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ON THE NEUMANN PROBLEM FOR
SYSTEMS OF ELLIPTIC EQUATIONS INVOLVING
HOMOGENEOUS NONLINEARITIES OF A CRITICAL DEGREE

BY

JAN CHABROWSKI (Brisbane)

Abstract. We establish the existence of solutions for the Neumann problem for a
system of two equations involving a homogeneous nonlinearity of a critical degree. The
existence of a solution is obtained by a constrained minimization with the aid of P.-L.
Lions’ concentration-compactness principle.

1. Introduction. In this paper we investigate the nonlinear Neumann
problem

— Au+ A= Q(x)Hy(u,v) + Py(u,v) in {2,
(1.1) —Av+ v = Q(l‘)Hv(u,U) + Py(u,v) in £2,
Ou/Ov=0v/0v=0 ond2,u>0,uz0,v>0v%0on (2

where A and p are positive parameters, 2 C RY is a bounded domain with
a smooth boundary 0f2 and v is the unit outward normal to 92. The co-
efficient Q(z) is continuous and positive on 2. The nonlinearities H and P
are of class C'(R; x R4, R), where Ry = [0,00), and are homogeneous of
degree 2* and 2, respectively. This means that H(\u, \v) = A\*" H(u,v) and
P(Mu, M) = A2H (u,v) for every A > 0 and (u,v) €R; xR . Here 2* denotes
the critical Sobolev exponent, that is, 2* = 2N/(N — 2), N > 3. Further as-
sumptions on H and P will be formulated later. A special case of problem
has been considered in [8], namely, H (u,v) = u®v” for (u,v) ER; xRy,
with a + 3 = 2*, o, > 1, and P(u,v) = 0. The corresponding problem
with the Dirichlet boundary conditions has been considered in [9], [5]. In this
paper we use some ideas from paper [9]. The nonlinear Neumann problem
involving the critical Sobolev exponent has an extensive literature. We refer
to [I]-[7] where further bibliographical references can be found.

Solutions of problem are sought in the Sobolev space W := H1(2)x
H'(£2). We recall that H'(2) is the usual Sobolev space equipped with the
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norm
ul® = {(IVul® + u?) dx.
[0
The norm in W is given by

1w, 0)F = [ (I Vul® + | Vo]* + u® + v*) da.
(0]

)

In a given Banach space we denote by “—” strong convergence and by “—”
weak convergence. The norms in the Lebesgue spaces LP(£2), 1 < p < oo,
are denoted by || - [|,.

The paper is organized as follows. In Section 2 we state our assumptions
and recall some properties of homogeneous functions of two variables that
will be used in our approach to problem . In particular, we recall an
extension of the Sobolev inequality from [9] involving homogeneous functions
of two variables of a critical degree. The existence of solutions to problem
, through a constrained minimization , is presented in Section 3
(see Theorem . The existence of minimizers of problem depends on
the shape of the graph of the coefficient @) (see condition ) Section 4
is devoted to the verification of this condition. In the final Section 5 we
describe some properties of solutions of problem .

2. Preliminaries. The nonlinearities H and P satisfy the following
assumptions:

(H) H € C*(Ry x Ry,R), H(u,v) > 0, # 0 on Ry x Ry and H is
homogeneous of degree 2*, that is, H(\u, \v) = A\* H(u,v) for
every A > 0 and all (u,v) € Ry x Ry,

(Hy) G(s*,t*") = H(s,t) is a concave function for (s,t) € Ry x Ry.

We extend H to R? by setting H(s,t) = H(s,t"), where st =max(0, s).

This extension is of class C* provided H,(0,1) = H,(1,0) = 0. This assump-
tion is needed in the proof of Theorem 4.1 (see (3.4))).
It is assumed that the nonlinearity P satisfies the following condition:

(P;) P e C'R; x R,R), and P is homogeneous of degree 2, that is,
P(Au, M) = A2P(u,v) for every A > 0 and all (u,v) € Ry x Ry,

In Theorem {.1{ we assume that P,(0,1) > 0 and P,(1,0) > 0. So we extend
P to R? in the following way:
P(s,t) for s,t > 0,
P(0,t) + Ps(0,t)s for s <0 <t,
P(s,0) + Pi(s,0)t fort<0<s,
0 for s,t < 0.

P(s,t) =
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This extension is of class C'. From now on we mean by H and P the extended
functions.

We now give examples of homogeneous functions satisfying the above
conditions:

(1) H(s,t) = s + 12 + Z?zl a;s%tP for (s,t) € Ry x Ry, where
aj,B; > 1, a; >0 and o + 3 = 2*.

(2) Let H(s,t) be as in (1) and set H(s,t) = H(s,t)?/(s* +t*")7"! for
(s,t) € Ry x Ry, where g > 1.

Both functions H and H satisfy (H;). As noted in [9], H is so far the only
example of a homogeneous function of degree 2* satisfying (Hz). To obtain
the existence of a solution (u,v), with both components nonzero, of problem
we need to assume that (see Theorem below) P,(0,1) > 0 and
P,(1,0) > 0. As examples of homogeneous functions of degree 2 satisfying
this requirement we can give P(u,v) = uv and Pj(u,v) = (u + v)Vu? + v?
for (u,v) € Ry x R4.

We associate with a homogeneous function H satisfying (H;) and (H2)
the best Sobolev constant. First, we recall that the usual best Sobolev con-
stant is defined by

§o |Vul? da

S = ,
weHE(2)—{0} (Vo |u[?" dx)?/?

where H}(§2) is the subspace of functions of H'({2) having zero trace on
the boundary 0f2. It is known that S is independent of {2 and it is only
attained when £2 = R¥ (see [I1, Chapter 3, Section 1] or [12]). In this case,
as the corresponding Sobolev space we can take D'2(RY), the completion
of C§°(RY) with respect to the norm

lullfr = | [Vul da.
RN

It is well-known that the best Sobolev constant is attained on RY by a
family of functions

€

(2.1) Uey(z) :6_(N_2)/2U<x_y>, yeRY, >0,

where

[ N(N-2 \W2~2
Ule) = (N(N “9t ra;\?)

The function U, called an instanton, satisfies the equation

—AU =U%"1  inRV.
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We also have
\ VU, dz = | U2, de = SN,
RN RN
If y =0, we write ue = U .
Let H be a homogeneous function satisfying (H;) and (Hs). We define

Sy = inf{S(|Vu]2 +|Vol?) dz : (u,v) € W, S H(u",vT)dr = 1}.
Q Q
Due to the 2*-homogeneity of H, there is a relation between S and Sp.
Namely, let F(s,t) = H(s,t)*?" and set Mp=max{F(s,t) : (s,t) ERxR,
s + 12 = 1}. Letting m = M4" we have mH (s, t)/?" < s% 4+ 2 for every
(s,t) € R x R and there exists a point (so,?p) such that
mH (so, t0)¥? = s2 +12.
It follows from Lemma 3 in [9] that
(2.2) Sy =msS.
We point out here that condition (Hz) implies the following form of the
Holder inequality:
V H(u,0) de < H(|[ull2-, [v]l2+)
Q

for all (u,v) € W. This inequality is needed to establish (2.2]) (for further
details we refer to [9]).

3. Constrained minimization. A solution to problem will be
found as a minimizer of the constrained minimization
(3.1)
S = inf{S[I(u,v) — P(u,v)|dz : (u,v) € W, S Q(z)H (u,v) dx = 1},
[0 19

where 1
I(u,v) = §(|Vu]2 + [Vul* + M 4 pv?).
To find a minimizer for S),, we use the following version of P.-L. Lions’
concentration-compactness principle [10].
PROPOSITION 3.1. Let u, — u and v, — v in HY(£2). Suppose that
Vug|* =, [Voff =0

and H(unp,vn) — v in the sense of measures. Then there exist an at most
countable index set J and sequences {x;} C 2, {u;},{o;},{v;} C (0,00),
j € J, such that

() v=H(u,v) + > e s V0,
(ii) pu > |Vul? + > jes Hjdz; and o > |Vo|? + > ics 0i0z;
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(iii) wij+oj > SH(VJ')Q/Q* if vj € 2,
(iv) pj+0; > 272NSy(v)¥? if x; € 09,

where 0; denotes the Dirac measure assigned to x;.

In the case of the space H{({2) this modification of P.-L. Lions’ concen-
tration-compactness principle can be found in [9]. The proof in our situation
is the same as in [9]. We only need to add the proof of inequality (iv). This
follows from the following modification of the result due to X. J. Wang [13].

Let B = B(0,1) N {zy > h(z')}, where B(0,1) is the unit ball in RV,
h(z') is a C! function defined on {z' € R¥=1 : |2/| < 1} with h and Vh
vanishing at 0. Then for every (u,v) € H'(B(0,1)) with suppu,suppv C
B(0,1) we have

(a) if h =0, then

F(Val+ (Vo) do > 272 (| w0 o)

B B
(b) for every € > 0 there exists a § > 0 depending only on e such that if
|[Vh| < 6, then
Sk 2/2
S(]Vu|2+|Vv\ )dx > <22/N )(S H(u,v)dw) .
B B

Using this result we deduce (iv) (for details see [9]).

To formulate the first existence result for problem (|1.1]) we introduce the
following assumption:

(P) maxg ;21 P(s,t) =:b>0.

This yields P(s,t) < b(s? + t?) for (s,t) € R2. Hence for all (u,v) € W and
A > 2b, p > 2b we have

1
(3:2) J(u,v) = V(IVul? + (Vo) + x? + p?) do — | P(u,v) dz

2 2
> |

1 A I
{07+ 9o+ (G -0+ (5 -0)1?]
> aS, [(S |u’2* dw>2/2* N (S u o dx)Q/Q*].

o) Q

where @ = min(1/2,\/2—b,u/2—b) and S is the best Sobolev constant for
the embedding of H'(£2) into L% (£2). We now observe that the inequality
mH (s,t)%/?" < s + 2 for all (s,t) € R? yields H(s,t) < A(|s|*" + [t|*") for
all (s,t) € R%, where A > 0 is a constant independent of s and ¢. Applying
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this to inequality (3.2) we derive

(3.3) J(u,v) > aS; [(S uf?’ d:z;)2/2* N (S e dx>2/2*]
2 Q
2*)dm>2/2*

B 2/2*
> W((S}Q(ﬂf)ﬂ(u’v) dgﬁ) )

> B(§(luf + v
9]

where B > 0 is a constant independent of v and v and Qum = max,c 5 Q(z).
Inequality implies that Sy, > 0 provided A > 2b and p > 2b.

The quantities Qv and Qn = max,cyn Q(x) play an important role in
establishing the existence of a solution for problem .

THEOREM 3.2. Suppose that H and P satisfy (Hy), (Hz2), (P1) and (Pa).
Further, assume that

(3.4) H,(0,1)=0, H,(1,0)=0
and
(3.5) P,(0,1) >0, P,(1,0) > 0.

If for A > 2b and p > 2b,

(3.6) Sy < Soo = min< Si Sir )

Ql(\jV—Q)/N ’ 22/NQ$V—2)/N

then there exists a minimizer (u,v) € W for Sy, which, up to a multiplica-
tive constant, is a solution of problem (1.1)).

Proof. Let {(un,vn)} C W be a minimizing sequence for Sy,. Since
{un} and {v,} are bounded in H'(£2) we may assume that {u,} and {v,}
satisfy conditions (i)—(iv) of Proposition By the Sobolev compact em-
beddings we may also assume that wu, — u and v, — v in L?({2) and so
§o Ptn,vy) dz — {, P(u,v) dz. It follows from Proposition [3.1| that

(3.7) 1=\ Q@) H(u,v)dz + > v;Q(x).
(% jeJ
Thus
Sau = J(u,0) + > (ny + 05)
J€J

ZS/\;L(SQ(x)H(u v) d:z:) + Z Su 1/2/2*4— Z 22/N 3/2*

0 ;€8 z; €082
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= S,\M(S Q(x)H (u,v) d:z:) 2

n

+> 8 M+Z Su (Qzy)v)**

J
- HQ(xj)(N—2)/N 22/N Q(a;)(N-2)/N
Ty

> (| Q) H vy o)
n

z5€

Su(Q(z;)vy)** Su (Q(x;)v)**
+ NN T > 22/N  (N-2)/N
IJEQ Q Qm

Since (3.6)) holds we derive from this inequality that

S = SAMG Q(a:)]if(u,v)cl:U)2 - + Soo Z (z)v) %"
2 jeJ

;€012

If at least one of the constants v; # 0, then, since S, > Sy,, we get

1> (S Q(z)H (u,v) d:z:)2 ” +Z (z)v;) )2/%",
Q

JjeJ

This obviously contradicts . Hence v; = 0 for all j € J. This shows
that the pair (u,v) € W is a minimizer for Sy,. Since (Jul,|v|) is also a
minimizer we may assume that v > 0 and v > 0 on {2. Assumptions and
imply that both functions are nonzero. Using the Lagrange multiplier
technique we obtain

(3.8) S(Vqub + VoV{ + Aug + pv¢ — Py(u,v)p — Py(u,v)() dx

2
= r | Q@) (Hu(u,0)¢ + Hy(u,v)() da
ip}

for some k € R and all (¢,() € W. Since
uHy(u,v) +vHy(u,v) = 2*H(u,v) and uP,(u,v)+vP,(u,v) = 2P(u,v),
we derive from (3.8) that x = 2S),/2*. It is easy to check that the pair

(<2*SA~> (o))

is a solution of problem (|1 . "

4. Validity of condition (3.6)). We now formulate conditions guaran-
teeing that (3.6) holds for A > 2b and p > 2b (or at least for some A > 2b
and p > 2b). It is easy to establish this in the case

(4.1) Qu < 2YWN-2Q,,..
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Then we require that

Su
S)\/,,L < —22/NQI(I]1V_2)/N .

Indeed, let M (y) denote the mean curvature of 02 at y € 9£2. It is well-
known that (see [I], [2], [13])

) 2-2Ng _ ANM( )elog(l/e) O(e), N=3
(o [VUey|? da
@7y 2-2NG _ ANM( )e + 0( ) N>5

where Ay is a positive constant depending only on N.

THEOREM 4.1. Let Qy < 22WN=2)Q... Suppose that P and Q satisfy
(Hy), (H2), (P1), (P2), and (3.5). Moreover, assume that Q(z) satisfies
the following condition: there exists y € 012 such that Q(y) = Qm, M(y) >0
and
(4.3) Q(z) — Q)| =o(lz —yl)  for z neary.

Then for every A > 2b and pu > 2b problem admits a solution.

Proof. First we observe that condition (4.3 yields the expansion
} Q@)Uey(@)* do=Qu | U ,A>de+o@»

0 )

We now test Sy, with (soUey,toUe,y) to obtain with the aid of asymptotic
estimates (4.2) the following estimate for Sy,

5 (s§+13) § o [VUey* dz + O(é?) __ Su
M= H (s0,60)2% (Qu §,, UZ, da + 0(€))2/2 ~ 92/N Q2>
for € > 0 sufficiently small. Here we have used the fact that

S Uey(2)?dz = O(€®) and S P(50Ucy, toUcy) dz = O(é?). m

02 n
In the case Qu > 2¥(V=2)Q,,, we first observe that the constant func-
. . _ _ 1 . _
tions s,t given by s =t = AT, Q) d) T satisfy |, Q(x)H(s,s)dz = 1.

So for A > 2b and p > 2b we have
A+ P(1,1) }

) ::‘!2‘[2(f{(1,1)S;zC?(m)(ix)2/2* (H(1,1)), Q) dz)*/*

I (A+u )
= — P(1.1) ).
HL D, 0@ \ 2~ T
So Sy, < SH/Ql(\f[V*Z)/N provided

(4.4) i <A+M—P(1,1)> <51

(H(1.1), Q) dn)?/Z \ ™ 2 QU

J(A
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Let @« = min,cn Q(x). If
01227 7y (N-2)/N
(4.5) O (A1 py1y) < sy (22
H(1,1)2/2 2 Qu
then (4.4]) holds. For a given A > 2b and p > 2b, condition (4.5)) is satisfied
if [£2| is small.

PROPOSITION 4.2. Let Qum > 22WN=2)Q... Suppose that (H), (Hs),
(P1), (P2), (3.4) and (3.5 hold. If for A > 2b and u > 2b, inequality (4.5))
is satisfied, then problem (L.1)) has a solution.

REMARK 4.3. Condition (4.5)) is satisfied in the following two cases:

(i) Let P(u,v) = wv. Then b = 1/2 and P(1,1) = 1 and there exists
09 > 0 such that for A\, u € (1,1 + dp) condition holds.

(ii) Let Pi(u,v) = (u + v)vVu2 4+ v2. Then b = /2, Pi(1,1) = 2¢/2 and
there exists & > 0 such that for A\, u € (2v/2,2v/2 + d1) condition

(4.5) holds.

We now present a more general result under an additional restriction
on P. First, we recall the following result from [7]. Let us consider the
following constrained minimization problem:

Sy = inf{g(\w? + A de s u € HY(Q), | Q@)uf* de = 1},
2 02

where A > 0 is a parameter. Obviously, a minimizer for Sy is, up to a
multiplicative constant, a solution of the Neumann problem

—Au+ X u = Q(z)|ul* "2u in £,
Ou/ov=0 ondf2, u>0 on {2

PROPOSITION 4.4. Let Qu > 22/(N=2)Q,.,. Then there exists a constant
A > 0 such that for every 0 < A < A there exists a minimizer uy > 0 for

S\ and there are no minimizers for X > A. Moreover, Sy < S/QI(\fIVQ)/N for

0<A<Aand Sy =S/QY N for x> A.
PROPOSITION 4.5. Let Qum > 22/(N=2)Q,.. Suppose that P and Q satisfy

(@), (Q2), (P1), (P2), B-4), B.5)-

(i) IfP(so, tg) = 0, then there exists a minimizer for Sy, for 2b < A < A
and 2b < p < A.

(ii) If P(so,to) > 0, then there exists a minimizer for Sy, for 2b < A
and 2b < .

Proof. (i) We may assume that p < A. Let u) be a minimizer for Sy
with 0 < A < A. Testing Sy, with (souy,fouy) we obtain
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(s3+t2) § o |Vur|? do + g, u3 do + ptd § , u3 do
H (s0,t0)(§, Q()|ur|?" d)2/?"
2, 42 2 2
< (sg +1t3) SQ(\VUA\ da:;*— /\u/\Z)Qd*x _ Sy < 151{2 _
H (50, t0) (§, Q) [ux[2" dax)?/ Ay

and the result follows from Theorem [3.2] Part (ii) is now obvious. =

S)\p, <

Proposition [£.5] continues to hold if 2b < u < A < A is replaced by
2b < A< pu< A

5. Final remarks. The quantity Sy, is nondecreasing, that is, if A\ <
Ao and pq < pg, then Sy, < Sy, p,-

LEMMA 5.1. Suppose that the assumptions of Theorem hold. Then
for A > 2b and p > 2b we have

. SH SH
(5.1) S < Soo = mm<Q1(\jV—2)/N’ 22/NQ§]{1V—2)/N>
and

A—00, V—00

Proof. Testing Sy, with (soUey,toUey), where Q(y) = Qm or Qu =

Q(y), we get (5.1). To show (5.2) we argue by contradiction. Since Sy, is
nondecreasing we may assume that Sy, < S, for all A > 2b and p > 20.

Let A\, — oo and p, — oo. By Theorem for each (A, pn) there exists a
minimizer (u,,vy) for Sy, ., . Since

(5% (5o crmen.

n

we have u, — 0, v, — 0 in L?(£2) and {, P(un, vy) dz — 0. It follows from
the concentration-compactness principle (see Proposition [3.1) that

Vun> = 1> ey, Vo> =0 > 050,
jed jed
and

H(up,vy) = v = Zuj&;j
Jj€J
in the sense of measures. The coefficients p;, o; and v; satisfy conditions
(iii) and (iv) of Proposition We then have

1= vQ(x)

jeJ
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and
Soo = N lim Shnpin = ZSOO(VJQ(xj))2/2*~
n—00, Un—00 A
jedJ
Since 2/2* < 1, J consists of one point, say x;. Hence 1 = v;Q(z;) and so
limAn*)OO“u,nHOO S)\,u > S =
If Q(x) =1 on {2, then the system (1.1, in general, may have constant

solutions. However, if A and u are large then minimizers of S, are not
constant.

PROPOSITION 5.2. Suppose that the assumptions of Theorem hold
and let Q(x) = 1 on §2. Then for X > 2b and p > 2b large, Sy, does not
have constant minimizers.

Proof. Suppose that for every A > 2b and p > 2b, Sy, admits a constant
minimizer (s,t). A minimizer (s, t), with s > 0 and ¢t > 0, depends obviously
on A and p. We then have

A
Sy = 92| (232 + §t2> —|R2|P(s,t) and H(s,t) = o

Hence for A > 2b and p > 2b we have

(5.3) Sy > (; — b> s%10| + (’2‘ - b)t2|9|
and

1 * *
(5.4) H(s,t) = l <a(s* +t¥)

for some constant a > 0 independent of s and ¢. Then for large A and p
inequalities (5.3) and (5.4]) contradict the estimate Sy, < Soc. =

PROPOSITION 5.3. Let A = u. Suppose that P and H satisfy the condi-
tions

(5.5) P,(u,v) — Py(u,v) = Pi(u,v)(u—v)

for all (u,v) € Ry x Ry, where Py is a bounded and continuous function on
R4+ xRy, and there exists a nonnegative function Hy on Ry X Ry such that

(5.6) H,(u,v) — Hy(u,v) = Hy(u,v)(u —v)

for all (u,v) € Ry xRy. Then for A > 0 sufficiently large any solution (u,v)
of problem (1.1)) satisfies u = v on 2.

Proof. We observe
—A(u—v)+ (A + Q(x)Hy(u,v) — Pi(u,v))(u—v) =0
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in 2 and for A > 0 sufficiently large A + Q(x)Hi(u,v) — Pi(u,v) > 0 on 2.
Multiplying the above equation by u — v and integrating over {2, we get
S |V (u—v)]*dx + S()\ + Q(z)Hy(u,v) — Py(u,v))(u —v)?dz = 0.
(9] 9]
This obviously yields © = v on {2. =
Both functions P(u,v) = wv and Py (u,v) = (u+ v)vVu? + v? for (u,v) €
R xRy satisfy (5.5). An example of a function satisfying is H(u,v) =
u®v® with 2a = 2* for (u,v) € Ry x Ry
In the case where H(u,v) = u®v”? with 1 < a < 8 and a + 8 = 2*, for
(u,v) € Ry x Ry we have the following result:

PROPOSITION 5.4. Let 0 < A\ < p, H(u,v) = u®v? for (u,v) € Ry xRy,
with 1 < a < B and o + 3 = 2*. Moreover, assume that P(u,v) = uv for
(u,v) € Ry xRy If (u,v) is a solution of problem (L.1), then tu > sv on (2,
where s > 0 and t > 0 are constants satisfying

(5.7) as® 2P = ptP 25 = 1.

Proof. First, we perform a change of unknown functions u = su; and
v = tvy. Then (uy,v1) satisfies the following system of equations:

—Aug + Ay — %Pu(sul,tvl) — OzQ(J,‘)SO‘_2tﬁu‘1x_1v? =0,
—Avy 4 pvy — %Pv(sul,tvl) - BQ(:c)satﬂ_Quf‘vﬁ_l =0.
Selecting s and ¢ so that (5.7)) holds we obtain

t
—A(u1 — U1) + )\(ul — ’Ul) + ()\ — u)vl + P, <iu1, U1> — P, <U1, SU1>

+ Q(z)ud W uy —vy) = 0.

We now observe that

S t S 2 — 12
P, <tU17U1) - P, (ul, Sm) = E(Ul — 1) + UL

Since a < 3, we see that s < t. Hence
t _
—Aug —vp) + ()\ +-+ Q(:U)u‘f‘flvlﬁ 1) (up —wv1) >0 in £2.
s

By the maximum principle w1 > v1 on {2 and the result readily follows. =
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