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A GENERALIZATION OF BATEMAN’S EXPANSION AND
FINITE INTEGRALS OF SONINE’S AND FELDHEIM’S TYPE

BY

GIACOMO GIGANTE (Dalmine)

Abstract. Let {Ak}+∞k=0 be a sequence of arbitrary complex numbers, let α, β > −1,
let {Pα,βn }+∞n=0 be the Jacobi polynomials and define the functions

Hn(α, z) =

+∞X
m=n

Amz
m

Γ (α+ n+m+ 1)(m− n)!
,

G(α, β, x, y) =

+∞X
r,s=0

Ar+sx
rys

Γ (α+ r + 1)Γ (β + s+ 1)r!s!
.

Then, for any non-negative integer n,

π/2�

0

G(α, β, x2 sin2 φ, y2 cos2 φ)Pα,βn (cos 2φ) sin2α+1 φ cos2β+1 φdφ

=
1

2
Hn(α+ β + 1, x2 + y2)Pα,βn

„
y2 − x2

y2 + x2

«
.

When Ak = (−1/4)k, this formula reduces to Bateman’s expansion for Bessel functions.
For particular values of y and n one obtains generalizations of several formulas already
known for Bessel functions, like Sonine’s first and second finite integrals and certain Neu-
mann series expansions. Particular choices of {Ak}+∞k=0 allow one to write all these type of
formulas for specific special functions, like Gegenbauer, Jacobi and Laguerre polynomials,
Jacobi functions, or hypergeometric functions.

1. Introduction and main result. The following formula is very well-
known (see [16, p. 36] or [20, p. 373]), and is usually called Sonine’s first
finite integral :

(1.1)
π/2�

0

Jα(x sinφ)
sinα φ

dmα,β(φ) = 2βΓ (β + 1)
Jα+β+1(x)
xβ+1

.

Here Jα is the Bessel function of first kind and order α,

(1.2) Jα(x) =
xα

2αΓ (α+ 1)

+∞∑
k=0

(−x2/4)k

(α+ 1)kk!
,
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α and β are real numbers, α, β > −1, the expression (a)k denotes the
Pochhammer symbol (a)k = a(a + 1) · · · (a + k − 1) = Γ (a + k)/Γ (a) for
k ≥ 1, (a)0 = 1, and

(1.3) dmα,β(φ) = sin2α+1 φ cos2β+1 φdφ

is a finite positive measure on [0, π/2] that we will encounter often along the
paper.

Sonine’s first finite integral allows one to express any Bessel function in
terms of an integral involving a Bessel function of a lower order. It can be
easily proven by a term by term integration of the power series defining the
Bessel function (1.2).

There are two possible generalizations of formula (1.1). The first, known
as Sonine’s second finite integral (see, again, [16, p. 35] or [20, p. 376]), is
the formula

(1.4)
π/2�

0

Jα(x sinφ)
sinα φ

Jβ(y cosφ)
cosβ φ

dmα,β(φ) = xαyβ
Jα+β+1(

√
x2 + y2)

(x2 + y2)
α+β+1

2

.

That this is indeed a generalization of (1.1) can be seen by dividing both
sides by yβ and letting y → 0.

The second possible generalization goes in a different direction. LetH0 be
the closed one-dimensional subspace of the Hilbert space L2([0, π/2], dmα,β)
formed by the constant functions. Then Sonine’s first finite integral gives
the projection onto H0 of the function fx(φ) = Jα(x sinφ) sin−α φ. If we
denote by Pα,βn (z) the Jacobi polynomials, given by (see [18, p. 62])

(1.5) Pα,βn (z) =
Γ (α+ n+ 1)

Γ (n+ 1)Γ (α+ 1)

n∑
k=0

(−n)k(n+ α+ β + 1)k
(α+ 1)kk!

(
1− z

2

)k
,

then {Pα,βn (cos 2φ)}∞n=0 is an orthogonal basis for L2([0, π/2], dmα,β), and
therefore Sonine’s first finite integral is, in other words, the 0th Fourier–
Jacobi coefficient f̂x(0) of fx. One could calculate all the other Fourier–
Jacobi coefficients

f̂x(n) =
π/2�

0

Jα(x sinφ)
sinα φ

Pα,βn (cos 2φ) dmα,β(φ),

obtaining the following identity:

(1.6)
π/2�

0

Jα(x sinφ)
sinα φ

Pα,βn (cos 2φ) dmα,β(φ)

=
2βΓ (β + n+ 1)

Γ (n+ 1)
Jα+β+2n+1(x)

xβ+1
.

Of course, formula (1.1) is the particular case n = 0.
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The regularity of fx implies that the Fourier–Jacobi series of fx converges
pointwise to fx. In other words, formula (1.6) can be reformulated as the
following Neumann series expansion (see [20, p. 140]; this formula appears,
in nuce, again in [16, p. 22], and it has been rediscovered several times, see
[19], [15])

(1.7)
Jα(x sinφ)

sinα φ

=
∞∑
n=0

2β+1(2n+ α+ β + 1)Γ (α+ β + n+ 1)
Γ (α+ n+ 1)

Jα+β+2n+1(x)
xβ+1

Pα,βn (cos 2φ).

Both Sonine’s second finite integral and the Neumann series expansion
(1.7) follow from a more general formula: it is known as Bateman’s expansion
(see [3], [4], or [20, p. 370]),

(1.8)
Jα(ρ sinφ sin θ)
ρα sinα φ sinα θ

Jβ(ρ cosφ cos θ)
ρβ cosβ φ cosβ θ

=
∞∑
n=0

(−1)nρ2n Jα+β+2n+1(ρ)
ρα+β+2n+1

pα,βn (cos 2φ)pα,βn (cos 2θ).

Here ρ > 0, φ, θ ∈ [0, π/2], and {pα,βn (cos 2φ)} are the Jacobi polynomials,
properly normalized in order to form an orthonormal basis for L2([0, π/2],
dmα,β(φ)) (see [18, p. 68])

(1.9) pα,βn (z)

=
(

2(α+ β + 2n+ 1)Γ (α+ β + n+ 1)Γ (n+ 1)
Γ (α+ n+ 1)Γ (β + n+ 1)

)1/2

Pα,βn (z).

Observe that formula (1.7) follows by taking θ = π/2, and recalling that
(see [18, p. 59])

Pα,βn (−1) = (−1)n
Γ (β + n+ 1)

Γ (n+ 1)Γ (β + 1)
.

Again, one can write the integral counterpart of (1.8) by evaluating on both
sides the nth Fourier–Jacobi coefficient in the variable φ:

(1.10)
π/2�

0

Jα(ρ sinφ sin θ)
ρα sinα φ sinα θ

Jβ(ρ cosφ cos θ)
ρβ cosβ φ cosβ θ

pα,βn (cos 2φ) dmα,β(φ)

= (−1)nρ2n Jα+β+2n+1(ρ)
ρα+β+2n+1

pα,βn (cos 2θ).

Sonine’s second finite integral is obtained in the case n = 0 with the change
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of variables {
y = ρ cos θ,
x = ρ sin θ.

In the literature there are several formulas analogous to Sonine’s first
finite integral, where the Bessel functions are replaced by other special func-
tions. For example, for the Gegenbauer polynomials Pα+1/2

h (see [18, p. 80]),

(1.11) P
α+1/2
h (x) =

Γ (2α+ h+ 1)Γ (α+ 1)
Γ (α+ h+ 1)Γ (2α+ 1)

Pα,αh (x)

the following formula by Feldheim (see [9, p. 278] or [18, p. 95]) holds:

(1.12)
π/2�

0

(1− sin2 ψ cos2 φ)h/2Pα+1/2
h

(
cosψ√

1− sin2 ψ cos2 φ

)
dmα,β(φ) =

Γ (α+ h/2 + 1)Γ (α+ h/2 + 1/2)Γ (β + 1)Γ (α+ β + 3/2)
2Γ (α+ 1/2)Γ (α+ β + h/2 + 2)Γ (α+ β + h/2 + 3/2)

P
α+β+3/2
h (cosψ).

The above formula is a particular case of the more general formula for Jacobi
polynomials

(1.13)
π/2�

0

[(1+x)+(1−x) sin2 φ]hPα,γh

(
(1+x)−(1−x) sin2 φ

(1+x)+(1−x) sin2 φ

)
dmα,β(φ)

=
2h−1Γ (β + 1)Γ (α+ h+ 1)

Γ (α+ β + h+ 2)
Pα+β+1,γ
h (x),

proved by Askey and Fitch (see [2, formula (3.7)]). For the Laguerre poly-
nomials Lαh , defined by (see [18, p. 103])

(1.14) Lαh(x) =
Γ (α+ h+ 1)

Γ (h+ 1)Γ (α+ 1)

h∑
k=0

(−h)kxk

(α+ 1)kk!
,

the following formula due to Koshlyakov [12] can be found in [14, p. 462,
formula 2], [13, p. 94]:

(1.15)
π/2�

0

Lαh(x sin2 φ) dmα,β(φ) =
Γ (α+ h+ 1)Γ (β + 1)

2Γ (α+ β + h+ 2)
Lα+β+1
h (x).

Formula (1.7) has an analog for Whittaker functions Mλ,α/2, defined by (see
[6, p. 11])

z−(α+1)/2e−z/2Mλ,α/2(z) =
+∞∑
k=0

(
α+1

2 + λ
)
k

(α+ 1)kk!
(−z)k.
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It can be written as follows:

(1.16) (z sin2 φ)−(α+1)/2e−
z
2

sin2 φMλ+(β+1)/2,α/2(z sin2 φ)

=
+∞∑
n=0

Γ (α+ β + n+ 1)
(α+ 1)nΓ (α+ β + 2n+ 1)

(
λ+

α+ β + 2
2

)
n

znPα,βn (cos 2φ)

× z−(α+β+2n+2)/2e−z/2Mλ,(α+β+2n+1)/2(z)

and can be found in [6, p. 139] or [11, p. 736]. Buchholz attributes this
formula to Erdélyi, and he uses (1.7) to prove it.

A natural question one could raise in this context is: can these formulas
be generalized in a similar way as, in the case of Bessel functions, Bateman’s
expansion generalizes Sonine’s first finite integral or formula (1.7)? In other
words, is there a “Bateman expansion” for Gegenbauer, Laguerre, or Jacobi
polynomials, Whittaker functions, or other special functions? We could for
example look for a formula of this type:

(1.17) F (α, ρ sin θ sinφ)F (β, ρ cos θ cosφ)

=
∞∑
n=0

cnF (α+ β + 2n+ 1, ρ)ρ2nPα,βn (cos 2φ)Pα,βn (cos 2θ).

A first negative answer comes from a theorem of Al-Salam and Carlitz [1].

Theorem 1.1. The functional equation

F (α, ρ sin θ sinφ)F (β, ρ cos θ cosφ)

=
∞∑
n=0

(−1)nF (α+ β + 2n+ 1, ρ)ρ2nQn(cos 2φ)Qn(cos 2θ),

where Qn is a polynomial of degree n, α, β > −1, and F (α, ·) is analytic, is
satisfied if and only if

F (α, z) = a
Jα(bz)
zα

,

with a and b arbitrary constants.

Thus, if a generalized Bateman expansion holds, its structure must be
subtler than what we expected in our first guess (1.17).

For any complex sequence {Ak}+∞k=0, for any non-negative integer n and
for any α, β > −1, define the functions

Hn(α, z) =
+∞∑
k=n

Akz
k

Γ (α+ n+ k + 1)(k − n)!
,

G(α, β, x, y) =
+∞∑
r,s=0

Ar+sx
rys

Γ (α+ r + 1)Γ (β + s+ 1)r!s!
.
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Observe that

Γ (β + 1)G(α, β, x, 0) = H0(α, x),
Γ (α+ 1)G(α, β, 0, y) = H0(β, y),

and that if Ar+s = ArAs for all r, s (that is, if Ak = qk for some q) then

Hn(α, z) = (qz)nH0(α+ 2n, z),
G(α, β, x, y) = H0(α, x)H0(β, y).

The above identities suggest replacing the product F (α, ·)F (β, ·) in (1.17)
with the function G(α, β, ·, ·), and the function F (α + β + 2n + 1, ·) with
Hn(α+β+1, ·). Indeed, the following generalization of Bateman’s expansion
holds.

Theorem 1.2. Let {Ak}+∞k=0 be a sequence of arbitrary complex numbers
and Hn and G be as above. Then

(1.18) G(α, β, ρ2 sin2 θ sin2 φ, ρ2 cos2 θ cos2 φ)

=
+∞∑
n=0

1
2
Hn(α+ β + 1, ρ2)pα,βn (cos 2θ)pα,βn (cos 2φ),

and for all n = 0, 1, . . . ,

(1.19)
π/2�

0

G(α, β, ρ2 sin2 θ sin2 φ, ρ2 cos2 θ cos2 φ)Pα,βn (cos 2φ) dmα,β(φ)

=
1
2
Hn(α+ β + 1, ρ2)Pα,βn (cos 2θ)

provided that the series involved are absolutely convergent.

Proof. The two formulas are equivalent, since the first one gives the
Fourier–Jacobi expansion of the function

φ 7→ G(α, β, ρ2 sin2 θ sin2 φ, ρ2 cos2 θ cos2 φ),

while the second gives its Fourier–Jacobi coefficients. Let us therefore prove
the second formula. Set y = ρ cos θ, x = ρ sin θ, and define

Rα,βn (z) =
Pα,βn (z)

Pα,βn (1)
.

Using the identity

Rα,βn (z) =
1
2n

n∑
l=0

(−n)l(−n− β)l
(α+ 1)ll!

(z − 1)l(z + 1)n−l

(see [18, p. 68]), along with a beta integral computation, we obtain
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π/2�

0

G(α, β, x2 sin2 φ, y2 cos2 φ)Rα,βn (cos 2φ) dmα,β(φ)

=
+∞∑
r=0

+∞∑
s=0

Ar+sx
2ry2s

Γ (α+r+1)Γ (β+s+1)r!s!

π/2�

0

Rα,βn (cos 2φ) sin2r φ cos2s φdmα,β(φ)

=
∞∑
r=0

∞∑
s=0

Ar+sx
2ry2s

Γ (α+ r + 1)Γ (β + s+ 1)r!s!2α+β+s+r+2

×
1�

−1

Rα,βn (t)(1− t)r(1 + t)s(1− t)α(1 + t)β dt

=
∞∑
s=n

s∑
k=0

Asx
2s−2ky2k

Γ (α+ s− k + 1)Γ (β + k + 1)(s− k)!k!2α+β+s+2

×
1�

−1

Rα,βn (t)(1− t)s−k+α(1 + t)k+β dt

=
∞∑
s=n

s∑
k=0

Asx
2s−2ky2kΓ (β + k + n+ 1)

Γ (β + k + 1)(s− k)!k!2Γ (α+ β + n+ s+ 2)

× 3F2(−n,−β − n, α+ s− k + 1;α+ 1,−β − k − n; 1).

On the other hand, recalling that by (1.5),

Rα,βn (z) =
+∞∑
l=0

(−n)l(n+ α+ β + 1)l
(α+ 1)ll!

(
1− z

2

)l
,

we have

1
2
Hn(α+ β + 1, ρ2)Rα,βn (cos 2θ)

=
+∞∑
s=n

Asρ
2s

2Γ (α+ β + n+ 2 + s)(s− n)!
Rα,βn

(
y2 − x2

y2 + x2

)

=
+∞∑
s=n

As
2Γ (α+ β + n+ 2 + s)(s− n)!

×
n∑
l=0

(−n)l(n+ α+ β + 1)l
(α+ 1)ll!

x2l(x2 + y2)s−l

=
+∞∑
s=n

As
2Γ (α+ β + n+ 2 + s)(s− n)!
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×
n∑
l=0

(−n)l(n+ α+ β + 1)l
(α+ 1)ll!

s−l∑
k=0

(
s− l
k

)
x2s−2ky2k

=
+∞∑
s=n

s∑
k=0

Asx
2s−2ky2k

2Γ (α+ β + n+ 2 + s)(s− n)!

×
min(s−k,n)∑

l=0

(−n)l(n+ α+ β + 1)l
(α+ 1)ll!

(
s− l
k

)

=
+∞∑
s=n

s∑
k=0

Asx
2s−2ky2k

2Γ (α+ β + n+ 2 + s)(s− n)!

×
+∞∑
l=0

(−n)l(n+ α+ β + 1)l
(α+ 1)ll!

(
s− l
k

)

=
+∞∑
s=n

s∑
k=0

Asx
2s−2ky2k

2Γ (α+ β + n+ 2 + s)(s− n)!
s!

(s− k)!k!

× 3F2(−n, α+ β + n+ 1, k − s;α+ 1,−s; 1).

Now, by Thomae’s identity (see [21]),

3F2(−n,−β − n, α+ s− k + 1;α+ 1,−β − k − n; 1)

=
(−1)n(−s)n
(β + k + 1)n

3F2(−n, α+ β + n+ 1, k − s;α+ 1,−s; 1),

and the theorem follows.

Observe that formulas (1.8) and (1.10) follow as a particular case of the
above theorem, taking Ak = (−1/4)k, so that

Hn(α, z2) = (−1)n2α
Jα+2n(z)

zα
,

G(α, β, x2, y2) = 2α
Jα(x)
xα

2β
Jβ(y)
yβ

.

Certain particular cases of Theorem 1.2 deserve to be properly empha-
sized, because they generalize Sonine’s integrals of first and second type and
formula (1.7) to this new general context.

Corollary 1.3. For θ = π/2 (that is, y = 0), Bateman’s expansion
becomes a generalization of formula (1.7),

(1.20) H0(α, x2 sin2 φ)

=
+∞∑
n=0

(−1)n(α+ β + 2n+ 1)Γ (α+ β + n+ 1)
Γ (α+ n+ 1)

Hn(α+β+1, x2)Pα,βn (cos 2φ),
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or, equivalently

(1.21)
π/2�

0

H0(α, x2 sin2 φ)Pα,βn (cos 2φ) dmα,β(φ)

=
(−1)nΓ (β + n+ 1)

2Γ (n+ 1)
Hn(α+ β + 1;x2).

For n = 0, formula (1.19) becomes a generalized version of Sonine’s second
finite integral

(1.22)
π/2�

0

G(α, β, x2 sin2 φ, y2 cos2 φ) dmα,β(φ) =
1
2
H0(α+ β + 1;x2 + y2),

while formula (1.21) becomes a generalized version of Sonine’s first finite
integral

(1.23)
π/2�

0

H0(α;x2 sin2 φ) dmα,β(φ) =
1
2
Γ (β + 1)H0(α+ β + 1;x2).

The next diagram describes the implications between the above formulas.
In it, we use the following notations:

BE: The generalized Bateman Expansion formula (1.18).
BI: The generalized Bateman Integral formula (1.19).
NE: The generalized Neumann series Expansion formula (1.20).
NI: The generalized Neumann Integral formula (1.21).
S2: The generalized Sonine’s second finite integral (1.22).
S1: The generalized Sonine’s first finite integral (1.23).

BE ks +3

θ=π
2

��

BI
y=0

y� ||
||

||
|

||
||

||
|

n=0

�%
BB

BB
BB

B

BB
BB

BB
B

NE ks +3 NI

n=0 �%
BB

BB
BB

B

BB
BB

BB
B S2

y=0y� ||
||

||
|

||
||

||
|

S1

2. Particular cases. The formulas we proved in the last section are
very general. Thus, it may be useful to write them in terms of the precise
special function we are interested in. In this section we will consider Laguerre
polynomials, Jacobi polynomials/functions, Gegenbauer polynomials, and
hypergeometric functions. In order to avoid cumbersome repetitions, we will
state only the integral formulas of BI (1.19) and NI (1.21) type. Indeed, all
other integral formulas are particular cases corresponding to n = 0, while
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the expansion formulas follow readily from these two by observing that if
π/2�

0

f(θ, φ)Pα,βn (cos 2φ) dmα,β(φ) = CnP
α,β
n (cos 2θ)

then

f(θ, φ) =
+∞∑
n=0

Cnp
α,β
n (cos 2θ)pα,βn (cos 2φ),

while if
π/2�

0

f(φ)Pα,βn (cos 2φ) dmα,β(φ) = Dn

then

f(φ) =
+∞∑
n=0

2(α+ β + 2n+ 1)Γ (α+ β + n+ 1)Γ (n+ 1)
Γ (α+ n+ 1)Γ (β + n+ 1)

DnP
α,β
n (cos 2φ).

On the other hand, although the NI formulas follow from the corresponding
BI formulas by taking y = 0 (or θ = π/2), this substitution carries a few
non-trivial computations, and it is therefore worthwile writing both formulas
explicitly.

2.1. Laguerre polynomials. When Ak = (−h)k for a positive inte-
ger h, then the two functions Hn and G become

(2.1) Hn(α, z) =



h−n∑
k=0

(−h)k+nzk+n

Γ (α+ 2n+ k + 1)k!

=
(−z)nΓ (h+ 1)
Γ (α+ n+ h+ 1)

Lα+2n
h−n (z) for n ≤ h,

0 for n > h,

G(α, β, x, y) =
∑
r+s≤h

(−h)r+sxrys

Γ (α+ r + 1)Γ (β + s+ 1)r!s!
(2.2)

=
1

Γ (α+ 1)Γ (β + 1)
Ψ2(−h;α+ 1, β + 1;x, y)

(here Ψ2 is the Humbert function, see [8, p. 28]). The function

Ψ2(−h;α+ 1, β + 1;x, y)

is a polynomial of degree h in the variables x and y and can therefore be
expressed in a more friendly fashion, as a linear combination of Lαn(x)Lβm(y)
with n+m ≤ h. The next propositions deal with this task.

Proposition 2.1. For any θ ∈ [0, π/2], the polynomials

Ψ2(−h;α+ 1, β + 1;x sin2 θ, y cos2 θ)
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solve the differential equation

(2.3) x
∂2u

∂x2
+ y

∂2u

∂y2
+ (α+ 1− x)

∂u

∂x
+ (β + 1− y)

∂u

∂y
+ hu = 0

Proof. An absolutely convergent series u(x, y) =
∑
ar,sx

rys solves (2.3)
if and only if

(r + 1)(r + α+ 1)ar+1,s + (s+ 1)(s+ β + 1)ar,s+1 = (r + s− h)ar,s,

and this condition holds when

ar,s =
(−h)r+s sin2r θ cos2s θ

Γ (α+ r + 1)Γ (β + s+ 1)r!s!
.

Proposition 2.2. The following equality holds:

Ψ2(−h;α+ 1, β + 1;x sin2 θ, y cos2 θ)

=
h∑

m=0

Γ (h+ 1)
(α+ 1)m(β + 1)h−m

sin2m θ cos2h−2m θ Lαm(x)Lβh−m(y).

Proof. Since Ψ2(−h;α+ 1, β + 1;x sin2 θ, y cos2 θ) is a polynomial of de-
gree h in the x variable, we have

Ψ2(−h;α+ 1, β + 1;x sin2 θ, y cos2 θ) =
h∑

m=0

Bh,m(θ, y)Lαm(x),

and this must be a solution of (2.3) for all θ. Thus

h∑
m=0

Bh,m(θ, y)x
∂2Lαm
∂x2

(x) + y
∂2Bh,m
∂y2

(θ, y)Lαm(x)

+ (α+ 1− x)Bh,m(θ, y)
∂Lαm
∂x

(x)

+ (β + 1− y)
∂Bh,m
∂y

(θ, y)Lαm(x) + hBh,m(θ, y)Lαm(x) = 0.

It is well known that x∂
2Lαm
∂x2 (x) + (α + 1 − x)∂L

α
m

∂x (x) = −mLαm(x) (see [18,
p. 100]). Thus

h∑
m=0

−mBh,m(θ, y)Lαm(x) + y
∂2Bh,m
∂y2

(θ, y)Lαm(x)

+ (β + 1− y)
∂Bh,m
∂y

(θ, y)Lαm(x) + hBh,m(θ, y)Lαm(x) = 0,

and therefore, for all m = 1, . . . , h, it must be

y
∂2Bh,m
∂y2

(θ, y) + (β + 1− y)
∂Bh,m
∂y

(θ, y) + (h−m)Bh,m(θ, y) = 0.
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It is also well known (see again [18, p. 101]) that the only polynomial solution
to the above equation is

Bh,m(θ, y) = Ch,m(θ)Lβh−m(y).

Thus

Ψ2(−h;α+ 1, β + 1;x sin2 θ, y cos2 θ) =
h∑

m=0

Ch,m(θ)Lβh−m(y)Lαm(x).

In order to determine Ch,m(θ), observe that the coefficient of the term
xmyh−m is

(−h)h sin2m θ cos2h−2m θ

(α+ 1)m(β + 1)h−mm!(h−m)!

in the left hand side, and

Ch,m(θ)
(−1)h

m!(h−m)!

in the right hand side, and these two must coincide.

We are now ready to write Bateman’s integrals for Laguerre polynomials,
in two different versions: one involving the Humbert function Ψ2, and the
other involving just Laguerre polynomials. Applying formula (1.19) with Hn

and G given by (2.1) and (2.2), and Ψ2 given by Proposition 2.2, one obtains
the following BI-type integrals:

(2.4)
Γ (α+ 1)Γ (β + 1)

2Γ (α+ β + n+ h+ 2)
(−ρ)nLα+β+2n+1

h−n (ρ)Pα,βn (cos 2θ)

=
1

Γ (h+ 1)

π/2�

0

Pα,βn (cos 2φ)

× Ψ2(−h;α+ 1, β + 1; ρ sin2 φ sin2 θ, ρ cos2 φ cos2 θ) dmα,β(φ)

=
h∑

m=0

sin2m θ cos2h−2m θ

(α+ 1)m(β + 1)h−m

×
π/2�

0

Pα,βn (cos 2φ)Lαm(ρ sin2 φ)Lβh−m(ρ cos2 φ) dmα,β(φ)

=
h∑

m=0

Lαm(ρ sin2 θ)Lβh−m(ρ cos2 θ)
(α+ 1)m(β + 1)h−m

×
π/2�

0

Pα,βn (cos 2φ) sin2m φ cos2h−2m φdmα,β(φ)
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where 0 ≤ n ≤ h. For θ = π/2 one obtains the NI-type integrals

(2.5)
Γ (α+ h+ 1)Γ (β + n+ 1)

2Γ (α+ β + n+ h+ 2)Γ (n+ 1)
ρnLα+β+2n+1

h−n (ρ)

=
π/2�

0

Pα,βn (cos 2φ)Lαh(ρ sin2 φ) dmα,β(φ)

=
h∑

m=0

Γ (α+ h+ 1)Lαm(ρ)
Γ (α+1+m)Γ (h−m+1)

π/2�

0

Pα,βn (cos 2φ) sin2m φ cos2h−2m φdmα,β(φ)

where 0 ≤ n ≤ h. It is perhaps worthwhile writing explicitly the cases
n = 0: formula (2.4) gives analogs of Sonine’s second finite integral (S2-type
formulas)

(2.6) Lα+β+1
h (ρ) =

2Γ (α+ β + h+ 2)
Γ (α+ 1)Γ (β + 1)Γ (h+ 1)

×
π/2�

0

Ψ2(−h;α+ 1, β + 1; ρ sin2 φ sin2 θ, ρ cos2 φ cos2 θ) dmα,β(φ)

=
h∑

m=0

2Γ (α+ β + h+ 2)
Γ (α+m+ 1)Γ (β + h−m+ 1)

sin2m θ cos2h−2m θ

×
π/2�

0

Lαm(ρ sin2 φ)Lβh−m(ρ cos2 φ) dmα,β(φ)

=
h∑

m=0

Lαm(ρ sin2 θ)Lβh−m(ρ cos2 θ) (see [13, p. 96]),

while (2.5) become two S1-type formulas

Lα+β+1
h (x) =

2Γ (α+ β + h+ 2)
Γ (α+ h+ 1)Γ (β + 1)

π/2�

0

Lαh(x sin2 φ) dmα,β(φ)(2.7)

(Koshlyakov (1.15))

=
h∑

m=0

Γ (β + h−m+ 1)
Γ (β + 1)Γ (h−m+ 1)

Lαm(x) (see [13, p. 96]).

2.2. Jacobi functions. If in the definition of Jacobi polynomials we
assume that µ = n is not necessarily an integer, and let the sum go from 0
to +∞, we obtain the so-called Jacobi functions (see [10])
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Pα,γµ (x) =
Γ (α+ µ+ 1)

Γ (µ+ 1)Γ (α+ 1)

+∞∑
k=0

(−µ)k(µ+ α+ γ + 1)k
(α+ 1)kk!

(
1− x

2

)k
=

Γ (α+ µ+ 1)
Γ (µ+ 1)Γ (α+ 1)

(
1 + x

2

)µ +∞∑
k=0

(−µ)k(−µ− γ)k
(α+ 1)kk!

(
x− 1
x+ 1

)k
.

Thus, if we let Ak = (−µ)k(−µ − γ)k, then the two functions Hn and G
become

Hn(α, z) =
+∞∑
k=0

(−µ)k+n(−µ− γ)k+nzk+n

Γ (α+ 2n+ k + 1)k!

=
Γ (µ+ 1)Γ (µ+ γ + 1)

Γ (µ− n+ γ + 1)Γ (α+ µ+ n+ 1)
zn(1− z)µ−nPα+2n,γ

µ−n

(
1 + z

1− z

)
,

G(α, β, x, y) =
+∞∑
r,s=0

(−µ)r+s(−µ− γ)r+sxrys

Γ (α+ r + 1)Γ (β + s+ 1)r!s!

=
1

Γ (α+ 1)Γ (β + 1)
F4(−µ,−µ− γ;α+ 1, β + 1;x, y)

where F4 denotes the Appell function (see [7, p. 224], or [8, p. 23]).
Applying Theorem 1.2 in this case gives (BI)

(2.8)
π/2�

0

(ρ+1)µF4

(
−µ,−µ−γ;α+1, β+1;

ρ− 1
ρ+ 1

sin2 θ sin2 φ,
ρ− 1
ρ+ 1

cos2 θ cos2 φ

)
× Pα,βn (cos 2φ) dmα,β(φ)

=
2µ−n−1Γ (α+ 1)Γ (β + 1)(−µ)n(−γ − µ)nΓ (µ− n+ 1)

Γ (α+ β + n+ µ+ 2)

× (ρ− 1)nPα+β+2n+1,γ
µ−n (ρ)Pα,βn (cos 2θ)

where 0 ≤ n ≤ µ if µ is a non-negative integer. Applying formula (1.21), we
obtain a NI-type formula

(2.9)
π/2�

0

Pα,βn (cos 2φ)[1− ρ sin2 φ]µPα,γµ

(
1 + ρ sin2 φ

1− ρ sin2 φ

)
dmα,β(φ)

=
(−1)nΓ (µ+ γ + 1)Γ (β + n+ 1)Γ (α+ µ+ 1)

2Γ (µ+ γ − n+ 1)Γ (α+ β + n+ µ+ 2)Γ (n+ 1)

× ρn(1− ρ)µ−nPα+β+2n+1,γ
µ−n

(
1 + ρ

1− ρ

)
where 0 ≤ n ≤ µ if µ is a non-negative integer; Askey and Fitch’s for-
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mula (1.13) follows on taking n = 0, µ a non-negative integer and x =
(1 + ρ)/(1− ρ).

2.3. Gegenbauer polynomials. The formulas from this subsection
follow from those in the previous subsection, by means of the identities (see
formula (1.11) and [18, p. 59])

P
α+1/2
h (r) =


√
π Γ (α+m+ 1/2)

Γ (α+ 1/2)Γ (m+ 1/2)
P
α,−1/2
m (2r2 − 1) if h = 2m,

√
π Γ (α+m+ 3/2)

Γ (α+ 1/2)Γ (m+ 3/2)
rP

α,1/2
m (2r2 − 1) if h = 2m+ 1.

Taking γ = −1/2 and h = 2µ, or γ = 1/2 and h = 2µ + 1 in formulas
(2.8), (2.9) according to whether h is even or odd respectively, and letting
1+ρ
1−ρ = 2r2 − 1 one obtains (BI)

(2.10)
π/2�

0

rhF4

(
−h

2
,−h− 1

2
;α+1, β+1;

r2 − 1
r2

sin2 θ sin2 φ,
r2 − 1
r2

cos2 θ cos2 φ

)
× Pα,βn (cos 2φ) dmα,β(φ) =

Γ (α+ 1)Γ (β + 1)(−h/2)n
`
−h−1

2

´
n
Γ (h/2− n+ 1)Γ (h/2− n+ 1/2)Γ (α+ β + 2n+ 3/2)

2
√
π Γ (α+ β + n+ h/2 + 2)Γ (α+ β + n+ h/2 + 3/2)

× (r2 − 1)nPα+β+2n+3/2
h−2n (r)Pα,βn (cos 2θ)

if 0 ≤ 2n ≤ h; letting 1+ρ
1−ρ = 2 cos2 ψ − 1 in (2.9), we obtain (NI)

(2.11)
π/2�

0

Pα,βn (cos 2φ)(1− sin2 ψ cos2 φ)h/2Pα+1/2
h

(
cosψ√

1− sin2 ψ cos2 φ

)
dmα,β(φ)

=
Γ (α+ β + 2n+ 3/2)Γ (β + n+ 1)Γ (α+ h/2 + 1)Γ (α+ h/2 + 1/2)

2Γ (α+ β + n+ h/2 + 2)Γ (α+ β + n+ h/2 + 3/2)Γ (α+ 1/2)Γ (n+ 1)

× sin2n ψ P
α+β+2n+3/2
h−2n (cosψ)

if 0 ≤ 2n ≤ h; for n = 0 this is Feldheim’s formula (1.12).

2.4. Hypergeometric function. If there exist two non-negative inte-
gers j and h, and real numbers a1, . . . , aj , b1, . . . , bh, such that

Ak =
(a1)k . . . (aj)k
(b1)k . . . (bh)k

,
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then the functions Fn and G reduce to hypergeometric functions and Kampé
de Fériet functions (see [7], [8], [13] for the definitions). Precisely

Hn(α, z) =
(a1)n . . . (aj)nzn

Γ (α+ 2n+ 1)(b1)n . . . (bh)n
× jFh+1(a1 + n, . . . , aj + n; b1 + n, . . . , bh + n, α+ 2n+ 1; z),

G(α, β, x, y) =
1

Γ (α+ 1)Γ (β + 1)
F j:0h:1

(
a1, . . . , aj :
b1, . . . , bh :

;
α+ 1;

;
β + 1;

x, y

)
.

Thus, the integral formulas are:

(2.12)
π/2�

0

F j:0h:1

(
a1, . . . , aj :
b1, . . . , bh :

;
α+ 1;

;
β + 1;

ρ2 sin2 θ sin2 φ, ρ2 cos2 θ cos2 φ

)
× Pα,βn (cos 2φ) dmα,β(φ)

=
Γ (α+ 1)Γ (β + 1)(a1)n . . . (aj)n

2Γ (α+ β + 2n+ 2)(b1)n . . . (bh)n
ρ2n

× jFh+1(a1 +n, . . . , aj +n; b1 +n, . . . , bh+n, α+β+ 2n+ 2; ρ2)Pα,βn (cos 2θ)

and

(2.13)
π/2�

0

Pα,βn (cos 2φ) jFh+1(a1, . . . , aj ; b1, . . . , bh, α+ 1;x2 sin2 φ) dmα,β(φ)

=
Γ (α+ 1)Γ (β + n+ 1)(a1)n . . . (aj)n

2Γ (α+ β + 2n+ 2)Γ (n+ 1)(b1)n . . . (bh)n
(−x2)n

× jFh+1(a1 + n, . . . , aj + n; b1 + n, . . . , bh + n, α+ β + 2n+ 2;x2).

When n = 0, j = 2 and h = 0, formula (2.13) is originally due to Bateman
(see [5, p. 184]). It also appears as an exercise in [13, p. 277].

Formula (2.12) with n = 0 follows as a particular case of formula (1a)
in [17], by taking there h = 2, n = 1, s = 2α + 2, σ = β + 1, µ = 0,
ρ = 1, δ = α + 1, δ′ = β + 1, a = ρ2 sin2 θ and b = ρ2 cos2 θ. Although the
authors study several particular cases of their formula, they seem to miss
this particular one.

Finally, when j = 1 and h = 0, formula (2.13) is equivalent to (an integral
version of) Erdélyi’s formula (1.16).

3. Final remarks. In [11, p. 738], P. Henrici proves an interesting for-
mula on the product of two Whittaker functions. An equivalent restatement
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of his formula in terms of the confluent hypergeometric function 1F1 is

(3.1)
π/2�

0

1F1(A,α+ 1, ρ sin2 φ) 1F1(B, β + 1, ρ cos2 φ)Pα,βn (cos 2φ) dmα,β(φ)

=
Γ (α+ n+ 1)Γ (β + 1)(β −B + 1)n

2n!Γ (α+ β + 2n+ 2)
× 3F2(−β − n, α−A+ 1,−n;B − β − n, α+ 1; 1)
× (−ρ)n 1F1(A+B + n;α+ β + 2n+ 2; ρ).

Henrici shows several particular cases of (3.1), some of which are Bateman’s
expansion (1.8) and Erdélyi’s formula (1.16). Formula (3.1) should be com-
pared with (2.12) in the case j = 1, h = 0. On the left hand side it presents
the product of two confluent hypergeometric functions, rather than a double
series. On the other hand, (2.12) involves a “free” parameter θ, which in
Henrici’s formula is set equal to π/4. Although it does not seem possible
to deduce Henrici’s formula from (2.12), or more generally from (1.19), it
is fairly simple to modify the proof of Theorem 1.2 in order to prove (3.1).
One only has to replace Ar+s with (A)r(B)s, set x = y = ρ, and observe
that the following identity holds:

N−l∑
k=0

(
N − l
k

)
(A)N−k(B)k
(A+B)N

=
(A)l

(A+B)l
.

Due to the particularity of the above identity, this proof cannot be used to
show a hypothetical generalization of Henrici’s formula to, say, 2F1 or other
hypergeometric functions.
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