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CARMICHAEL NUMBERS COMPOSED OF
PRIMES FROM A BEATTY SEQUENCE

BY
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Abstract. Let o, € R be fixed with a > 1, and suppose that « is irrational and
of finite type. We show that there are infinitely many Carmichael numbers composed
solely of primes from the non-homogeneous Beatty sequence B, 3 = (lan + B])5;. We
conjecture that the same result holds true when « is an irrational number of infinite type.

1. Introduction. If N is a prime number, Fermat’s little theorem as-

serts that N
a” =a (mod N) forall a € Z.

Around 1910, Robert Carmichael initiated the study of composite numbers
N with the same property, which are now known as Carmichael numbers. In
1994 the existence of infinitely many Carmichael numbers was first estab-
lished by Alford, Granville and Pomerance [I]. In recent years, using vari-
ants of the method of [I], several arithmetically defined classes of Carmichael
numbers have been shown to contain infinitely many members; see [3] 4} [5,9].

In the present note we consider the problem of constructing Carmichael
numbers that are composed of primes from a Beatty sequence. Recall that
for fixed a, 8 € R the associated non-homogeneous Beatty sequence is the
sequence of integers defined by

Bop = (lan + B])nez.

Here we consider only Beatty sequences B, g with « irrational and a > 1
(note that for any irrational o € (0, 1) the set B, g contains all large natural
numbers, so the construction given in [I] already produces infinitely many
Carmichael numbers composed of primes from B, g). For technical reasons,
we assume that the type 7 = 7(a) of the irrational number « is finite, where

7 = sup{t € R : liminf n'[an] = 0}.
Note that the theorems of Khinchin [10] and of Roth [I3], 14] assert that

7 = 1 for almost all real numbers (in the sense of the Lebesgue measure)
and for all irrational algebraic numbers «, respectively; see also [7} [15].
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THEOREM 1. Let o, € R with a > 1, and suppose that « is irrational
and of finite type. Then there are infinitely many Carmichael numbers com-
posed solely of primes from the Beatty sequence %, 3.

A quantitative version of this result is given in §4} see Theorem [3} To
prove Theorem [I} we show that when « is of finite type, the set of primes
in a Beatty sequence is sufficiently well-distributed over arithmetic progres-
sions that one can construct Carmichael numbers from such primes using
an adaptation of the method of [I]. To this end, we extend various results
and techniques of Banks and Shparlinski [6].

For irrational numbers « of infinite type, the approach described above
fails; however, assuming a certain natural extension of Dickson’s k-tuplet
conjecture (see [8]), the following conjecture can be established conditionally
in many cases.

CONJECTURE. The conclusion of Theorem [l| also holds when « is an
wrrational number of infinite type.

2. Preliminaries

2.1. General notation. The notation [t] is used to denote the distance
from the real number ¢ to the nearest integer; that is,

[t] :Iglel%\t—m (t e R).

We denote by |t] and {t} the greatest integer < ¢ and the fractional part
of t, respectively. We also put e(t) = e2™ for all t € R. As usual, we use
A(+) and ¢(-) to denote the von Mangoldt and Euler functions, respectively.

Throughout the paper, the implied constants in symbols O, < and >
may depend on the parameters a, 3 and € but are absolute otherwise. We
recall that for functions F' and G the notations F' < G, G > F and F =
O(G) are all equivalent to the statement that the inequality |F| < C|G|
holds for some constant C' > 0.

2.2. Discrepancy. Recall that the discrepancy D(M) of a sequence of

(not necessarily distinct) real numbers ay,...,ay € [0,1) is defined by
V(Z, M
(1) p(ar) = sup |VEA )|
Zclo,1)

where the supremum is taken over all intervals Z contained in [0, 1), V(Z, M)
denotes the number of positive integers m < M such that a,, € Z, and |Z|
denotes the length of the interval Z.

For every irrational number +, the sequence of fractional parts ({ny})>2,
is uniformly distributed in [0, 1) (see, e.g., [11, Chapter 1, Example 2.1]). In
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the case that « is of finite type, the following more precise statement holds
(see [11, Chapter 2, Theorem 3.2]).

LEMMA 1. Let v be a fized irrational number of finite type 7. Then,
for every & € R, the discrepancy D~ s(M) of the sequence ({ym + 0})M_,
satisfies the bound

D, s(M) < M=™W (1 — o),
where the function implied by o(-) depends only on .

2.3. Numbers in a Beatty sequence. The following lemma provides
a convenient characterization of the numbers which occur in a Beatty se-
quence %, 3.

LEMMA 2. Let o, 3 € R with a > 1, and put v = o~ %, § = a~1(1 — B).
Then n € Bap if and only if Y(yn + 0) = 1, where 1) = 1, is the periodic
function defined by

) v ={

1 if 0<{t} <al
0 otherwise.

2.4. Sums with the von Mangoldt function. The next statement
is a simplified and weakened version of a theorem of Balog and Perelli [2]
(see also [12]).

LEMMA 3. For an arbitrary real number 60 and coprime integers ¢ and d
with 0 < ¢ < d, we have the uniform bound

> Am)e(On) < (g7 %z + ¢ 22! + 2*/5) (log 2)°
n<x
n=c (mod d)
whenever the inequality |6 — a/q| < 1/x holds with some real x > 1 and
coprime integers a and q > 1.

As an application of Lemma, [3| we derive the following statement, which
is an explicit version of [6, Theorem 4.2].

LEMMA 4. Let v be an irrational number of finite type 7, and fir A €
(0,1) and € > 0. For any coprime integers ¢ and d with 0 < ¢ < d and any
non-zero integer k such that |k| < x4, the bound

A+2+1/7
Z A(n)e(kyn) < & 2%+ 4 245(log 2)?
n<lz
n=c (mod d)

holds, where the implied constant depends only on the parameters o, 3, A
and €.
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Proof. Tt suffices to prove this for e € (0,1/3). Put

A+1 T(l1+¢ A+1
- 1+—E/T, :1(——27')’ b= 1+—E/T+2€'
Note that B € (0,1) (since 7 > 1 for an irrational v), C' € (7,27), and
A+1
D:B+2E>B(1+5):m,
which implies that
(3) —A+C/D>1-D.

Since C' € (1,27) and ~ is of type 7, we have
(4) [ym] > colm|~¢  (m € Z, m #0)

for some number ¢y > 0 that depends only on 7 and .
Let a/q be the convergent in the continued fraction expansion of kv
which has the largest denominator ¢ not exceeding ¢ L2D: then
ky ——

(5) .

Multiplying by ¢ and using we have

cor P > |gky — a| > [qky] > colgk| €.
Since |k| < 24 it follows that ¢ > z—4+P/C . By we have g > coz' =P for
all sufficiently large x, hence by we see that |ky —a/q| < 1/z. Applying
Lemma |3| with 0 = k~, and taking into account our choice of D and the

inequalities coz' P < ¢ < calch, we derive the stated bound. =

a 1 c
< -2

T oqcptaP qa?

3. Beatty primes in arithmetic progressions. For the remainder of
the paper, let a, 8 € R be fixed with a > 1, and assume that « is irrational.
The following statement provides an explicit version of [6, Theorem 5.4].

THEOREM 2. If « is of finite type T = 7(«v), then for any fized € > 0 we
have

(6) Z A(TL) = l Z A(n) + O(xl_l/(4T+2)+€)’
n<x,n€HBq 3 @ n<z
n=c (mod d) n=c (mod d)

where the implied constant depends only on the parameters «, 8 and €.

Proof. Let F(z;d, c) denote the left side of (6], and let 1) = 1), be defined
by . In view of Lemma [2| we have

Flade)= Y Almpbtm+9),
nzcrzi:f)dd)
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where v = a~! and § = a~!(1 — ). Note that a and v are of the same type,
that is, 7(a) = 7(7).

By a classical result of Vinogradov (see [16, Chapter I, Lemma 12]), for
any A such that 0 < A < % and A < %min{v7 1 —~}, there is a real-valued
function ¥ with the following properties:

(i) ¥ is periodic with period one;

1) 0<Ww(t) <1forallteR;

YU()=y(t)if A<{t}<~yv—-—Aorify+A<{t} <1- A4,

) U(t) = ez 9(k)e(kt) for all t € R, where g(0) = v, and the other
Fourier coefficients satisfy the uniform bound

(i
(iii

(iv

(7) g(k) < min{[k[ !, [K]72ATT} (K #0).

From properties (i)—(iii) it follows that

(8) F(zd,e)= Y. An)¥(yn+6)+ O(V(T,z)logx),
nchiggdd)

where V(Z, x) is the number of positive integers n < x such that

{m+06}€Z=00,)U(y—-A,vy+A)U(1-A1).
Since |Z| = 44, it follows from the definition (1)) and Lemma [I| that
9) V(Z,z) < Az + 2770 (2 - o0).

Now let K > A~! be a large real number, and let ¥x be the trigonometric
polynomial defined by

(10) we(t) = 3 g(k)e(kt).
|k|<K

From it is clear that the estimate

(11) U(t) =Wk(t) + O(K A7

holds uniformly for all ¢ € R. Combining with and taking into
account @, we derive that

F(z;d,c) = Z AP (yn+0)+O(Axlog x 42~V L KT A ).

n<x
n=c (mod d)

For fixed A € (0,1) (to be specified below) we now set
A=z"? and K ="
By the definition it follows that
F(zide)= Y glk)e(kd) Y A(n)e(kyn)+O(x! 1/ 4! =4/2F),

Ik <z n<z
n=c (mod d)
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Using Lemma 4| together with we see that

> glke(kd) > Ame(kyn) < > k[T D A(n)e(kyn)

k| <o n<z k| <zt n<z
k#£0 n=c (mod d) k#£0 n=c (mod d)
A4241/7

<z 2 4 g5 (logx)t.

Since ¢g(0) = v we therefore have

A4241/7
33‘ d, C =~ Z /1 CL‘ 2%2/r +€+$4/5+5+$1 1/T+5_|_l,1 A/2+5)

n<x
n=c (mod d)

Taking A = 1/(27 + 1) we obtain the desired estimate (). =

4. Construction of Carmichael numbers. In this section, we out-
line our proof of Theorem [1} We shall be brief since our construction of
Carmichael numbers composed of primes from the Beatty sequence %, g
closely parallels (and relies on) the construction of “ordinary” Carmichael
numbers given in [I]. Here, we discuss only those modifications that are
needed to establish Theorem [l

Let &7 denote the set of all prime numbers, and set &, 3 = & N B, 3-
The underlying idea behind our proof of Theorem [I}is to show that &2, 3 is
sufficiently well-distributed over arithmetic progressions so that, following
the method of [1], the primes used to form Carmichael numbers can all be
drawn from &, g rather than &2. Unfortunately, this idea appears only to
succeed in the case that « is of finite type, which we now assume for the
remainder of this section.

Let 7 = 7(a) < 0o be the type of a. From the standard estimate

> An) =) logp+O(z'/?)

n<x p<x
together with Theorem [2] it follows that

1
> logp-— o > 10gp’ < g THVUTEEE (1> 2y (a, Bre)).

p<T, pEXBa,p psz
p=c (mod d) p=c (mod d)

For any modulus d < (404)*1:61/ (47+2)=¢ the right side of this inequality does
not exceed x/(4ap(d)); therefore, applying [1, Theorem 2.1] and taking into
account the above inequality, we derive the following statement, which plays
a role in our construction analogous to that played by [I, Theorem 2.1].

LEMMA 5. For every B € (0, ﬁ) there exist numbers ng > 0, x2(B)
and Dp such that for all x > xo(B) there is a set Dp(x) consisting of at
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most Dp integers such that

Z logp — T < 7
p<z, pEHB. 3 O“P(d> 20“P(d)
p=c (mod d)
whenever d is not divisible by any element of Dp(x), 1 < d < P, and c is
coprime to d. Furthermore, every number in Dp(x) exceeds logx, and all,
but at most one, exceed x"B.

We remark that, in the statement of Lemmal[5| np, z2(B), D and Dp(x)
all depend on the parameters o and 3, but we have suppressed this from
the notation for the sake of clarity. Similarly, z3(B) depends on a and 3 in
the statement of Lemma 6] below.

As an application of Lemma [f] we deduce the following statement, which
extends [I, Theorem 3.1] to the setting of primes in a Beatty sequence.

LEMMA 6. Suppose that B € (0, ﬁ) There exists a number x3(B)
such that if © > x3(B) and L is a squarefree integer not divisible by any
prime exceeding £'"B)/2 and for which D primeqir 1/0 < (1 = B)/(32a),
then there is a positive integer k < x'~B with ged(k, L) = 1 such that

#{d|L:dk+1<xz andp=dk+1 is a prime in B, 3}
2—DB—2

>
~ alogx

#{d|L:1<d<=zP}.

Sketch of proof. Let m(z;d, a) [resp. mq g(2;d, a)] be the number of primes
[resp. primes in &, 5] up to x that belong to the arithmetic progression
a mod d. Using Lemmal[5| we can replace the lower bound [II, Equation (3.2)]
with the bound

=B.d,1) > dr'
dz'~B, I
Tap(dr”5d, 1) = 2a o(d)log x
Also, since 7, g(z;d, a) never exceeds m(x;d,a), the upper bound that fol-
lows [1, equation (3.2)] can be replaced with the bound

8 dz'—B
dz'~P;dg,1) < :
Tl ) S G0 B o(d) log e
Taking into account the inequality ;00 1/9 < (1—B)/(32c), the proof
is completed using arguments given in the proof of [I, Theorem 3.1]. =

Let 7(x) be the number of primes p < z, and let 7(z,y) be the number
of those for which p — 1 is free of prime factors exceeding y. As in [I], we
denote by £ the set of numbers F in the range 0 < F < 1 for which there
exist numbers z4(F), v(£) > 0 such that

m(z,z' ") > y(E)n ()
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for all x > z4(F). With only a very slight modification to the proof of
[T, Theorem 4.1], using Lemma |§| in place of [I, Theorem 3.1], we derive the
following quantitative version of Theorem

THEOREM 3. For each E € £, B € (0, ﬁ) and € > 0, there is a
number x4 = x4(e, B, F, B, &) such that for any x > x4, there are at least
2EB=¢ Carmichael numbers up to x composed solely of primes from Lo 3
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