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LIMITING BEHAVIORS OF THE BROWNIAN MOTIONS
ON HYPERBOLIC SPACES

BY

H. MATSUMOTO (Nagoya)

Abstract. Using explicit representations of the Brownian motions on hyperbolic
spaces, we show that their almost sure convergence and the central limit theorems for
the radial components as time tends to infinity can be easily obtained. We also give a
straightforward strategy to obtain explicit expressions for the limit distributions or Pois-
son kernels.

1. Introduction. Hyperbolic spaces are non-compact Riemannian sym-
metric spaces of rank one. They are classified into four types: the real one
Hn
r = SO0(1, n)/SO(n), the complex one Hn

c = SU(1, n)/SU(n), the quater-
nionic one Hn

q = Sp(1, n)/(Sp(1)×Sp(n)) and the Cayley hyperbolic plane.
In this article we consider the limiting behaviors of the Brownian motions,
that is, the diffusion processes generated by the Laplace–Beltrami operators,
on the first three types of hyperbolic spaces.

Hyperbolic spaces have negative bounded curvature. Brownian motions
on negatively curved manifolds have been studied by many authors in con-
nection with the so-called Liouville property, and it is well known that they
tend to infinity almost surely as time tends to infinity. See, e.g., Kifer [18].
Needless to say, the limit distributions are given by the Poisson kernels.

On the other hand, the Brownian motions on Riemannian symmetric
spaces of non-compact type have also been studied by several authors since
the work by Malliavin–Malliavin [22]. Among them, we refer to Babillot [3],
where a central limit theorem for the radial components of the Brownian
motions has been shown.

The purpose of this article is to show that the well-known properties
of the Brownian motions on the manifolds mentioned above are easily and
directly obtained for hyperbolic spaces if we adopt the upper half space
realizations of the spaces instead of the ball models. Moreover, we obtain
explicit expressions for the Poisson kernels, which are known in harmonic
analysis, in a probabilistic manner as the densities of the limit distributions.
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We will see that the same procedure may be applied to the three types
of spaces, including Hn

q whose geometry is complicated and has not been
studied in detail yet. First, by solving the corresponding stochastic differen-
tial equations, we represent the Brownian motions in closed forms as Wiener
functionals. Then their almost sure convergence is readily seen from the rep-
resentations. Moreover, by inserting the representations into the formulae
for the distance functions, we can also show the central limit theorems for
the radial components.

For the computations of the limiting distributions or Poisson kernels,
we need some results on the distributions of the random variables defined
by perpetual (infinite) integrals over time of the usual geometric Brownian
motions with negative drifts. These auxiliary results are given in the Ap-
pendix; by using them, we compute the Fourier transforms of the limiting
distributions and the inverse transforms in direct ways.

2. Real hyperbolic spaces. For n ≥ 1, let Hn+1
r be the upper half

space in Rn+1,

Hn+1
r = {z = (x, y) = (x1, . . . , xn, y) : x ∈ Rn, y > 0},

endowed with the Riemannian metric ds2 = y−2(dx2 + dy2). The volume
element is given by y−n−1dxdy, and the distance function d(z, z′) is given
by

(2.1) cosh(d(z, z′)) =
|x− x′|2 + y2 + (y′)2

2yy′
,

in an obvious notation, where |x| is the Euclidean norm. The Laplace–
Beltrami operator is written as

∆r = y2
n∑
j=1

∂2

∂x2
j

+ y2 ∂2

∂y2
− (n− 1)y

∂

∂y
.

For details on the fundamental objects on Hn+1
r , see, e.g., Davies [7].

We first explicitly express the Brownian motion on Hn+1
r as a Wiener

functional by solving the corresponding stochastic differential equation. Let
(W (n+1),B(n+1), P (n+1)) be the (n+ 1)-dimensional standard Wiener space
with the canonical filtration {B(n+1)

s }t≥0. Corresponding to the rectangular
coordinates, we denote an element of W (n+1) by

(w(·), B(·)) or (w1(·), . . . , wn(·), B(·)),
which is an Rn+1-valued continuous function on [0,∞) with wi(0)=B(0)=0.
Then the Brownian motion on Hn+1

r , the diffusion process with infinitesimal
generator ∆r/2, is obtained by solving the following system of stochastic
differential equations defined on (W (n+1),B(n+1), P (n+1)) (see [17]):
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dXi(t) = Y (t)dwi(t), i = 1, . . . , n,

dY (t) = Y (t)dB(t)− n− 1
2

Y (t)dt.

The unique solution Zz = {(X(t, z), Y (t, z))}t≥0, z = (x, y), satisfying X(0)
= x and Y (0) = y is given by

Xi(t, z) = xi +
t�

0

y exp(B(−µ)
s )dwi(s), Y (t, z) = y exp(B(−µ)

t ),

where B(−µ)
s = B(s) − µs and µ = n/2. {Y (t, z)} is the usual geometric

Brownian motion with negative drift and it is easy to see that Zz(t) converges
to the boundary as t→∞ almost surely.

Now we consider the exponential functional A(−µ)
t given by

A
(−µ)
t =

t�

0

exp(2B(−µ)
s ) ds.

Then it is easy to obtain the identity in law

(X(t, z), Y (t, z))
(law)
= (x+ yw

(
A

(−µ)
t ), y exp(B(−µ)

t ))

for fixed t > 0.
An explicit expression for the density of the distribution of (A(−µ)

t , B
(−µ)
t )

was given by Yor [29]. By using it, Gruet [14] has shown an expression for the
heat kernel of the semigroup generated by ∆r. For the classical expression,
see Davies [7]. We also refer to [2, 16, 23, 25] for related topics.

We combine the identity in law with formula (2.1) to get

cosh(d(Z(t, z), z))
(law)
=

1
2
{|w(A(−µ)

t )|2 + 1} exp(−B(−µ)
t ) +

1
2

exp(B(−µ)
t ).

Since A(−µ)
t converges as t→∞ and log(cosh(u)) = u · (1 + o(1)) as u→∞,

we readily get the following central limit theorem.

Theorem 2.1. The probability distribution of t−1/2(d(Z(t, z), z)−nt/2)
converges weakly as t→∞ to the standard normal distribution.

Recall the formula ∆rd(z0, ·) = n coth d(z0, ·). Then, by Itô’s formula,

d(Zz(t), z) =
n∑
i=1

t�

0

1
sinh d(z, Zz(s))

Xi
z(s)− x
y

dwis

+
t�

0

1
sinh d(z, Zz(s))

(
Yz(s)
y
− cosh d(z, Zz(s))

)
dB(s)

+
n

2

�
coth d(z, Zz(s)) ds,

from which the theorem may also be deduced.
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Next we recall Dufresne’s identity (Theorem A.1 in the Appendix), A(−µ)
∞

(law)
= (2γµ)−1 for a gamma random variable γµ with parameter µ. Then, for
a bounded continuous function ϕ on Rn, we obtain

E[ϕ(X(t, z))] = E[ϕ(x+ yw(A(−n/2)
t ))]

→
∞�

0

1
Γ (n/2)

t(n/2)−1e−t dt
�

Rn
ϕ(x+ η)

1
(2πy2/2t)n/2

exp
(
− |η|2

2y2/2t

)
dη

=
�

Rn
ϕ(ξ) dξ

∞�

0

1
Γ (n/2)

1
πn/2yn

tn−1 exp
(
−y

2 + |ξ − x|2

y2
t

)
dt

=
�

Rn
ϕ(ξ)pn+1(ξ − x, y) dξ,

where

pn+1(ξ, y) =
2n−1Γ ((n+ 1)/2)

π(n+1)/2

yn

(y2 + |ξ|2)n
, ξ ∈ Rn,

and we have used the duplication formula for the gamma function.
Hence we have proved the following.

Theorem 2.2. For any (x, y) ∈ Hn+1
r , X(t, z) converges almost surely

as t → ∞, and the density of the limit distribution is the Poisson kernel
pn+1(ξ − x, y). In particular, when n = 1, the limit distribution is Cauchy.

We end this section by a remark on the Poisson kernel in Euclidean spaces
and on Fourier transforms. The Poisson kernel on Rn+1 of the hyperplane
{y = 0} is given by

qn+1(ξ, y) =
Γ ((n+ 1)/2)
π(n+1)/2

y

(y2 + |ξ|2)(n+1)/2
,

which is different from pn+1(ξ, y) for n ≥ 2. The Brownian motion on the
hyperbolic plane H2 is a time change of the 2-dimensional standard Brownian
motion, and the Poisson kernels coincide.

It is well known that the Fourier transform of qn+1(ξ, y) in ξ is the simple
exponential function, �

Rn
e
√
−1 〈λ,ξ〉qn+1(ξ, y) dξ = e−y|λ|.

For hyperbolic spaces, we can show, for example,

ϕ3(λ; y) ≡
�

R2

e
√
−1 〈λ,ξ〉p3(ξ, y) dξ = y|λ|K1(y|λ|),

ϕ4(λ; y) ≡
�

R3

e
√
−1 〈λ,ξ〉p4(ξ, y) dξ = (y|λ|+ 1)e−y|λ|,
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where K1 is the modified Bessel function. By the strong Markov property,
we can easily show that the distribution of X(τa) for the first hitting time τa
of the Brownian motion {Zz(t, z)} at the level y = a, a > 0, is determined
by the characteristic function

E[exp(
√
−1 〈λ,X(τa)〉)] = e

√
−1 〈λ,x〉 ϕn(λ; y)

ϕn(λ; a)
, λ ∈ Rn.

See [4] for related topics. See also the recent paper by Byczkowski–
Małecki [6] and the references cited therein for the Poisson kernels of balls
in Hn

r .

3. Complex hyperbolic spaces. Let Hn
c , n ≥ 2, be the upper half

space of Cn given by

{z = (z1, z2, . . . , zn) = (z1, z̃) ∈ Cn : h(z) ≡ Im(z1)− |z̃|2 > 0},
endowed with the Bergmann metric

ds2 = −
n∑

j,k=1

∂zj∂zk log(h)dzjdzk.

The unit ball {|z| < 1} in Cn with the Bergmann metric

−
n∑

j,k=1

∂zj∂zk log(1− |z|2)dzjdzk

is isometric with Hn
c . For details, we refer to [8, 9, 11, 26]. We should be aware

of different conventions. The curvatures of these manifolds are bounded and
negative, but are not constant (cf. [11, p. 190]). See also the recent works by
Graczyk and Żak [12, 31] on the Brownian motions on Hn

c , where the unit
ball model has been adopted.

We stick to the upper half space model and change the first coordinate
to x1 = Re(z1)/2 and y = h(z)1/2. Then we have the same realization of
the complex hyperbolic space SU(1, n)/SU(n) as in Venkov [26]: if we write
zk = xk +

√
−1 yk, k = 2, . . . , n, the Riemannian metric is written as

ds2 =
1
y2
dy2 +

1
y2

n∑
k=2

(dx2
k + dy2

k) +
1
y4

(
dx1 +

n∑
k=2

(xkdyk − ykdxk)
)2
,

for y > 0, xi, yi ∈ R, and the distance function d(z, z′) is given by

(cosh(d(z, z′)))2 =
((y′)2 + Φ)2 + 4ϕ2

4y2(y′)2
,

where

(3.1) Φ = y2 + |z̃′ − z̃|2 and ϕ = x′1 − x1 +
n∑
k=2

(y′kxk − x′kyk).



198 H. MATSUMOTO

The Laplace–Beltrami operator is given by

∆c = y4 ∂2

∂x2
1

+ y2 ∂2

∂y2
− (2n− 1)y

∂

∂y
(3.2)

+ y2
n∑
k=2

{(
∂

∂xk
+ yk

∂

∂x1

)2

+
(

∂

∂yk
− xk

∂

∂x1

)2}
.

Let (W (2n),B(2n), P (2n)) be the 2n-dimensional standard Wiener space.
Denoting an element of W (2n) by

(B(·), w2(·), w3(·), . . . , w2n(·)) or (B(·), w2(·), w̃(·)),
we can check that the Brownian motion {Z(t)} on Hn

c with Z(0) = (x1, y,
z2, . . . , zn), zk being identified with (xk, yk), is given by

X1(t) = x1 +
t�

0

Y (s)2 dw2(s) + 2
n∑
k=2

Sk(t)

Y (t) = y exp(B(t)− nt),

Xk(t) = xk +
t�

0

Y (s) dw2k−1(s),

Yk(t) = yk +
t�

0

Y (s) dw2k(s), k = 2, . . . , n,

(3.3)

where we have used the obvious notations X1(t), Y (t), Xk(t), Yk(t) for the
components of Z(t), and Sk(t) is the stochastic area enclosed by the curve
{(Xk(s), Yk(s))}0≤s≤t and its chord,

Sk(t) =
1
2

t�

0

(Yk(s) dXk(s)−Xk(s) dYk(s)).

{Y (t)} is again the usual geometric Brownian motion with negative drift
and Z(t) converges as t → ∞. Hence we easily obtain the following central
limit theorem.

Theorem 3.1. For the Brownian motion {Z(t)} on the n-dimensional
complex hyperbolic space, the probability law of t−1/2(d(Z(t), Z(0))−nt) con-
verges weakly as t→∞ to the standard normal distribution.

Next we compute the limiting distribution of (X1(t), Z̃(t)) as t → ∞,
where

Z̃(t) = (X2(t), Y2(t), . . . , Xn(t), Yn(t)).

If we consider the ball model, we obtain the Poisson kernels as the densities of
the image measures of the uniform measure on the sphere by the isometries.
However, since the same strategy works in the more complicated case of the
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quaternionic hyperbolic space whose geometry is not well understood yet
(see a recent work by Kim–Parker [19] and references cited therein), we give
the following straightforward computations.

We first fix t and consider the characteristic function. As in the previous
section, we set

A
(−µ)
t =

t�

0

e2B
(−µ)
s ds, Ã

(−µ)
t =

t�

0

e4B
(−µ)
s ds,

B
(−µ)
s = B(s) − µs and µ = n. For the stochastic analysis on Hn

c and Hn
q ,

we need to consider these two exponential functionals. By (3.3), it is easy to
see that, for fixed t > 0, (X1(t), Z̃(t)) is identical in law with

(x1 + y2w2(Ã(−µ)
t ) + yφ(A(−µ)

t ) + 2y2
∑

S̃k(A
(−µ)
t ), z̃ + yw̃(A(−µ)

t )),

where
∑

denotes the sum over k = 2, . . . , n, φ(t)=
∑

(ykw2k−1(t)−xkw2k(t))
and

S̃k(t) =
1
2

t�

0

(w2k(s) dw2k−1(s)− w2k−1(s) dw2k(s)).

Hence we may write, for any bounded continuous function g on R2(n−1),

E[e
√
−1 pX1(t)g(Z̃(t))] = E

[
e
√
−1 p(x1+y2w2( eA(−µ)

t )+yφ(A
(−µ)
t ))g(z̃ + yw̃(A(−µ)

t ))

× E
[ n∏
k=2

e2
√
−1 py2 eSk(A(−µ)

t )
∣∣∣ {B(s)}s≥0, w̃(A(−µ)

t )
]]
.

Then, applying the Lévy formula for the characteristic function of the stoch-
astic area (cf. [17, p. 473]), we get

E[e
√
−1 pX1(t)g(Z̃(t))] = E

[
e
√
−1 p(x1+y2w2( eA(−µ)

t )+yφ(A
(−µ)
t ))g(z̃ + yw̃(A(−µ)

t ))

×
(

py2A
(−µ)
t

sinh(py2A
(−µ)
t )

)n−1

exp
(

(1− py2A
(−µ)
t coth(py2A

(−µ)
t ))

|w̃(A(−µ)
t )|2

2A(−µ)
t

)]
.

Moreover we take the conditional expectation given {B(s)}s≥0 or {Y (s)}s≥0

to obtain

E[e
√
−1 pX1(t)g(Z̃(t))] = e

√
−1 px1E

[
e−p

2y4 eA(−µ)
t /2

�

R2(n−1)

e
√
−1 p

P
(ykξk−xkηk)

× g(z̃ + ζ)
(

p

2π sinh(py2A
(−µ)
t )

)n−1

e−p coth(py2A
(−µ)
t )|ζ|2/2 dξ dη

]
,

where ζ = (ξ, η) = (ξ2, η2, . . . , ξn, ηn).
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Now we put, for q = (q2, . . . , qn), r = (r2, . . . , rn) ∈ Rn−1,

g(ζ) = exp(
√
−1 (〈q, ξ〉+ 〈r, η〉)).

Then, carrying out the Gaussian integration with respect to ξ and η, we get

E
[
exp
{√
−1 (pX1(t) +

∑
(qkXk(t) + rkYk(t)))

}]
= e
√
−1 fE

[
e−p

2y4 eA(−µ)
t /2

(
1

cosh(py2A
(−µ)
t )

)n−1

e−F tanh(py2A
(−µ)
t )

]
,

where

f = f(p,q, r) = px1 +
∑

(qkxk + rkyk),

F = F (p,q, r) =
∑ (qk + pyk)2 + (rk − pxk)2

2p
.

Now, letting t→∞, we obtain the following.

Proposition 3.2. For any p ∈ R and q, r ∈ Rn−1,

(3.4) lim
t→∞

E

[
exp
{√
−1 (pX1(t) +

∑
(qkXk(t) + rkYk(t)))

}]
= e
√
−1 fE

[
e−p

2y4 eA(−n)
∞ /2

(
1

cosh(py2A
(−n)
∞ )

)n−1

e−F tanh(py2A
(−n)
∞ )

]
.

Denote the right hand side of (3.4) by I(p,q, r). By using the joint
Laplace transform of A(−n)

∞ and Ã
(−n)
∞ given by Corollary A.7 in the Ap-

pendix, we obtain

I(p,q, r) = e
√
−1 f

∞�

0

E[e−p
2y4 eA(−n)

∞ /2 |A(−n)
∞ = u]

(
1

cosh(py2u)

)n−1

× e−F tanh(py2u)P (A(−n)
∞ ∈ du)

= e
√
−1 f

∞�

0

1
2nΓ (n)

(
py2

sinh(py2u)

)n+1

e−py
2 coth(py2u)/2

×
(

1
cosh(py2u)

)n−1

e−F tanh(py2u) du.

Then, changing the variable, we see that I(p,q, r) is equal to

e
√
−1 f (py2)n

2nΓ (n)

∞�

0

(
1

sinh(u)

)n+1( 1
cosh(u)

)n−1

e−py
2 coth(u)/2

× exp
(
−
∑ (qk + pyk)2 + (rk − pxk)2

2p
tanh(u)

)
du
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if p > 0, and to

e
√
−1 f (−py2)n

2nΓ (n)

∞�

0

(
1

sinh(u)

)n+1( 1
cosh(u)

)n−1

epy
2 coth(u)/2

× exp
(∑ (qk + pyk)2 + (rk − pxk)2

2p
tanh(u)

)
du

if p < 0. From these expressions, we can take the Fourier inversion

fn(x′1, z̃
′; z) ≡ 1

(2π)2n−1

�

R2n−1

I(p,q, r)e−
√
−1 (px′1+

P
(qkx

′
k+rky

′
k)) dp dq2 · · · drn.

For the integral with respect to qk when p > 0, we note as usual

− (qk + pyk)2

2p
tanh(u) +

√
−1 qk(xk − x′k)

= − tanh(u)
2p

(qk + pyk −
√
−1 p(xk − x′k) coth(u))2

−
√
−1 pyk(xk − x′k)−

p

2
(xk − x′k)2 coth(u).

We do the same computations also for the other variables and for p < 0.
After some manipulations, we obtain

fn(x′1, z̃
′; z) =

y2n

(4π)nΓ (n)

�

R
|p|2n−1e

√
−1ϕpdp

∞�

0

(
1

sinh(u)

)2n

e−Φ|p| coth(u)/2 du

=
2y2n

πnΓ (n)

∞�

0

p2n−1 cos(2ϕp)dp
∞�

0

(
1

sinh(u)

)2n

e−Φp coth(u) du,

where we have made a simple change of variable for the second equality, and
ϕ and Φ are given by (3.1).

In the last integral, we change the variable to k = coth(u) to obtain

fn(x′1, z̃
′; z) =

2y2n

πnΓ (n)

∞�

0

p2n−1 cos(2ϕp) dp
∞�

1

e−Φpk(k2 − 1)n−1 dk.

Now we recall the following integral representation of the modified Bessel
function (cf. Formula (5.10.24) in [20] or 3.387.3 in [13]):

(3.5) Kν(z) =
√
π

Γ (ν + 1/2)

(
z

2

)ν ∞�
1

e−zt(t2 − 1)ν−1/2 dt, ν > 0.

Then we obtain

fn(x′1, z̃
′; z) =

2n+1/2y2n

πn+1/2Φn−1/2

∞�

0

pn−1/2 cos(2ϕp)Kn−1/2(Φp) dp.
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For the last integral, we may apply the formula

∞�

0

xλKµ(ax) cos(bx) dx = 2λ−1a−λ−1Γ

(
µ+ λ+ 1

2

)
Γ

(
1 + λ− µ

2

)
× 2F1

(
µ+ λ+ 1

2
,
1 + λ− µ

2
;
1
2

;− b
2

a2

)
.

(cf. Formula 6.699.4 in [13]) and 2F1(n, a, a; z) = (1− z)−n, where 2F1 is the
Gauss hypergeometric function. Then we obtain

(3.6) fn(x′1, z̃
′; z) =

22n−1Γ (n)y2n

πnΦ2n 1F0

(
n;−4ϕ2

Φ2

)
=

22n−1Γ (n)y2n

πn(4ϕ2 + Φ2)n
.

Theorem 3.3 (cf. [8]). For any z ∈ Hn
c , (X1(t), Z̃(t)) converges almost

surely as t → ∞, and the density of the limit distribution on R2n−1 is the
Poisson kernel given by (3.6).

4. Quaternionic hyperbolic spaces. For the quaternionic hyperbolic
space Sp(1, n)/(Sp(1)× Sp(n)), n ≥ 2, we follow the conventions in Venkov
[26]. See also Helgason [15], Lohoué–Rychener [21], and Kim–Parker [19] for
the basic properties. For n ≥ 2, let Hn

q be the upper half space in C2n,

Hn
q = {z = (z1, z2, . . . , z2n) = (z1, z̃) ∈ C2n : Im(z1) > 0},

with the Riemannian metric

ds2 =
dy2

y2
+

1
y2

n∑
k=2

(dzkdzk + dzn+kdzn+k)

+
1
y4

(
dx1 + Im

n∑
k=2

(zkdzk + zn+kdzn+k)
)2

+
1
y4

∣∣∣∣dzn+1 +
n∑
k=2

(zn+kdzk − zkdzn+k)
∣∣∣∣2,

where z1 = x1 +
√
−1 y. We will write zk = xk +

√
−1 yk for k = 2, . . . , 2n.

Note that the first and (n+1)th components, z1 and zn+1, play special roles.
The volume element is y−4n−3dx1dy

∏2n
k=2 dxkdyk and the distance func-

tion d(z, z′) is given by

(4.1) (cosh(d(z, z′)))2 =
((y′)2 + Φ)2 + 4(ϕ2

1 + ϕ2
2 + ϕ2

3)
4y2(y′)2

,
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where

Φ = y2 +
n∑
k=2

(|z′k − zk|2 + |z′n+k − zn+k|2),

ϕ1 = x′1 − x1 +
n∑
k=2

((y′kxk − x′kyk) + (y′n+kxn+k − x′n+kyn+k)),

ϕ2 = x′n+1 − xn+1 +
n∑
k=2

((x′kxn+k − x′n+kxk) + (y′n+kyk − y′kyn+k)),

ϕ3 = y′n+1 − yn+1 +
n∑
k=2

((x′kyn+k − y′n+kxk) + (y′kxn+k − x′n+kyk)).

(4.2)

Note that ϕi’s do not depend on y.
The Laplace–Beltrami operator ∆q may be written in a convenient way

as

∆q = y4 ∂2

∂x2
1

+ y2 ∂2

∂y2
− (4n+ 1)y

∂

∂y
+ y4

(
∂2

∂x2
n+1

+
∂2

∂y2
n+1

)
(4.3)

+ y2
n∑
k=2

[(
∂

∂xk
+ yk

∂

∂x1
− xn+k

∂

∂xn+1
− yn+k

∂

∂yn+1

)2

+
(

∂

∂yk
− xk

∂

∂x1
+ yn+k

∂

∂xn+1
− xn+k

∂

∂yn+1

)2

+
(

∂

∂xn+k
+ yn+k

∂

∂x1
+ xk

∂

∂xn+1
+ yk

∂

∂yn+1

)2

+
(

∂

∂yn+k
− xn+k

∂

∂x1
− yk

∂

∂xn+1
+ xk

∂

∂yn+1

)2]
.

Note that the coefficients of ∂2/∂x1∂xn+1, ∂
2/∂x1∂yn+1, ∂

2/∂xn+1∂yn+1 are
zero. We can use the same procedure as for the complex hyperbolic space if
we consider a 4× 4 skew-symmetric matrix instead of 2-dimensional one.

First we give an explicit expression for the Brownian motion, the diffusion
process with generator ∆q/2, on Hn

q . Let (W (4n),B(4n), P (4n)) be the 4n-
dimensional Wiener space and denote an element in W (4n) by

(B1(·), B(·), w2,1(·), w2,2(·), . . . , wn,1(·), wn,2(·),
B2(·), B3(·), wn+2,1(·), wn+2,2(·), . . . , w2n,1(·), w2n,2(·)).

Then we can check that the Brownian motion (X1(t), Y (t), Z̃(t)) starting
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from (x1, y, z̃) is given by

X1(t) = x1 +
t�

0

Y (s)2 dB1(s) +
n∑
k=2

t�

0

{Yk(s) dXk(s)−Xk(s) dYk(s)

+Yn+k(s) dXn+k(s)−Xn+k(s) dYn+k(s)},
Y (t) = y exp(B(t)− (2n+ 1)t),

Xk(t) = xk +
t�

0

Y (s) dwk,1(s),

Yk(t) = yk +
t�

0

Y (s) dwk,2(s), k = 2, . . . , n,

Xn+1(t) = xn+1 +
t�

0

Y (s)2 dB2(s)

+
n∑
k=2

t�

0

{−Xn+k(s) dXk(s) +Xk(s) dXn+k(s)

+Yn+k(s) dYk(s)− Yk(s) dYn+k(s)},
Yn+1(t) = yn+1 +

t�

0

Y (s)2 dB3(s)

+
n∑
k=2

t�

0

{−Yn+k(s) dXk(s) +Xk(s) dYn+k(s)

−Xn+k(s) dYk(s) + Yk(s) dXn+k(s)},
Xn+k(t) = xn+k +

t�

0

Y (s) dwn+k,1(s),

Yn+k(t) = yn+k +
t�

0

Y (s) dwn+k,2(s), k = 2, . . . , n.

Then, from (4.1), it is easy to show the following central limit theorem.

Theorem 4.1. The probability law of (d(Z(t), Z(0)) − (2n + 1)t)/
√
t

converges weakly as t→∞ to the standard normal distribution.

Next we show that (X1(t), Z̃(t)) converges in law as t→∞. To identify
the limit distribution, we set

fn(x′1, z̃
′; z) =

24n+1Γ (2n)
π2n

y2(2n+1)

(Φ2 + 4(ϕ2
1 + ϕ2

2 + ϕ2
3))2n+1

,

where Φ and ϕi’s are given by (4.2). Then fn is the Poisson kernel of the
boundary ∂Hn

q = {y = 0}.
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Theorem 4.2. (X1(t), Z̃(t)), with values in R × C2n−1, converges al-
most surely as t → ∞, and the density of the limit distribution is given by
fn(x′1, z̃

′; z).

In the following we give a proof of Theorem 4.2. First we consider the
characteristic function of (X1(t), Z̃(t)) for fixed t. For convenience we put,
for k 6= 1, n+ 1,

X0
k(t) = Xk(t)− xk =

t�

0

Y (s) dwk,1(s),

Y 0
k (t) = Yk(t)− yk =

t�

0

Y (s) dwk,2(s),

and

θk =


xk

yk

xn+k

yn+k

 , Θk(t) =


Xk(t)
Yk(t)

Xn+k(t)
Yn+k(t)

 , Θ0
k(t) =


X0
k(t)
Y 0
k

X0
n+k

Y 0
n+k(t)

 .

Moreover, for ξ = t(ξ1, ξ2, ξ3) ∈ R3, wk = t(uk, vk, un+k, vn+k) ∈ R4, and
w = (w2, . . . , wn), we set

Ψ(t) = ξ1X1(t) + ξ2Xn+1(t) + ξ3Yn+1(t),

Uk(t) = 〈wk, Θk(t)〉, U0
k (t) = 〈wk, Θ0

k(t)〉.

Throughout, tQ denotes the transpose of a matrix Q. Then the characteristic
function is

ϕ(t) = E
[
exp
{√
−1 (ξ1X1(t) + ξ2Xn+1(t) + ξ3Yn+1(t))

+
√
−1

n∑
k=2

(ukXk(t) + vkYk(t) + un+kXn+k(t) + vn+kYn+k(t))
}]

= E
[
exp

(√
−1
(
Ψ(t) +

n∑
k=2

Uk(t)
)]
.

To compute it, we introduce the 4× 4 skew symmetric matrix

Ξ =


0 ξ1 −ξ2 −ξ3
−ξ1 0 −ξ3 ξ2

ξ2 ξ3 0 ξ1

ξ3 −ξ2 −ξ1 0

 .
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Then

Ψ(t) +
n∑
k=2

Uk(t) = ψ +
t�

0

Y (s)2(ξ1 dB1(s) + ξ2 dB2(s) + ξ3 dB3(s))

+
n∑
k=2

〈Ξθk + wk, Θ
0
k(t)〉+

n∑
k=2

t�

0

〈ΞΘ0
k(s), dΘ

0
k(s)〉,

where ψ = ξ1x1+ξ2xn+1+ξ3yn+1+
∑n

k=2〈wk, θk〉. Note that {
∑3

j=1 ξjBj(s)}
is identical in law with {|ξ|B1(s)}, |ξ| = (ξ21 + ξ22 + ξ23)1/2.

The eigenvalues of Ξ are ±
√
−1 |ξ|, each of multiplicity two. Moreover

there exists an orthogonal matrix Q such that tQΞQ = K is of the standard
form. We take

Q =


0 ξ1

|ξ|

√
ξ22+ξ23
|ξ| 0

1 0 0 0
0 ξ3

|ξ|
−ξ1ξ3√
ξ22+ξ23 |ξ|

ξ2√
ξ22+ξ23

0 −ξ2
|ξ|

ξ1ξ2√
ξ22+ξ23 |ξ|

ξ3√
ξ22+ξ23

 and K =


0 −|ξ| 0 0
|ξ| 0 0 0
0 0 0 −|ξ|
0 0 |ξ| 0

.

We also put ŵk = tQwk, θ̂k = tQθk and

Θ̂0
k(t) = (X̂0

k(t), Ŷ 0
k (t), X̂0

n+k(t), Ŷ
0
n+k(t)) = tQΘ0

k(t).

By the rotation invariance of the probability law of Brownian motions, we see
that {Θ̂0

k(s)} is a simple time change of a 4-dimensional standard Brownian
motion.

Under these notations, we have

〈Ξθk + wk, Θ
0
k(t)〉 = 〈Kθ̂k + ŵk, Θ̂

0
k(t)〉

and
t�

0

〈ΞΘ0
k(s), dΘ

0
k(s)〉 =

t�

0

〈KΘ̂0
k(s), dΘ̂

0
k(s)〉(4.4)

= |ξ|
t�

0

{X̂0
k(s) dŶ 0

k (s)− Ŷ 0
k (s) dX̂0

k(s)

+ X̂0
n+k(s) dŶ

0
n+k(s)− Ŷ 0

n+k(s) dX̂
0
n+k(s)}.

As in the previous sections, we set

A
(−µ)
t =

t�

0

exp(2B(−µ)
s ) ds and Ã

(−µ)
t =

t�

0

exp(4B(−µ)
s (s)) ds,

B
(−µ)
s = B(s) − µs and µ = 2n + 1. Then, by taking the conditional ex-

pectation given {Y (s)}s≥0 and Θ̂0
k(t), k = 2, . . . , n, and applying the Lévy
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formula, we obtain

ϕ(t) = e
√
−1ψE

[
exp
(
−1

2
|ξ|2y4Ã

(−µ)
t +

√
−1

n∑
k=2

〈Kθ̂k + ŵk, Θ̂k(t)〉
)

×
n∏
k=2

E

[
exp
(√
−1

t�

0

〈ΞΘ0
k(s), dΘ

0
k(s)〉

) ∣∣∣∣ {Y (s)}, Θ̂k(t)
]]

= e
√
−1ψE

[
exp
(
−1

2
|ξ|2y4Ã

(−µ)
t +

√
−1

n∑
k=2

〈Kθ̂k + ŵk, yŴk(A
(−µ)
t )〉

)

×
(

|ξ|y2A
(−µ)
t

sinh(|ξ|y2A
(−µ)
t )

)2(n−1)

× exp
(

(1− |ξ|y2A
(−µ)
t coth(|ξ|y2A

(−µ)
t ))

|Ŵ (A(−µ)
t )|2

2A(−µ)
t

)]

= e
√
−1ψE

[
exp
(
−1

2
|ξ|2y4Ã

(−µ)
t

) �

R4(n−1)

(
|ξ|

2π sinh(|ξ|y2A
(−µ)
t )

)2(n−1)

× exp
(√
−1

n∑
k=2

(
〈Kθ̂k + ŵk, ζk〉 −

1
2
|ξ| coth(|ξ|y2A

(−µ)
t )|ζk|2

))
dζ2 · · · dζn

]
,

where {(Ŵ2(s), . . . , Ŵn(s))} is a 4(n − 1)-dimensional standard Brownian
motion, independent of {Y (s)} or {B(s)}. We carry out the Gaussian inte-
gration over R4(n−1) to obtain

ϕ(t)

= e
√
−1ψE

[(
1

cosh(|ξ|y2A
(−µ)
t )

)2(n−1)

e−|ξ|
2y4 eA(−µ)

t /2−F tanh(|ξ|y2A(−µ)
t )/2|ξ|

]
,

where F =
∑n

k=2 |Kθ̂k + ŵk|2. Hence, letting t tend to ∞, we obtain

lim
t→∞

ϕ(t)

= e
√
−1ψE

[(
1

cosh(|ξ|y2A
(−µ)
∞ )

)2(n−1)

e−|ξ|
2y4 eA(−µ)

∞ /2−F tanh(|ξ|y2A(−µ)
∞ )/2|ξ|

]
.

Now, applying (A.9), we obtain an explicit expression for the Fourier
transform of the Poisson kernel fn.

Proposition 4.3. Under the notations above, the Fourier transform of
the limit distribution of (X1(t), Z̃(t)) as t→∞ is given by
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Φ(ξ, w) =
e
√
−1ψ(|ξ|y2)2n+1

22n+1Γ (2n+ 1)

∞�

0

(
1

cosh(u)

)2(n−1)( 1
sinh(u)

)2(n+1)

× exp
(
−1

2
|ξ|y2 coth(u)− F

2|ξ|
tanh(u)

)
du.

We invert the Fourier transform. That is, setting x′ = (x′1, x
′
n+1, y

′
n+1),

θ′k = t(x′k, y
′
k, x
′
n+k, y

′
n+k) and

ψ′ = 〈ξ, x′〉+
n∑
k=2

〈wk, θ′k〉,

we compute

f̄n(x′1, z̃
′; z) ≡ 1

(2π)4n−1

�

R4n−1

e
√
−1 (ψ−ψ′) dξ dw

×
∞�

0

(|ξ|y2)2n+1

22n+1Γ (2n+ 1)

(
1

cosh(u)

)2(n−1)( 1
sinh(u)

)2(n+1)

× exp
(
−1

2
|ξ|y2 coth(u)− tanh(u)

2|ξ|

n∑
k=2

|Kθ̂kŵk|2
)
du.

Recall the definitions ŵk = tQwk and θ̂k = tQθk. Then, changing the order
of the integrations, we have

f̄n(x′1, z̃
′; z) =

y2(2n+1)

(2π)4n−122n+1Γ (2n+ 1)

∞�

0

(
1

cosh(u)

)2(n−1)( 1
sinh(u)

)2(n+1)

du

×
�

R3

e
√
−1 〈ξ,x−x′〉e−|ξ|y

2 coth(u)/2|ξ|2n+1 dξ

×
�

R4(n−1)

e
√
−1

Pn
k=2〈 bwk,bθk−bθ′k〉−tanh(u)

Pn
k=2 |Kbθk+ bwk|2/2|ξ| n∏

k=2

dwk.

We can easily carry out the third Gaussian integration since Q ∈ O(4) and
we obtain

f̄n(x′1, z̃
′; z) =

y2(2n+1)

(4π)2n+1Γ (2n+ 1)

∞�

0

(
1

sinh(u)

)4n

du

×
�

R3

e
√
−1 {〈ξ,x−x′〉+|ξ|φ(bθ,bθ′)}−|ξ|Φ coth(u)/2|ξ|4n−1dξ,

where Φ = y2 +
∑n

k=2 |θ̂k − θ̂′k|2 = y2 +
∑n

k=2 |θk − θ′k|2 and

φ(θ̂, θ̂′) =
n∑
k=2

〈Kθ̂k, θ̂′k〉 =
n∑
k=2

(ŷ′kx̂k − x̂′kŷk + ŷ′n+kx̂n+k − x̂′n+kŷn+k).
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Changing the variable to v = coth(u), we first compute the integral in u.
Then, by using formula (3.5) again, we get
∞�

0

(
1

sinh(u)

)4n

e−|ξ|Φ coth(u)/2 du =
∞�

1

(v2 − 1)2n−1e−|ξ|Φv/2 dv

=
Γ (2n)√

π

(
4
|ξ|Φ

)2n−1/2

K2n−1/2

(
|ξ|φ

2

)
.

Moreover, by definitions, we see

〈ξ, x′ − x〉+ |ξ|φ(θ̂, θ̂′) = −〈ξ, ϕ〉,

where ϕ = t(ϕ1, ϕ2, ϕ3) is given by (4.2).
Combining these identities, we obtain

f̄n(x′1, z̃
′; z)

=
y2(2n+1)

8(2n+ 1)π2n+3/2Φ2n−1/2

�

R3

e−
√
−1 〈ξ,ϕ〉K2n−1/2

(
Φ

2
|ξ|
)
|ξ|2n−1/2 dξ

=
y2(2n+1)

8(2n+ 1)π2n+3/2Φ2n−1/2

�

R3

e
√
−1 |ϕ|ξ3K2n−1/2

(
Φ

2
|ξ|
)
|ξ|2n−1/2 dξ.

Moreover, changing the variables to the spherical coordinates, we obtain

f̄n(x′1, z̃
′; z) =

4πy2(2n+1)

8(2n+ 1)π2n+3/2Φ2n−1/2|ϕ|

×
∞�

0

r2n+1/2K2n−1/2

(
Φ

2
r

)
sin(|ϕ|r) dr.

For the integral on the right hand side, the following formula is available (cf.
Formula 6.699.3 in [13]):

∞�

0

xλKµ(ax) sin(bx) dx = 2λa−λ−2b× Γ
(

2 + µ+ λ

2

)
Γ

(
2 + λ− µ

2

)
× 2F1

(
2 + µ+ λ

2
,
2 + λ− µ

2
;
3
2

;− b
2

a2

)
.

In our case λ = 2n+ 1/2, µ = 2n− 1/2 and

2F1

(
2 + µ+ λ

2
,
2 + λ− µ

2
;
3
2

;− b
2

a2

)
= 2F1

(
2n+ 1,

3
2

;
3
2

;− b
2

a2

)
=
(

1 +
b2

a2

)−(2n+1)

by the formula 2F1(−n, β;β;−z) = (1 + z)β (cf. Formula 9.121.1 in [13]).
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Applying this identity we arrive at our result

f̄n(x′1, z̃
′; z) =

24n+1Γ (2n)
π2n

y2(2n+1)

(Φ2 + 4|ϕ|2)2n+1
.

Appendix. Perpetual integrals of geometric Brownian motion.
In this appendix we consider two perpetual integrals of geometric Brownian
motions. Let B = {B(t)}t≥0 be a one-dimensional Brownian motion with
B0 = 0 defined on a probability space (Ω,F , P ). For µ > 0, we set B(−µ) =
{B(−µ)

t ≡ B(t) − µt}, a Brownian motion with negative constant drift −µ.
Then Dufresne’s perpetual integral is defined by

(A.1) A(−µ)
∞ =

∞�

0

exp(2B(−µ)
s ) ds.

We also consider another integral,

a(−µ)
∞ =

∞�

0

exp(B(−µ)
s ) ds.

Then the following is known:

Theorem A.1 (Dufresne [10]). Let γµ be a gamma random variable with
density Γ (µ)−1xµ−1e−x. Then A

(−µ)
∞ is distributed as (2γµ)−1, and accord-

ingly a(−µ)
∞

(law)
= 2(γ2µ)−1.

Remark A.2. Several different proofs of this theorem are known. In
particular, see Yor [28]. The density of the exponential functional At =	t
0 exp(2Bs) ds for fixed t has been obtained by Yor [29] and the joint dis-
tribution of (At, at) in an obvious notation has been studied in [2]. See also
[24, 25, 27] for several results and applications of these perpetual integrals
and exponential functionals. Recently Baudoin–O’Connell [5] have shown
several formulae, including (A.2) below, for the exponential functionals and
discussed their close relation to the theory of quantum Toda lattice.

What we need in Sections 3 and 4 is the following explicit expression for
the conditional Laplace transform of A(−µ)

∞ given a(−µ)
∞ , which was originally

obtained by Yor [30]. We set

f1(v) =
22µ

Γ (2µ)
v−(2µ+1)e−2/v, v > 0,

which is the density of the random variable a(−µ)
∞ or 2/γ2µ.
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Theorem A.3. For λ > 0 and v > 0,

(A.2) E

[
exp
(
−1

2
λ2A(−µ)

∞

) ∣∣∣∣ a(−µ)
∞ = v

]
f1(v)

=
1

2Γ (2µ)

(
λ

sinh(λv/2)

)2µ+1

exp
(
−λ coth

(
λv

2

))
.

We have this nice result only for the particular choice of At and at, when
the ratio of the coefficients in the exponential functionals is two.

We give another proof of the theorem for completeness. Note that by
letting λ tend to 0 in (A.2), we obtain Theorem A.1.

For this purpose, we consider the Brownian motion {B(µ)
t = Bt + µt}

with the opposite positive drift and set Xx(s) = x exp(B(µ)
s ), which defines

a diffusion process with infinitesimal generator

1
2
x2 d2

dx2
+
(

1
2

+ µ

)
x
d

dx
.

Letting τz be the first hitting time of {Xx(s)} at z, we set, for λ > 0 and
κ ∈ R,

vz(x) = E

[
exp
(
−λ

2

2

τz�

0

Xx(s)−2 ds+ λκ

τz�

0

Xx(s)−1 ds

)]
.

In [24] we have considered the case of κ = 0 and showed that vz(x) may
be represented by means of the modified Bessel function to give another proof
of Theorem A.1. Following the same lines, we first give a representation for
vz(x) by means of Whittaker functions.

Let Wκ,µ be a Whittaker function: if µ− κ+ 1/2 > 0,

(A.3) Wκ,µ(z) =
e−z/2zµ+1/2

Γ (µ− κ+ 1/2)

∞�

0

e−zttµ−κ−1/2(1 + t)µ+κ−1/2 dt.

From this expression it is easy to see that limz→∞Wκ,µ(z) = 0 when |κ| is
small. We also recall that Wκ,µ solves the equation

W ′′(z) +
(
−1

4
+
κ

z
− µ2 − 1/4

z2

)
W (z) = 0.

Proposition A.4. For µ > 0, λ > 0 and κ ∈ R,

(A.4) vz(x) =
(
z

x

)µ−1/2Wκ,µ(2λ/x)
Wκ,µ(2λ/z)

.

Proof. We only have to consider the case of κ < 0. The general case can
be deduced from this by analytic continuation in κ. Note that if κ < 0, then
vz(x) is increasing in x (> z).
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First we note that vz(x) is a solution for

1
2
x2v′′(x) +

(
1
2

+ µ

)
xv′(x) =

(
λ2

2x2
− λκ

x

)
v(x)

and satisfies

(A.5) vz(x)|x=z = 1 and lim
x↓0

vz(x) = 0.

We now change the variable to ξ = λ/x and set

vz(x) = ξµ−1/2φ(ξ).

Then, by straightforward computations, we see that φ satisfies

φ′′(ξ) +
(
−1 +

2κ
ξ
− µ2 − (1/4)

ξ2

)
φ(ξ) = 0.

By considering the boundary conditions (A.5), we can easily show

φ(ξ) =
(
z

λ

)µ−1 Wκ,µ(2ξ)
Wκ,µ(2λ/z)

and hence the result (A.4).

Proposition A.5. For µ > 0, λ > 0 and κ ∈ R,

(A.6) E

[
exp
(
−1

2
λ2A(−µ)

∞ + λκa(−µ)
∞

)]
=
Γ (µ− κ+ 1/2)

Γ (2µ)
(2λ)µ−1/2Wκ,µ(2λ).

Proof. By the symmetry of the probability law of Brownian motion,

{−Bt}
(law)
= {Bt}, we have

lim
z→∞

vz(1) = E

[
exp
(
−1

2
λ2
∞�

0

e−2B
(µ)
s ds+ λκ

∞�

0

e−B
(µ)
s ds

)]

= E

[
exp
(
−1

2
λ2
∞�

0

e2B
(−µ)
s ds+ λκ

∞�

0

eB
(−µ)
s ds

)]
.

On the other hand, by using the fact that

(A.7) Wκ,µ(z) =
Γ (2µ)

Γ (µ− κ+ 1/2)
z−µ+1/2(1 + o(1)) as z ↓ 0,

we see from the expression (A.4) that

lim
z→∞

vz(1) =
Γ (µ− κ+ 1/2)

Γ (2µ)
(2λ)µ−1/2Wκ,µ(2λ).

Remark A.6. The asymptotic behavior (A.7) of Wκ,µ can be easily de-
duced from the definition of Whittaker functions.
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Now we are in a position to complete our proof of Theorem A.3. By (A.3)
and (A.6), we have

E

[
exp
(
−1

2
λ2A(−µ)

∞ + λκa(−µ)
∞

)]
=

e−λ

Γ (2µ)
(2λ)2µ

∞�

0

e−2λttµ−κ−1/2(1 + t)µ+κ−1/2 dt.

Now we change the variable via eλv = 1 + t−1 or t = (eλv− 1)−1. Then some
elementary computations show that this integral is equal to

λ2µ+1

2Γ (2µ)

∞�

0

e−λ coth(λv/2)

(
1

sinh(λv/2)

)2µ+1

eλκv dv.

This completes our proof since

E

[
exp
(
−1

2
λ2A(−µ)

∞ + λκa(−µ)
∞

)]
=
∞�

0

E

[
exp
(
−1

2
λ2A(−µ)

∞

) ∣∣∣∣ a(−µ)
∞ = v

]
f1(v)eλκv dv.

Corollary A.7. Define another perpetual integral Ã(−µ)
∞ by

(A.8) Ã(−µ)
∞ =

∞�

0

exp(4B(−µ)
s ) ds

and let f2(v) be the density of A(−µ)
∞ or (2γµ)−1. Then

(A.9) E

[
exp
(
−1

2
λ2Ã(−µ)

∞

) ∣∣∣∣A(−µ)
∞ = v

]
f2(v)

=
1

2µΓ (µ)

(
λ

sinh(λv)

)µ+1

exp
(
−λ

2
coth(λv)

)
.
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