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CARMICHAEL NUMBERS COMPOSED OF
PRIMES FROM A BEATTY SEQUENCE

BY

WILLIAM D. BANKS and AARON M. YEAGER (Columbia, MO)

Abstract. Let α, β ∈ R be fixed with α > 1, and suppose that α is irrational and
of finite type. We show that there are infinitely many Carmichael numbers composed
solely of primes from the non-homogeneous Beatty sequence Bα,β = (bαn+ βc)∞n=1. We
conjecture that the same result holds true when α is an irrational number of infinite type.

1. Introduction. If N is a prime number, Fermat’s little theorem as-
serts that

aN ≡ a (mod N) for all a ∈ Z.

Around 1910, Robert Carmichael initiated the study of composite numbers
N with the same property, which are now known as Carmichael numbers. In
1994 the existence of infinitely many Carmichael numbers was first estab-
lished by Alford, Granville and Pomerance [1]. In recent years, using vari-
ants of the method of [1], several arithmetically defined classes of Carmichael
numbers have been shown to contain infinitely many members; see [3, 4, 5, 9].

In the present note we consider the problem of constructing Carmichael
numbers that are composed of primes from a Beatty sequence. Recall that
for fixed α, β ∈ R the associated non-homogeneous Beatty sequence is the
sequence of integers defined by

Bα,β = (bαn+ βc)n∈Z.

Here we consider only Beatty sequences Bα,β with α irrational and α > 1
(note that for any irrational α ∈ (0, 1) the set Bα,β contains all large natural
numbers, so the construction given in [1] already produces infinitely many
Carmichael numbers composed of primes from Bα,β). For technical reasons,
we assume that the type τ = τ(α) of the irrational number α is finite, where

τ = sup{t ∈ R : lim inf
n→∞

ntJαnK = 0}.

Note that the theorems of Khinchin [10] and of Roth [13, 14] assert that
τ = 1 for almost all real numbers (in the sense of the Lebesgue measure)
and for all irrational algebraic numbers α, respectively; see also [7, 15].
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Theorem 1. Let α, β ∈ R with α > 1, and suppose that α is irrational
and of finite type. Then there are infinitely many Carmichael numbers com-
posed solely of primes from the Beatty sequence Bα,β.

A quantitative version of this result is given in §4; see Theorem 3. To
prove Theorem 1, we show that when α is of finite type, the set of primes
in a Beatty sequence is sufficiently well-distributed over arithmetic progres-
sions that one can construct Carmichael numbers from such primes using
an adaptation of the method of [1]. To this end, we extend various results
and techniques of Banks and Shparlinski [6].

For irrational numbers α of infinite type, the approach described above
fails; however, assuming a certain natural extension of Dickson’s k-tuplet
conjecture (see [8]), the following conjecture can be established conditionally
in many cases.

Conjecture. The conclusion of Theorem 1 also holds when α is an
irrational number of infinite type.

2. Preliminaries

2.1. General notation. The notation JtK is used to denote the distance
from the real number t to the nearest integer; that is,

JtK = min
n∈Z
|t− n| (t ∈ R).

We denote by btc and {t} the greatest integer ≤ t and the fractional part
of t, respectively. We also put e(t) = e2πit for all t ∈ R. As usual, we use
Λ(·) and ϕ(·) to denote the von Mangoldt and Euler functions, respectively.

Throughout the paper, the implied constants in symbols O, � and �
may depend on the parameters α, β and ε but are absolute otherwise. We
recall that for functions F and G the notations F � G, G � F and F =
O(G) are all equivalent to the statement that the inequality |F | ≤ C|G|
holds for some constant C > 0.

2.2. Discrepancy. Recall that the discrepancy D(M) of a sequence of
(not necessarily distinct) real numbers a1, . . . , aM ∈ [0, 1) is defined by

(1) D(M) = sup
I⊆[0,1)

∣∣∣∣V (I,M)
M

− |I|
∣∣∣∣,

where the supremum is taken over all intervals I contained in [0, 1), V (I,M)
denotes the number of positive integers m ≤ M such that am ∈ I, and |I|
denotes the length of the interval I.

For every irrational number γ, the sequence of fractional parts ({nγ})∞n=1

is uniformly distributed in [0, 1) (see, e.g., [11, Chapter 1, Example 2.1]). In
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the case that γ is of finite type, the following more precise statement holds
(see [11, Chapter 2, Theorem 3.2]).

Lemma 1. Let γ be a fixed irrational number of finite type τ . Then,
for every δ ∈ R, the discrepancy Dγ,δ(M) of the sequence ({γm + δ})Mm=1

satisfies the bound

Dγ,δ(M) ≤M−1/τ+o(1) (M →∞),

where the function implied by o(·) depends only on γ.

2.3. Numbers in a Beatty sequence. The following lemma provides
a convenient characterization of the numbers which occur in a Beatty se-
quence Bα,β.

Lemma 2. Let α, β ∈ R with α > 1, and put γ = α−1, δ = α−1(1− β).
Then n ∈ Bα,β if and only if ψ(γn + δ) = 1, where ψ = ψα is the periodic
function defined by

(2) ψ(t) =
{

1 if 0 < {t} ≤ α−1,
0 otherwise.

2.4. Sums with the von Mangoldt function. The next statement
is a simplified and weakened version of a theorem of Balog and Perelli [2]
(see also [12]).

Lemma 3. For an arbitrary real number θ and coprime integers c and d
with 0 ≤ c < d, we have the uniform bound∑

n≤x
n≡c (mod d)

Λ(n)e(θn)� (q−1/2x+ q1/2x1/2 + x4/5)(log x)3

whenever the inequality |θ − a/q| ≤ 1/x holds with some real x > 1 and
coprime integers a and q ≥ 1.

As an application of Lemma 3 we derive the following statement, which
is an explicit version of [6, Theorem 4.2].

Lemma 4. Let γ be an irrational number of finite type τ , and fix A ∈
(0, 1) and ε > 0. For any coprime integers c and d with 0 ≤ c < d and any
non-zero integer k such that |k| ≤ xA, the bound∑

n≤x
n≡c (mod d)

Λ(n)e(kγn)� x
A+2+1/τ

2+2/τ
+ε + x4/5(log x)3

holds, where the implied constant depends only on the parameters α, β, A
and ε.
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Proof. It suffices to prove this for ε ∈ (0, 1/3). Put

B =
A+ 1

1 + 1/τ
, C =

τ(1 + ε)
1− ετ

, D =
A+ 1

1 + 1/τ
+ 2ε.

Note that B ∈ (0, 1) (since τ ≥ 1 for an irrational γ), C ∈ (τ, 2τ), and

D = B + 2ε > B(1 + ε) =
A+ 1

1 + 1/C
,

which implies that

(3) −A+ C/D > 1−D.

Since C ∈ (τ, 2τ) and γ is of type τ , we have

(4) JγmK ≥ c0|m|−C (m ∈ Z, m 6= 0)

for some number c0 > 0 that depends only on τ and ε.
Let a/q be the convergent in the continued fraction expansion of kγ

which has the largest denominator q not exceeding c−1
0 xD; then

(5)
∣∣∣∣kγ − a

q

∣∣∣∣ ≤ 1
qc−1

0 xD
=

c0
qxD

.

Multiplying by q and using (4) we have

c0x
−D ≥ |qkγ − a| ≥ JqkγK ≥ c0|qk|−C .

Since |k| ≤ xA it follows that q ≥ x−A+D/C . By (3) we have q ≥ c0x1−D for
all sufficiently large x, hence by (5) we see that |kγ − a/q| ≤ 1/x. Applying
Lemma 3 with θ = kγ, and taking into account our choice of D and the
inequalities c0x1−D ≤ q ≤ c−1

0 xD, we derive the stated bound.

3. Beatty primes in arithmetic progressions. For the remainder of
the paper, let α, β ∈ R be fixed with α > 1, and assume that α is irrational.
The following statement provides an explicit version of [6, Theorem 5.4].

Theorem 2. If α is of finite type τ = τ(α), then for any fixed ε > 0 we
have

(6)
∑

n≤x, n∈Bα,β

n≡c (mod d)

Λ(n) =
1
α

∑
n≤x

n≡c (mod d)

Λ(n) +O(x1−1/(4τ+2)+ε),

where the implied constant depends only on the parameters α, β and ε.

Proof. Let F (x; d, c) denote the left side of (6), and let ψ = ψα be defined
by (2). In view of Lemma 2 we have

F (x; d, c) =
∑
n≤x

n≡c (mod d)

Λ(n)ψ(γn+ δ),
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where γ = α−1 and δ = α−1(1−β). Note that α and γ are of the same type,
that is, τ(α) = τ(γ).

By a classical result of Vinogradov (see [16, Chapter I, Lemma 12]), for
any ∆ such that 0 < ∆ < 1

8 and ∆ ≤ 1
2 min{γ, 1− γ}, there is a real-valued

function Ψ with the following properties:

(i) Ψ is periodic with period one;
(ii) 0 ≤ Ψ(t) ≤ 1 for all t ∈ R;

(iii) Ψ(t) = ψ(t) if ∆ ≤ {t} ≤ γ −∆ or if γ +∆ ≤ {t} ≤ 1−∆;
(iv) Ψ(t) =

∑
k∈Z g(k)e(kt) for all t ∈ R, where g(0) = γ, and the other

Fourier coefficients satisfy the uniform bound

(7) g(k)� min{|k|−1, |k|−2∆−1} (k 6= 0).

From properties (i)–(iii) it follows that

(8) F (x; d, c) =
∑
n≤x

n≡c (mod d)

Λ(n)Ψ(γn+ δ) +O
(
V (I, x) log x

)
,

where V (I, x) is the number of positive integers n ≤ x such that

{γn+ δ} ∈ I = [0, ∆) ∪ (γ −∆, γ +∆) ∪ (1−∆, 1).

Since |I| = 4∆, it follows from the definition (1) and Lemma 1 that

(9) V (I, x)� ∆x+ x1−1/τ+o(1) (x→∞).

Now letK ≥ ∆−1 be a large real number, and let ΨK be the trigonometric
polynomial defined by

(10) ΨK(t) =
∑
|k|≤K

g(k)e(kt).

From (7) it is clear that the estimate

(11) Ψ(t) = ΨK(t) +O(K−1∆−1)

holds uniformly for all t ∈ R. Combining (11) with (8) and taking into
account (9), we derive that

F (x; d, c) =
∑
n≤x

n≡c (mod d)

Λ(n)ΨK(γn+δ)+O(∆x log x+x1−1/τ+ε+K−1∆−1x).

For fixed A ∈ (0, 1) (to be specified below) we now set

∆ = x−A/2 and K = xA.

By the definition (10) it follows that

F (x; d, c) =
∑
|k|≤xA

g(k)e(kδ)
∑
n≤x

n≡c (mod d)

Λ(n)e(kγn)+O(x1−1/τ+ε+x1−A/2+ε).
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Using Lemma 4 together with (7) we see that∑
|k|≤xA
k 6=0

g(k)e(kδ)
∑
n≤x

n≡c (mod d)

Λ(n)e(kγn)�
∑
|k|≤xA
k 6=0

|k|−1

∣∣∣∣ ∑
n≤x

n≡c (mod d)

Λ(n)e(kγn)
∣∣∣∣

� x
A+2+1/τ

2+2/τ
+ε + x4/5(log x)4.

Since g(0) = γ we therefore have

F (x; d, c) = γ
∑
n≤x

n≡c (mod d)

Λ(n) +O
(
x
A+2+1/τ

2+2/τ
+ε + x4/5+ε + x1−1/τ+ε + x1−A/2+ε

)
.

Taking A = 1/(2τ + 1) we obtain the desired estimate (6).

4. Construction of Carmichael numbers. In this section, we out-
line our proof of Theorem 1. We shall be brief since our construction of
Carmichael numbers composed of primes from the Beatty sequence Bα,β

closely parallels (and relies on) the construction of “ordinary” Carmichael
numbers given in [1]. Here, we discuss only those modifications that are
needed to establish Theorem 1.

Let P denote the set of all prime numbers, and set Pα,β = P ∩Bα,β.
The underlying idea behind our proof of Theorem 1 is to show that Pα,β is
sufficiently well-distributed over arithmetic progressions so that, following
the method of [1], the primes used to form Carmichael numbers can all be
drawn from Pα,β rather than P. Unfortunately, this idea appears only to
succeed in the case that α is of finite type, which we now assume for the
remainder of this section.

Let τ = τ(α) <∞ be the type of α. From the standard estimate∑
n≤x

Λ(n) =
∑
p≤x

log p+O(x1/2)

together with Theorem 2, it follows that∣∣∣∣ ∑
p≤x, p∈Bα,β

p≡c (mod d)

log p− 1
α

∑
p≤x

p≡c (mod d)

log p
∣∣∣∣ ≤ x1−1/(4τ+2)+ε (x ≥ x1(α, β, ε)).

For any modulus d ≤ (4α)−1x1/(4τ+2)−ε the right side of this inequality does
not exceed x/(4αϕ(d)); therefore, applying [1, Theorem 2.1] and taking into
account the above inequality, we derive the following statement, which plays
a role in our construction analogous to that played by [1, Theorem 2.1].

Lemma 5. For every B ∈
(
0, 1

4τ+2

)
there exist numbers ηB > 0, x2(B)

and DB such that for all x ≥ x2(B) there is a set DB(x) consisting of at
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most DB integers such that∣∣∣∣ ∑
p≤x, p∈Bα,β

p≡c (mod d)

log p− x

αϕ(d)

∣∣∣∣ ≤ x

2αϕ(d)

whenever d is not divisible by any element of DB(x), 1 ≤ d ≤ xB, and c is
coprime to d. Furthermore, every number in DB(x) exceeds log x, and all,
but at most one, exceed xηB .

We remark that, in the statement of Lemma 5, ηB, x2(B), DB and DB(x)
all depend on the parameters α and β, but we have suppressed this from
the notation for the sake of clarity. Similarly, x3(B) depends on α and β in
the statement of Lemma 6 below.

As an application of Lemma 5 we deduce the following statement, which
extends [1, Theorem 3.1] to the setting of primes in a Beatty sequence.

Lemma 6. Suppose that B ∈
(
0, 1

4τ+2

)
. There exists a number x3(B)

such that if x ≥ x3(B) and L is a squarefree integer not divisible by any
prime exceeding x(1−B)/2 and for which

∑
prime q|L 1/q ≤ (1 − B)/(32α),

then there is a positive integer k ≤ x1−B with gcd(k, L) = 1 such that

#{d |L : dk + 1 ≤ x and p = dk + 1 is a prime in Bα,β}

≥ 2−DB−2

α log x
#{d |L : 1 ≤ d ≤ xB}.

Sketch of proof. Let π(x; d, a) [resp. πα,β(x; d, a)] be the number of primes
[resp. primes in Pα,β] up to x that belong to the arithmetic progression
a mod d. Using Lemma 5 we can replace the lower bound [1, Equation (3.2)]
with the bound

πα,β(dx1−B; d, 1) ≥ 1
2α

dx1−B

ϕ(d) log x
.

Also, since πα,β(x; d, a) never exceeds π(x; d, a), the upper bound that fol-
lows [1, equation (3.2)] can be replaced with the bound

πα,β(dx1−B; dq, 1) ≤ 8
q(1−B)

dx1−B

ϕ(d) log x
.

Taking into account the inequality
∑

prime q|L 1/q ≤ (1−B)/(32α), the proof
is completed using arguments given in the proof of [1, Theorem 3.1].

Let π(x) be the number of primes p ≤ x, and let π(x, y) be the number
of those for which p − 1 is free of prime factors exceeding y. As in [1], we
denote by E the set of numbers E in the range 0 < E < 1 for which there
exist numbers x4(E), γ(E) > 0 such that

π(x, x1−E) ≥ γ(E)π(x)
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for all x ≥ x4(E). With only a very slight modification to the proof of
[1, Theorem 4.1], using Lemma 6 in place of [1, Theorem 3.1], we derive the
following quantitative version of Theorem 1.

Theorem 3. For each E ∈ E, B ∈
(
0, 1

4τ+2

)
and ε > 0, there is a

number x4 = x4(α, β,E,B, ε) such that for any x ≥ x4, there are at least
xEB−ε Carmichael numbers up to x composed solely of primes from Pα,β.

Acknowledgements. The authors thank the referee for carefully read-
ing the original manuscript and for several helpful comments and sugges-
tions.

REFERENCES

[1] W. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael
numbers, Ann. of Math. (2) 139 (1994), 703–722.

[2] A. Balog and A. Perelli, Exponential sums over primes in an arithmetic progression,
Proc. Amer. Math. Soc. 93 (1985), 578–582.

[3] W. Banks, Carmichael numbers with a square totient, Canad. Math. Bull. 52 (2009),
3–8.

[4] —, Carmichael numbers with a totient of the form a2 + nb2, Monatsh. Math., to
appear.

[5] W. Banks and C. Pomerance, On Carmichael numbers in arithmetic progressions,
J. Austral. Math. Soc. 88 (2010), 313–321.

[6] W. Banks and I. Shparlinski, Prime numbers with Beatty sequences, Colloq. Math.
115 (2009), 147–157.

[7] Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Math. 160,
Cambridge Univ. Press, Cambridge, 2004.

[8] L. Dickson, A new extension of Dirichlet’s theorem on prime numbers, Messenger
of Math. 33 (1904), 155–161.

[9] J. Grantham, There are infinitely many Perrin pseudoprimes, J. Number Theory
130 (2010), 1117–1128.

[10] A. Khintchine [A. Khinchin], Zur metrischen Theorie der diophantischen Approxi-
mationen, Math. Z. 24 (1926), 706–714.

[11] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure Appl.
Math., Wiley-Interscience, New York, 1974.

[12] A. Lavrik, Analytic method of estimates of trigonometric sums by the primes of an
arithmetic progression, Dokl. Akad. Nauk SSSR 248 (1979), 1059–1063 (in Russian);
English transl.: Soviet Math. Dokl. 20 (1979), 1121–1124.

[13] K. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955),
1–20.

[14] —, Corrigendum to [13], ibid. 2 (1955), 168.
[15] W. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer,

Berlin, 1980.
[16] I. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers,

Dover Publ., Mineola, NY, 2004.

http://dx.doi.org/10.2307/2118576
http://dx.doi.org/10.1090/S0002-9939-1985-0776182-0
http://dx.doi.org/10.4153/CMB-2009-001-7
http://dx.doi.org/10.1017/S1446788710000169
http://dx.doi.org/10.4064/cm115-2-1
http://dx.doi.org/10.1016/j.jnt.2009.11.008
http://dx.doi.org/10.1007/BF01216806
http://dx.doi.org/10.1112/S0025579300000644


CARMICHAEL NUMBERS 137

William D. Banks, Aaron M. Yeager
Department of Mathematics
University of Missouri
Columbia, MO 65211, U.S.A.
E-mail: bankswd@missouri.edu

amydm6@mail.missouri.edu

Received 30 July 2011;
revised 25 October 2011 (5529)




	Introduction
	Preliminaries
	General notation
	Discrepancy
	Numbers in a Beatty sequence
	Sums with the von Mangoldt function

	Beatty primes in arithmetic progressions
	Construction of Carmichael numbers

