇Uε,y|2 dx =

�

RN
U2∗
ε,y dx = SN/2.

If y = 0, we write uε = Uε,0.
Let H be a homogeneous function satisfying (H1) and (H2). We define

SH = inf
{ �
Ω

(|∇u|2 + |∇v|2) dx : (u, v) ∈W,
�

Ω

H(u+, v+) dx = 1
}
.

Due to the 2∗-homogeneity of H, there is a relation between S and SH .
Namely, let F (s, t) = H(s, t)2/2∗ and set MF = max{F (s, t) : (s, t)∈R×R,
s2 + t2 = 1}. Letting m = M−1

F we have mH(s, t)2/2∗ ≤ s2 + t2 for every
(s, t) ∈ R× R and there exists a point (s0, t0) such that

mH(s0, t0)2/2∗ = s2
0 + t20.

It follows from Lemma 3 in [9] that

(2.2) SH = mS.

We point out here that condition (H2) implies the following form of the
Hölder inequality: �

Ω

H(u, v) dx ≤ H(‖u‖2∗ , ‖v‖2∗)

for all (u, v) ∈ W . This inequality is needed to establish (2.2) (for further
details we refer to [9]).

3. Constrained minimization. A solution to problem (1.1) will be
found as a minimizer of the constrained minimization
(3.1)

Sλµ = inf
{ �
Ω

[I(u, v)− P (u, v)] dx : (u, v) ∈W,
�

Ω

Q(x)H(u, v) dx = 1
}
,

where
I(u, v) =

1
2

(|∇u|2 + |∇v|2 + λu2 + µv2).

To find a minimizer for Sλµ, we use the following version of P.-L. Lions’
concentration-compactness principle [10].

Proposition 3.1. Let un ⇀ u and vn ⇀ v in H1(Ω). Suppose that

|∇un|2 ⇀ µ, |∇v|2 ⇀ σ

and H(un, vn) ⇀ ν in the sense of measures. Then there exist an at most
countable index set J and sequences {xj} ⊂ Ω̄, {µj}, {σj}, {νj} ⊂ (0,∞),
j ∈ J , such that

(i) ν = H(u, v) +
∑

j∈J νjδxj ,
(ii) µ ≥ |∇u|2 +

∑
j∈J µjδxj and σ ≥ |∇v|2 +

∑
j∈J σjδxj ,
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(iii) µj + σj ≥ SH(νj)2/2∗ if xj ∈ Ω,

(iv) µj + σj ≥ 2−2/NSH(νj)2/2∗ if xj ∈ ∂Ω,

where δxj denotes the Dirac measure assigned to xj.

In the case of the space H1
0 (Ω) this modification of P.-L. Lions’ concen-

tration-compactness principle can be found in [9]. The proof in our situation
is the same as in [9]. We only need to add the proof of inequality (iv). This
follows from the following modification of the result due to X. J. Wang [13].

Let B̃ = B(0, 1) ∩ {xN > h(x′)}, where B(0, 1) is the unit ball in RN ,
h(x′) is a C1 function defined on {x′ ∈ RN−1 : |x′| < 1} with h and ∇h
vanishing at 0. Then for every (u, v) ∈ H1(B(0, 1)) with suppu, supp v ⊂
B(0, 1) we have

(a) if h ≡ 0, then
�

B̃

(|∇u|2 + |∇v|2) dx ≥ 2−2/NSH

( �
B̃

H(u, v) dx
)2/2∗

,

(b) for every ε > 0 there exists a δ > 0 depending only on ε such that if
|∇h| < δ, then

�

B̃

(|∇u|2 + |∇v|2) dx ≥
(
SH

22/N
− ε
)( �

B̃

H(u, v) dx
)2/2∗

.

Using this result we deduce (iv) (for details see [9]).
To formulate the first existence result for problem (1.1) we introduce the

following assumption:

(P2) maxs2+t2=1 P (s, t) =: b > 0.

This yields P (s, t) ≤ b(s2 + t2) for (s, t) ∈ R2. Hence for all (u, v) ∈ W and
λ > 2b, µ > 2b we have

J(u, v) =
1
2

�

Ω

(|∇u|2 + |∇v|2 + λu2 + µv2) dx−
�

Ω

P (u, v) dx(3.2)

≥
�

Ω

[
1
2

(|∇u|2 + |∇v|2) +
(
λ

2
− b
)
u2 +

(
µ

2
− b
)
v2

]
dx

≥ aS1

[( �
Ω

|u|2∗ dx
)2/2∗

+
( �
Ω

|u|2∗ dx
)2/2∗]

.

where a = min(1/2, λ/2− b, µ/2− b) and S1 is the best Sobolev constant for
the embedding of H1(Ω) into L2∗(Ω). We now observe that the inequality
mH(s, t)2/2∗ ≤ s2 + t2 for all (s, t) ∈ R2 yields H(s, t) ≤ A(|s|2∗ + |t|2∗) for
all (s, t) ∈ R2, where A > 0 is a constant independent of s and t. Applying
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this to inequality (3.2) we derive

J(u, v) ≥ aS1

[( �
Ω

|u|2∗ dx
)2/2∗

+
( �
Ω

|v|2∗ dx
)2/2∗]

(3.3)

≥ B
( �
Ω

(|u|2∗ + |v|2∗) dx
)2/2∗

≥ B

A2/2∗Q
2/2∗

M

( �
Ω

Q(x)H(u, v) dx
)2/2∗

,

where B > 0 is a constant independent of u and v and QM = maxx∈Ω̄ Q(x).
Inequality (3.3) implies that Sλµ > 0 provided λ > 2b and µ > 2b.

The quantities QM and Qm = maxx∈∂Ω Q(x) play an important role in
establishing the existence of a solution for problem (1.1).

Theorem 3.2. Suppose that H and P satisfy (H1), (H2), (P1) and (P2).
Further, assume that

(3.4) Hu(0, 1) = 0, Hv(1, 0) = 0

and

(3.5) Pu(0, 1) > 0, Pv(1, 0) > 0.

If for λ > 2b and µ > 2b,

(3.6) Sλµ < S∞ := min
(

SH

Q
(N−2)/N
M

,
SH

22/NQ
(N−2)/N
m

)
,

then there exists a minimizer (u, v) ∈W for Sλµ, which, up to a multiplica-
tive constant, is a solution of problem (1.1).

Proof. Let {(un, vn)} ⊂ W be a minimizing sequence for Sλµ. Since
{un} and {vn} are bounded in H1(Ω) we may assume that {un} and {vn}
satisfy conditions (i)–(iv) of Proposition 3.1. By the Sobolev compact em-
beddings we may also assume that un → u and vn → v in L2(Ω) and so	
Ω P (un, vn) dx→

	
Ω P (u, v) dx. It follows from Proposition 3.1 that

(3.7) 1 =
�

Ω

Q(x)H(u, v) dx+
∑
j∈J

νjQ(xj).

Thus

Sλµ ≥ J(u, v) +
∑
j∈J

(µj + σj)

≥ Sλµ
( �
Ω

Q(x)H(u, v) dx
)2/2∗

+
∑
xj∈Ω

SHν
2/2∗

j +
∑
xj∈∂Ω

1
22/N

ν
2/2∗

j SH
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= Sλµ

( �
Ω

Q(x)H(u, v) dx
)2/2∗

+
∑
xj∈Ω

SH
(Q(xj)νj)2/2∗

Q(xj)(N−2)/N
+
∑
xj∈∂Ω

SH
22/N

(Q(xj)νj)2/2∗

Q(xj)(N−2)/N

≥ Sλµ
( �
Ω

Q(x)H(u, v) dx
)2/2∗

+
∑
xj∈Ω

SH(Q(xj)νj)2/2∗

Q
(N−2)/N
M

+
∑
xj∈∂Ω

SH
22/N

(Q(xj)νj)2/2∗

Q
(N−2)/N
m

.

Since (3.6) holds we derive from this inequality that

Sλµ ≥ Sλµ
( �
Ω

Q(x)H(u, v) dx
)2/2∗

+ S∞
∑
j∈J

(Q(xj)νj)2/2∗ .

If at least one of the constants νj 6= 0, then, since S∞ > Sλµ, we get

1 >
( �
Ω

Q(x)H(u, v) dx
)2/2∗

+
∑
j∈J

(Q(xj)νj)2/2∗ .

This obviously contradicts (3.7). Hence νj = 0 for all j ∈ J . This shows
that the pair (u, v) ∈ W is a minimizer for Sλµ. Since (|u|, |v|) is also a
minimizer we may assume that u ≥ 0 and v ≥ 0 onΩ. Assumptions (3.4) and
(3.5) imply that both functions are nonzero. Using the Lagrange multiplier
technique we obtain

(3.8)
�

Ω

(∇u∇φ+∇v∇ζ + λuφ+ µvζ − Pu(u, v)φ− Pv(u, v)ζ) dx

= κ
�

Ω

Q(x)(Hu(u, v)φ+Hv(u, v)ζ) dx

for some κ ∈ R and all (φ, ζ) ∈W . Since

uHu(u, v) + vHv(u, v) = 2∗H(u, v) and uPu(u, v) + vPv(u, v) = 2P (u, v),

we derive from (3.8) that κ = 2Sλµ/2∗. It is easy to check that the pair((
1
2∗
Sλµ

) 1
2∗−1

u,

(
1
2∗
Sλµ

) 1
2∗−1

v

)
is a solution of problem (1.1).

4. Validity of condition (3.6). We now formulate conditions guaran-
teeing that (3.6) holds for λ > 2b and µ > 2b (or at least for some λ > 2b
and µ > 2b). It is easy to establish this in the case

(4.1) QM ≤ 22/(N−2)Qm.
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Then we require that

Sλµ <
SH

22/NQ
(N−2)/N
m

.

Indeed, let M(y) denote the mean curvature of ∂Ω at y ∈ ∂Ω. It is well-
known that (see [1], [2], [13])

(4.2)

	
Ω |∇Uε,y|

2 dx

(
	
Ω U

2∗
ε,y dx)2/2∗

=


2−2/NS −ANM(y)ε log(1/ε) +O(ε), N = 3,
2−2/NS −ANM(y)ε+O(ε2) log(1/ε), N = 4,
2−2/NS −ANM(y)ε+O(ε2), N ≥ 5,

where AN is a positive constant depending only on N .

Theorem 4.1. Let QM ≤ 22/(N−2)Qm. Suppose that P and Q satisfy
(H1), (H2), (P1), (P2), (3.4) and (3.5). Moreover, assume that Q(x) satisfies
the following condition: there exists y ∈ ∂Ω such that Q(y) = Qm, M(y) > 0
and

(4.3) |Q(x)−Q(y)| = o(|x− y|) for x near y.

Then for every λ > 2b and µ > 2b problem (1.1) admits a solution.

Proof. First we observe that condition (4.3) yields the expansion�

Ω

Q(x)Uε,y(x)2∗ dx = Qm

�

Ω

Uε,y(x)2∗ dx+ o(ε).

We now test Sλµ with (s0Uε,y, t0Uε,y) to obtain with the aid of asymptotic
estimates (4.2) the following estimate for Sλµ:

Sλµ ≤
(s2

0 + t20)
	
Ω |∇Uε,y|

2 dx+O(ε2)
H(s0, t0)2/2∗(Qm

	
Ω U

2∗
ε,y dx+ o(ε))2/2∗

<
SH

22/NQ
2/2∗
m

for ε > 0 sufficiently small. Here we have used the fact that�

Ω

Uε,y(x)2 dx = O(ε2) and
�

Ω

P (s0Uε,y, t0Uε,y) dx = O(ε2).

In the case QM > 22/(N−2)Qm, we first observe that the constant func-
tions s, t given by s = t = 1

(H(1,1)
	
Ω Q(x) dx)1/2

∗ satisfy
	
Ω Q(x)H(s, s) dx = 1.

So for λ > 2b and µ > 2b we have

J(λ, µ) = |Ω|
[

λ+ µ

2(H(1, 1)
	
Ω Q(x) dx)2/2∗

− P (1, 1)
(H(1, 1)

	
Ω Q(x) dx)2/2∗

]
=

|Ω|
(H(1, 1)

	
Ω Q(x) dx)2/2∗

(
λ+ µ

2
− P (1, 1)

)
.

So Sλµ < SH/Q
(N−2)/N
M provided

(4.4)
|Ω|

(H(1, 1)
	
Ω Q(x) dx)2/2∗

(
λ+ µ

2
− P (1, 1)

)
<

SH

Q
(N−2)/N
M

.
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Let Q∗ = minx∈Ω̄ Q(x). If

(4.5)
|Ω|1−2/2∗

H(1, 1)2/2∗

(
λ+ µ

2
− P (1, 1)

)
< SH

(
Q∗
QM

)(N−2)/N

then (4.4) holds. For a given λ > 2b and µ > 2b, condition (4.5) is satisfied
if |Ω| is small.

Proposition 4.2. Let QM > 22/(N−2)Qm. Suppose that (H1), (H2),
(P1), (P2), (3.4) and (3.5) hold. If for λ > 2b and µ > 2b, inequality (4.5)
is satisfied, then problem (1.1) has a solution.

Remark 4.3. Condition (4.5) is satisfied in the following two cases:

(i) Let P (u, v) = uv. Then b = 1/2 and P (1, 1) = 1 and there exists
δ0 > 0 such that for λ, µ ∈ (1, 1 + δ0) condition (4.5) holds.

(ii) Let P1(u, v) = (u + v)
√
u2 + v2. Then b =

√
2, P1(1, 1) = 2

√
2 and

there exists δ1 > 0 such that for λ, µ ∈ (2
√

2, 2
√

2 + δ1) condition
(4.5) holds.

We now present a more general result under an additional restriction
on P . First, we recall the following result from [7]. Let us consider the
following constrained minimization problem:

Sλ = inf
{ �
Ω

(|∇u|2 + λu2) dx : u ∈ H1(Ω),
�

Ω

Q(x)|u|2∗ dx = 1
}
,

where λ > 0 is a parameter. Obviously, a minimizer for Sλ is, up to a
multiplicative constant, a solution of the Neumann problem{

−∆u+ λu = Q(x)|u|2∗−2u in Ω,

∂u/∂ν = 0 on ∂Ω, u > 0 on Ω.

Proposition 4.4. Let QM > 22/(N−2)Qm. Then there exists a constant
Λ > 0 such that for every 0 < λ ≤ Λ there exists a minimizer uλ > 0 for
Sλ and there are no minimizers for λ > Λ. Moreover, Sλ < S/Q

(N−2)/N
M for

0 < λ < Λ and Sλ = S/Q
(N−2)/N
M for λ ≥ Λ.

Proposition 4.5. Let QM > 22/(N−2)Qm. Suppose that P and Q satisfy
(Q1), (Q2), (P1), (P2), (3.4), (3.5).

(i) If P (s0, t0) = 0, then there exists a minimizer for Sλµ for 2b < λ < Λ
and 2b < µ < Λ.

(ii) If P (s0, t0) > 0, then there exists a minimizer for Sλµ for 2b < λ
and 2b < µ.

Proof. (i) We may assume that µ ≤ λ. Let uλ be a minimizer for Sλ
with 0 < λ < Λ. Testing Sλµ with (s0uλ, t0uλ) we obtain
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Sλµ ≤
(s2

0 + t20)
	
Ω |∇uλ|

2 dx+ λs2
0

	
Ω u

2
λ dx+ µt20

	
Ω u

2
λ dx

H(s0, t0)(
	
Ω Q(x)|uλ|2∗ dx)2/2∗

≤
(s2

0 + t20)
	
Ω(|∇uλ|2 dx+ λu2

λ) dx
H(s0, t0)(

	
Ω Q(x)|uλ|2∗ dx)2/2∗

= mSλ <
SH

Q
(N−2)/N
M

and the result follows from Theorem 3.2. Part (ii) is now obvious.

Proposition 4.5 continues to hold if 2b < µ < λ < Λ is replaced by
2b < λ < µ < Λ.

5. Final remarks. The quantity Sλµ is nondecreasing, that is, if λ1 ≤
λ2 and µ1 ≤ µ2, then Sλ1µ1 ≤ Sλ2µ2 .

Lemma 5.1. Suppose that the assumptions of Theorem 3.2 hold. Then
for λ > 2b and µ > 2b we have

(5.1) Sλµ ≤ S∞ = min
(

SH

Q
(N−2)/N
M

,
SH

22/NQ
(N−2)/N
m

)
and

(5.2) lim
λ→∞, ν→∞

Sλµ = S∞.

Proof. Testing Sλµ with (s0Uε,y, t0Uε,y), where Q(y) = Qm or QM =
Q(y), we get (5.1). To show (5.2) we argue by contradiction. Since Sλµ is
nondecreasing we may assume that Sλµ < S∞ for all λ > 2b and µ > 2b.
Let λn →∞ and µn →∞. By Theorem 3.2 for each (λn, µn) there exists a
minimizer (un, vn) for Sλnνn . Since

�

Ω

[(
λn
2
− b
)
u2
n +

(
µn
2
− b
)
v2
n

]
dx ≤ Sλnµn ≤ S∞,

we have un → 0, vn → 0 in L2(Ω) and
	
Ω P (un, vn) dx→ 0. It follows from

the concentration-compactness principle (see Proposition 3.1) that

|∇un|2 ⇀ µ ≥
∑
j∈J

µjδxj , |∇vn|2 ⇀ σ ≥
∑
j∈J

σjδxj

and
H(un, vn) ⇀ ν =

∑
j∈J

νjδxj

in the sense of measures. The coefficients µj , σj and νj satisfy conditions
(iii) and (iv) of Proposition 3.1. We then have

1 =
∑
j∈J

νjQ(xj)



NEUMANN PROBLEM 125

and
S∞ ≥ lim

λn→∞, µn→∞
Sλnµn ≥

∑
j∈J

S∞(νjQ(xj))2/2∗ .

Since 2/2∗ < 1, J consists of one point, say xj . Hence 1 = νjQ(xj) and so
limλn→∞, µn→∞ Sλµ ≥ S∞.

If Q(x) ≡ 1 on Ω, then the system (1.1), in general, may have constant
solutions. However, if λ and µ are large then minimizers of Sλµ are not
constant.

Proposition 5.2. Suppose that the assumptions of Theorem 3.2 hold
and let Q(x) ≡ 1 on Ω. Then for λ > 2b and µ > 2b large, Sλµ does not
have constant minimizers.

Proof. Suppose that for every λ > 2b and µ > 2b, Sλµ admits a constant
minimizer (s, t). A minimizer (s, t), with s > 0 and t > 0, depends obviously
on λ and µ. We then have

Sλµ = |Ω|
(
λ

2
s2 +

µ

2
t2
)
− |Ω|P (s, t) and H(s, t) =

1
|Ω|

.

Hence for λ > 2b and µ > 2b we have

(5.3) Sλµ ≥
(
λ

2
− b
)
s2|Ω|+

(
µ

2
− b
)
t2|Ω|

and

(5.4) H(s, t) =
1
|Ω|
≤ a(s2∗ + t2

∗
)

for some constant a > 0 independent of s and t. Then for large λ and µ
inequalities (5.3) and (5.4) contradict the estimate Sλµ ≤ S∞.

Proposition 5.3. Let λ = µ. Suppose that P and H satisfy the condi-
tions

(5.5) Pu(u, v)− Pv(u, v) = P1(u, v)(u− v)

for all (u, v) ∈ R+×R+, where P1 is a bounded and continuous function on
R+×R+, and there exists a nonnegative function H1 on R+×R+ such that

(5.6) Hv(u, v)−Hu(u, v) = H1(u, v)(u− v)

for all (u, v) ∈ R+×R+. Then for λ > 0 sufficiently large any solution (u, v)
of problem (1.1) satisfies u = v on Ω.

Proof. We observe

−∆(u− v) + (λ+Q(x)H1(u, v)− P1(u, v))(u− v) = 0
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in Ω and for λ > 0 sufficiently large λ+Q(x)H1(u, v)− P1(u, v) > 0 on Ω.
Multiplying the above equation by u− v and integrating over Ω, we get�

Ω

|∇(u− v)|2 dx+
�

Ω

(λ+Q(x)H1(u, v)− P1(u, v))(u− v)2 dx = 0.

This obviously yields u = v on Ω.

Both functions P (u, v) = uv and P1(u, v) = (u+ v)
√
u2 + v2 for (u, v) ∈

R+×R+ satisfy (5.5). An example of a function satisfying (5.6) is H(u, v) =
uαvα with 2α = 2∗ for (u, v) ∈ R+ × R+.

In the case where H(u, v) = uαvβ with 1 < α < β and α + β = 2∗, for
(u, v) ∈ R+ × R+ we have the following result:

Proposition 5.4. Let 0 < λ < µ, H(u, v) = uαvβ for (u, v) ∈ R+×R+,
with 1 < α < β and α + β = 2∗. Moreover, assume that P (u, v) = uv for
(u, v) ∈ R+×R+. If (u, v) is a solution of problem (1.1), then tu > sv on Ω,
where s > 0 and t > 0 are constants satisfying

(5.7) αsα−2tβ = βtβ−2sα = 1.

Proof. First, we perform a change of unknown functions u = su1 and
v = tv1. Then (u1, v1) satisfies the following system of equations:−∆u1 + λu1 − 1

sPu(su1, tv1)− αQ(x)sα−2tβuα−1
1 vβ1 = 0,

−∆v1 + µv1 − 1
tPv(su1, tv1)− βQ(x)sαtβ−2uα1 v

β−1 = 0.

Selecting s and t so that (5.7) holds we obtain

−∆(u1 − v1) + λ(u1 − v1) + (λ− µ)v1 + Pv

(
s

t
u1, v1

)
− Pu

(
u1,

t

s
v1

)
+Q(x)uα−1

1 vβ−1
1 (u1 − v1) = 0.

We now observe that

Pv

(
s

t
u1, v1

)
− Pu

(
u1,

t

s
v1

)
=
s

t
(u1 − v1) +

s2 − t2

ts
v1.

Since α < β, we see that s < t. Hence

−∆(u1 − v1) +
(
λ+

t

s
+Q(x)uα−1

1 vβ−1
1

)
(u1 − v1) ≥ 0 in Ω.

By the maximum principle u1 > v1 on Ω and the result readily follows.
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