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INVERSE SEQUENCES WITH PROPER BONDING MAPS

BY

TOMAS FERNANDEZ-BAYORT and ANTONIO QUINTERO (Sevilla)

Abstract. Some topological properties of inverse limits of sequences with proper
bonding maps are studied. We show that (non-empty) limits of euclidean half-lines are
one-ended generalized continua. We also prove the non-existence of a universal object
for such limits with respect to closed embeddings. A further result states that limits of
end-preserving sequences of euclidean lines are two-ended generalized continua.

1. Introduction. This paper is concerned with spaces obtained as in-
verse limits of sequences whose bonding maps are proper @ Among other
results, we prove that inverse limits of end-preserving sequences of euclidean
lines (R-type spaces) or half-lines (R>o-type spaces) preserve connectedness
and Freudenthal ends (Theorems and [6.1)). In contrast, this is no longer
true for trees without terminal vertices with three or more ends. Further-
more, we show that the category of R>o-type spaces and proper maps does
not admit a universal space (Theorem .

As the space of Freudenthal ends of inverse limits of sequences with
proper bonding maps may fail to be metrizable (see Example , we will
use the general theory of ends based on ultrafilters as in [H| and [FG]. In
Appendix A we collect the elements of that theory needed in this paper. A
second appendix contains an explicit proof of the fact that for generalized
continua, Freudenthal ends can be equivalently defined by the use of nested
sequences of quasicomponents (Theorem .

2. Preliminaries. By a space we mean a locally compact o-compact
Hausdortf space. It is clear that local compactness and o-compactness yield
the existence of exhausting sequences, that is, increasing sequences of com-
pact sets K,, C X such that X = U;O:1 K, and K,, C int K, 1. The Freuden-
thal ends of a space X are defined as follows (see [Er1], [Fr2] and [H]). Let A
denote the family of all closed sets in X with compact frontier. The Freuden-
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thal compactification of X is the space X of all A-ultrafilters endowed with
the compact topology whose basic closed sets are of the form

BA)={UeX:AcU}

where A ranges over A; see [H, 2.1]. Moreover, each € X is identified with
the A-ultrafilter U, such that x € U for all U € U, (termed a trivial A-
ultrafilter). This way X can be regarded as the union of X with the set of all
non-trivial A-ultrafilters in X. The difference F(X) = X — X turns out to be
a zero-dimensional closed subspace whose elements are called the Freudenthal
ends of X. A space X is said to be one-ended (two-ended, respectively) if
it has exactly one Freudenthal end (two Freudenthal ends, respectively). In
Appendix A we give a brief account of the basic properties of the Freudenthal
compactification used in this paper.

Most of the results in this paper deal with metrizable spaces (admis-
sible spaces, for short) and all maps considered are proper. Recall that
a continuous map f : X — Y is said to be proper if f~1(K) is com-
pact for each compact subset K C Y. It is well-known that proper maps
between admissible spaces are closed (|E, 3.7.18|). Any proper map f :
X — Y between admissible spaces extends to a continuous map f: X =
Y which restricts to a continuous map f. : F(X) — F(Y). Namely, if

~ _

U € F(X), then f(U) = fi(U) is the unique element in (o, f(U)Y. See
Lemma [A.6]

Notice that admissible spaces are second countable. Connected admissi-
ble spaces are termed generalized continua. The ends of a generalized con-
tinuum X can be described in a more geometrically appealing way as nested
sequences of quasicomponents. More precisely, there is a homeomorphism

F(X) = 1lim Q(X — int K,,)

where Q(X — int K,) is the space of quasicomponents of X — int K, and
{K, }n>1 is an exhausting sequence of X. In particular, F(X) is homeomor-
phic to a closed subset of the Cantor set. All this is stated without proof
in [Sh]. For the sake of completeness we give explicit proofs of these facts in
Appendix B.

In general, the Freudenthal compactification of an admissible space X
may fail to be metrizable. In fact, the metrizability of X and F (X) are
equivalent and both are equivalent to the compactness of the space of qua-
sicomponents of X. Explicitly,

THEOREM 2.1 ([I, Thm. VI.42|). Let X be a separable metric space in
which every point has arbitrarily small neighbourhoods with compact frontier.
Then X is metrizable and compact if and only if the space of quasicomponents
of X is metrizable and compact.
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In particular, the Freudenthal compactification of a generalized contin-
uum is always a metrizable space and hence a continuum. This fact allows
us to prove the following

LEMMA 2.2. Let {K,}n>1 be an exhausting sequence of the generalized
continuum X and let € = (Qn)n>1 be the Freudenthal end defined by the
nested sequence of quasicomponents Q) C X —int Ky,. Then, for everyn > 1
there is a continuum L C X — int K, joining € and Fr K,,. Moreover each
Qn (n>1) contains at least one non-compact component.

The following well-known result is crucial in the proof of Lemma

LEMMA 2.3 (KL Thm. 2, p. 172]). If A C X is a non-trivial subset of
the continuum X and C is a component of X — A, then CNFrA # (. In
particular, if A= {p} reduces to one point, then p lies in the closure of each
component C C X — {p}.

Proof of Lemma |2.2 m Any sequence {xy }r>, wWith z, € Qf converges to
cin X. Let Dj, denote the component of zj in X - int K,,. We claim that
DpNX C @y for all k > n. Indeed, for any closed-open set H in X —int K,
with @, C H we know from the topology of X (see Appendix B) that the

set H = HUH” with HX = H* n F(X) is closed-open in X — int K,
containing . Therefore Dy C H by connectedness and so D, N X C H;
that is, Dy N X C @, by definition of a quasicomponent.

Next we apply Lemmato int K,, C X to show that Dy, meets Fr(int K,,)
C Fr K, for all £ > n. By compactness of Fr K,,, we can assume without loss
of generality that there is a sequence y; € Dy N Fr K,, C @, converging to
some gy € Qn NFr K. Here we use the fact that Q,, is a closed set.

As yp lies in the lower limit Li Dy, [K, Thm. 6, p. 171] implies that
the upper limit L = Ls Dy, C X — int K, is a continuum with ¢ € L and
yo € Fr K, N L.

We apply again Lemma to Lg = F(X)N L C L to show that the
closure in L of the component of yy, C' C L — Lg, contains at least one
end of Lg. Hence C is a connected non-compact closed set in X — int K,
containing yo € Q. Therefore C' C @Q,, by definition of a quasicomponent,
and the component of yg in @, is necessarily non-compact. =

The unbounded component given by Lemma need not be unique, as
shown by the generalized continuum X C Rxq x [0, 1] depicted in the figure
below.

It is clear that X is one-ended; however, for all n > 1 the quasicomponent
outside [0,n) x [0, 1] consists of two unbounded components, namely [ng, 00)
and [n, c0).
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Uniqueness of such components holds for the so-called Peano general-
ized continua. Recall that a Peano continuum X is a metrizable, compact,
connected and locally connected space. If compactness is replaced by local
compactness, then the space X is called a generalized Peano continuum. Any
generalized Peano continuum is separable (|[ElL 4.4 F.(c)]) and hence second
countable; that is, a generalized Peano continuum is a locally connected gen-
eralized continuum. For locally connected spaces, quasicomponents coincide
with components; in particular, Freudenthal ends are defined by components;

see [ShV].

3. Inverse limits with proper bonding maps. We will use the no-
tation X = @p{Xn, fn} to represent the inverse limit of a sequence with
proper bonding maps f,,. Notice that X may be the empty space (e.g., the
sequence of inclusions X; D Xg D --+ where X,, = [n,00)). For non-empty
inverse limits the following lemma can be easily proved; compare (|El 3.7.12]).

LEMMA 3.1. Any non-empty inverse limit X = lijlp{Xn,fn} of ad-
missible spaces is an admissible space. Moreover, the matural projections
mn : X — X, are proper maps. Furthermore, if the f,’s are monotone then
so are the m,,’s.

Recall that a map f : X — Y is said to be monotone if it is a continuous
surjection such that f~!(y) is connected for each y € Y. It is known (see
[E], 6.1.29]) that if f is a monotone closed map then f~1(C) is connected for
any connected set C' C Y.

COROLLARY 3.2. Any inverse limit of generalized continua X =
@p{Xn,fn} with monotone proper bonding maps is a generalized conti-
nuum.

By using the Aleksandrov one-point compactification, X = X U {0},
we next show that inverse limits with proper bonding maps can be regarded
as ordinary “pointed” inverse limits. For this, if X, is pointed by x, € X,
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by writing X = liin*{Xn,gn} we mean that X is the limit of an inverse
sequence whose bonding maps satisfy g, !(z,) = x,41 for all n. Recall that
any proper map f : X — Y extends to a continuous map f: XT — YT
by setting f(c0) = oo. With this notation, the following proposition is a
straightforward consequence of the universal property of inverse limits.

PROPOSITION 3.3. For any admissible space X the following two state-
ments are equivalent:

(a) X =limy{X,, fn}.
amy
(b) X =lim, { X, f;} where X, is pointed by oo € X;F for each n.

As an admissible space X is embedded as a closed subset in R™ if and only
if X embeds in the n-sphere S™, the following corollary is an immediate
consequence of the embedding theorem ([N) 2.36]) due to Isbell.

COROLLARY 34. If X = lian{Xn, fn} where each X,, is homeomorphic

to a non-trivial closed subset of R¥, then X can be embedded as a closed set
in R?k

4. Inverse limits preserving Freudenthal ends. Compactness is cru-
cial, not only for the existence of non-empty inverse limits, but also for the
preservation of connectedness. For instance, the inverse limit of one-ended
trees X, sketched in the next figure consists of two copies of the half-line R>.

Here the (proper) maps g, are the obvious projections.

We proceed to study the relationship between the connectedness of X =
@p{Xn, fn} and the behaviour of the bonding maps f, with respect to
ends. We start with the following

PROPOSITION 4.1. If X = lim,{Xp, fn} is an inverse limit of gener-

alized continua, then there is a canonical continuous surjection p : X —

lim{ X, fn}.

Proof. It is clear that the maps 7, : X — )?n induced by the projections
T+ X — X, define a canonical map ¢ : X — L = lim{X,, f,}. Moreover,
patl

~ ~

the image ¢(X) C L is compact, and hence its complement D = L —¢(X) is
an open set contained in the compact set F' = im{F(Xy,), fn«}. If D # 0 and
€ € D, the 0-dimensionality of F' yields an open and closed neighbourhood
of ein F, {2 C D. Therefore, {2 is open in L as well as closed in F', and hence
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compact in L. This contradicts the connectedness of L, proving D = (). Here
we use the fact that the X,,’s are continua.

COROLLARY 4.2. Under the above assumptions, there exists a continuous
surjection of the Freudenthal ends of X = @p{Xn, fn} onto the inverse limit
lln{]:(Xn)vfn*}

We say that an inverse sequence {X; Aox, 2 .-+ } with proper
bonding maps is end-faithful if the induced maps gn« : F(Xp41) = F(Xp)
are homeomorphisms for all n > 1. Moreover, the limit X = @p{Xn, gn} is
said to be end-preserving if the canonical projections m, : X — X, induce
homeomorphisms 7, : F(X) = F(X,,) for all n > 1.

Obviously, sequences of one-ended spaces are end-faithful. The following
example shows that end-faithful sequences may have non-metrizable spaces
of ends.

ExaMpPLE 4.3. The end space of the inverse limit of one-ended trees
needs not be metrizable. Indeed, let {p;};>1 be an increasing sequence of
prime numbers where p; = 2 and consider the inverse sequence formed by
the trees (n > 1)

Xn = ([1,00) x {0}) U{{pi"} x [0,pi']}i1
and proper maps f, : X;,41 — X, defined as follows:
(x,0) if x € [1,00),
Fal,0) = § (/7" +,0) if0<a<p! ' (pi—1),
e —pf = 1) T (i —1) <@ < pf

(N

The dotted line in the figure depicts the image under f,,—;1 of the segment
{pi} x [0,p]'] C Xp. It is not hard to check that X = lim,{X,, f,} is
homeomorphic to the disjoint union [1,00) LI | |;5;[pi,00), and so F(X) is
not metrizable by Theorem [2.1]

PROPOSITION 4.4. Assume that the admissible space X = limp{X,,, gn}

p—

18 the end-preserving limit of an end-faithful sequence of generalized continua.
Then X s connected, and hence a generalized continuum.

In the proof of Proposition [£.4] we will use the following straightforward
generalizations of [E, 2.5.7] and [N} 2.19], respectively. We include the proof
of Lemma [£.6] for the sake of completeness.
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LEMMA 4.5. Let A C X = @p{Xi,fi} be a closed set where the X;’s
are admissible spaces. If m; : X — X; are the canonical projections, then
A = limp{m;(A), fi} for the obvious restrictions f;.

LEMMA 4.6. Let A1, As C X be closed subsets of an inverse limit X =
@p{Xi,fi} of admissible spaces. If Ay N As # 0 and either Ay or As is
compact, then Ay N Ay = lim,{m;(A1) N m;(A2), ft} for the obvious restric-
tions fil.

Proof. As each intersection m;(A;) N m;(Az2) is compact, the limit L =
limy, {m; (A1) N m;(A2), f!} is not empty. Furthermore, by Lemma AN
Ay = @p{ﬂi(Al N As), 2} C L for the corresponding restrictions f?. Con-
versely, given © = (z;);>1 € L there is an element yf € Aj such that
mi(y]) = x; for all 4,5 = 1,2. Then the sequences yl1 and yf converge to
z in X and so x € A1 N As. Here we use the fact that A; and As are closed
sets. m

REMARK 4.7. The inverse limit at the beginning of this section shows
that Lemma [£.6] fails to hold if compactness is dropped.

Proof of Proposition[4.4. Suppose that X = U;UUs is a disjoint union of
two open (and hence closed) sets. Consider the induced maps 7, : X — X,

between Freudenthal compactifications, and set A; = ﬁX for s = 1,2. By
Lemma A; = lim{7,(A;), gy} for the obvious restrictions. Moreover,

the connectedness of X, leads to 7n(A1) N7, (Ag) # 0 for each n. Applying
Lemma we get A1NAy = lm{7,(A1)N7n(A2), 7y } for the corresponding
restrictions, and hence A1 N Ay = Ay N As N F(X) # 0. Thus, for any end
UeAiNA,, Lemmayields Uy,Us € U, whence ) = Uy NUs € U, which
contradicts that U is a filter. m

We also have the following partial converse of Proposition [1.4}

PROPOSITION 4.8. A path connected inverse limit X = lim,{D;, f;} of
an end-faithful sequence of generalized dendrites is end-preserving.

Recall that a (generalized) dendrite is a (generalized) Peano continuum in
which any two different points can be separated by the omission of some third
point. It is known that the Freudenthal compactification of a generalized
dendrite is a dendrite; see [FeQ), Sect. 4] for a proof.

Proof of Proposition[{.8 Suppose that there are two distinct Freudenthal
ends (i.e., sequences of quasicomponents) g1 = (QL)n>1 and g3 = (Q3)n>1
with € = m(e1) = mis(g2) for each i > 1. Here m : F(X) — F(X))
are the maps induced by the projections m; : X — X;. As 1 # & the
quasicomponents Q. and Q2 are disjoint for n large enough. Let L;cX—
int K,, (j = 1,2) be continua in X given by Lemma with ¢; € L;
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and L; N FrK,, # (. Then, for the induced map 7; : X — X;, the image
mi(L;) is a connected set in the dendrite D; with e € 7;(L1) N7;(Ls). Hence
2; =7;(L1)UT;(L2) is also a connected set in D;. If 08 = ;N F(D;), then
Q; — Q28 = m;(Ly — L) Umi(Ly — L3) with L% = L; N F(X). Notice that
L; — L} is closed in X.

On the other hand, we choose a path I' C X with I' N L; # 0 for
j = 1,2. Hence m;(I") is a continuum in D; and so is X; = m;(I") N §2; =
() N (£2; — 2) since dendrites are hereditarily unicoherent. Therefore,
for the restrictions f/ : Y11 — X the inverse limit X' = lim{Y;, f;} is a
continuum in X. However, Lemma yields

S =InN((L — LY U (Ly — L2))

where the right-hand side space is not connected. This is a contradiction and
the proof is finished.

REMARK 4.9. As any generalized Peano continuum is path connected
(|Shul, 4.2.5]), Proposition 4.8 holds for X being a generalized Peano contin-

uum.

Monotone bonding maps produce end-faithful inverse sequences. More
precisely:

THEOREM 4.10. Any sequence { X Jr Xo L } of admissible spaces
with monotone proper bonding maps is end-faithful. Moreover, its inverse
limit X = lim,{X,, fn} is end-preserving.

Jp

The proof is an immediate consequence of the following

LEMMA 4.11. Any monotone proper map f: X — Y between admissible
spaces induces a homeomorphism f.: F(X) — F(Y).

Proof. Let {Ly}n>1 be an exhausting sequence of Y. It is readily checked
that { K, },>1 with K,, = f~1(L,) is an exhausting sequence of X . Given two
ends (i.e., A-ultrafilters) Uy # Uy in F(X), there exist two closed sets with
compact frontier, U; € Uy and Uy € Us, with Uy NUy = () and Fr Uy UFr Us C
int Ky, for ng sufficiently large. By Lemma[A.2] X —int K, € U1 N and so
Fy =U;—int K, and Fy = (X —int K,,,) — F form a partition of X —int K,
into two closed-open sets with F; € U; and Fy € Us since Us —int K,,; C Fy.

On the other hand, f(Fy) N f(F2) = 0; indeed, if f(xz1) = f(x2) for
x; € F; then the connected set f~!(f(x1)) meets Fy and F,, which is a
contradiction. Here we use the monotonicity of f. This way f(F1) and f(Fb)
form a partition of Y —int L,,, = f(X —int K,,,) into two closed (and hence
open) sets. Therefore the frontier of f(F;) in Y is compact for i = 1,2.

o~ -

Moreover f(U;) = fi(U;) € f(E)Y by definition of the induced map f :
X — Y. Hence f(F;) belongs to the A-ultrafilter f.(U;); see Lemma
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Moreover, f(Fy) N f(Fy) = 0 yields fo(U1) # f«(Us). This shows that fi is
injective.

The surjectivity of f, follows from the fact that monotone maps are
supposed to be onto and hence, given any end W € F(Y), f~(W) is an
A-filter in X by Lemma [A7] It is readily checked from the definition of f,
that f.(U) = W for any A-ultrafilter & with f~*(W) C U. =

Proof of Theorem [[.10. Tt follows from Lemma [£.11] that the induced
maps fpe : F(Xnt1) — F(X,) are homeomorphisms. To check that the
inverse limit is end-preserving we observe that the projections 7, : X — X,
are monotone by Lemma [3.I] and we apply Lemma again. m

5. Ray-type spaces. Next we consider the proper analogue of the well-
known class of arc-like spaces in continuum theory. Namely, we say that a
space X is a ray-type space if X = liinp{Xn,fn} where X,, = Rx¢ is the
euclidean half-line for each n > 1.

LEMMA 5.1. Let X = anp{Rzo,fn} be a ray-type space. If F1 and F»
are two non-compact closed connected subsets in X, then either Fy C Fs or
F> C Fy.

Proof. By Lemma @ the projections m, : X — Ry( are proper, and
so m,(F1) and m,(F») are non-compact closed connected subsets in R>g.
Hence m,(Fj) (j = 1, 2) is an unbounded closed interval and hence either
Tn(F1) C mn(F2) or mp(F2) C mp(F1). Notice that if 7, (F1) C mp(Fy) for
some m, then m,(F1) C my(F2) for all n < m. Therefore, the existence of an
infinite subsequence {n;};>1 with m,,(F1) C mp; (F2) yields 7, (F1) C mn(F)
for all n > 1. Moreover, by Lemma Fy = limp{m,(F), f;,} where fj, :
Tnt1(F;) — mp(F;) are the restrictions (7 = 1,2), and so F} C Fb.

If the subsequence {n;};>1 does not exist, then necessarily there is ng
for which m, (Fy) C m,(F1) for n > ng, and so Fo C F}. =

THEOREM 5.2. Any ray-type space X is a one-ended gemeralized contin-
wum.

Proof. X has at most one non-compact component by Lemmal[5.1] On the
other hand, Proposition [3.3] implies that the Aleksandrov compactification
X is an (arc-like) continuum, and so Lemma shows that the closure of
any component C' C X = Xt — {co} must contain oo € C. Hence, X has
non-compact components and so it is a generalized continuum.

Suppose that X has two distinct ends &; = (Q%)n>1 (i = 1,2) defined by
sequences of quasicomponents Q¢ C X —int K, for the exhausting sequence
{Kn}n>1. As €1 # €9, there exists an ng such that the quasicomponents Q}m
and Q% are disjoint. Let C; C Qﬁlo be a non-compact component given by
Lemma As each Q! is a closed set, so is C;, and Lemmayields either



310 T. FERNANDEZ-BAYORT AND A. QUINTERO

CiCcCyC@Q®,orCycCCiC Q}IO. In both cases, Q,lm N Q%O # (), which is

no’
a contradiction. =

REMARK 5.3. In continuum theory, arc-like spaces are characterized by
the existence for each € > 0 of an e-map f: X — [0,1] (i.e., for each z € X,
diam(f~1(f(2))) < €).

A crucial step in the proof is the fact that if f is an e-map then there
exists § > 0 such that diam(f~1(A4)) < e whenever diam(A) < §; see [N,
2.33|. This property does not hold for ray-type spaces; indeed, the linear
homeomorphism ¢ : R>g — Rx>¢ defined by g(n) = n and g(n + 1/2) =
n+1/n is an e-map for all € > 0 but for the sets A,, = [n,n + 1/n] we have
diam(A,) < 1/n and diam(g~!(A,)) = 1/2 for all n.

In order to obtain a characterization of ray-type spaces in terms of e-maps
f:X — Rsp=[0,1) we have to consider metrics on X which are controlled
at infinity, that is, for each n > 0 there exists a compact set K C X such
that d(z,y) < n if z,y € X — K (these metrics are exactly restrictions of
metrics on the Aleksandrov compactification X ).

This way, a space X is ray-type if and only if, given a metric d on X
controlled at infinity, there exists an e-map f : (X,d) — R>¢ for any € > 0.
For this we observe that X = @p{RZO,gn} is ray-type if and only if
Xt = &noo{R;:O,g;f} (Proposition . Then, a careful inspection of the
arguments in the proof of [N, 12.19[ shows that the latter is equivalent to
the existence of an emap f: X — R, 2 [0,1] with f~!(c0) = oo for any
e > 0.

It is known that the class of arc-like spaces contains a universal space
(see [9]). In contrast, the class of ray-type spaces admits no universal space.
Recall that a space U is said to be universal in a topological category C if
every space of C can be embedded in U.

THEOREM 5.4. There is no universal space in the category R of ray-type
spaces and proper maps.

For this we define a rayless space to be a space which does not admit a
proper embedding of the half-line R>.

Proof of Theorem[5.4 Let X = Rxq be the half-line and Y be a rayless
ray-type space in R (see Example below for an example of such a space).
Assume that there is a universal space U € R. This implies the existence
of closed embeddings X,Y C U. By Lemma [5.I] we have either X C Y or
Y C X. The former is ruled out since Y is rayless, and thus Y is a closed
connected subset in X and hence an interval. This is a contradiction and the
theorem follows. m

ExaMPLE 5.5. Next we describe an example of a rayless ray-type space.
For this we consider the family of unit segments in the planar grid of unit
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squares given by Ag ={(z,y) €R* 2 =14,j—-1<y<j}and B; ={(z,y) €
R% y =j,i—1 <2 <i}. Let X,, be the ray in the plane grid obtained by
adding to the union U{Ai, 1<j<o0,2n(j—1) <i<2nj}aminimum set
of horizontal segments B7; see the figure below. The proper bonding maps
fn @ Xn+1 — X, are given by the obvious maps which carry the segment
A7 C X, 41 linearly onto ALQ(];U C Xpif2(n4+1)(j—1) <i < 2(n+1)j—2

and onto A}, . if 2(n +1)j —2 <i < 2(n+1)j.

fs

X3 =

f2

fi

X, =

We claim that X = @p{Xn,fn} is homeomorphic to the space X =
Ure; 2k depicted below.

P2
A

Py

For this we observe that X, decomposes as a union X,, = |J32; X* where
Xk is the arc in X,, containing Usgk—1)<i<on Ak Moreover fo(XF, ;) = XPF
for all n,k > 1. From this, it is readily checked that for the restrictions
fk = f1X%, the inverse limit X* = @{Xﬁ, f*1 is a closed subset in X and
X=Ui X k. Moreover, the definition of the bonding maps f,, yields hom-
eomorphisms ¢y, : X* 22 X* onto the topologists’s sine curve ), C X, which
are compatible at the points {pg}r>1. This way we get a homeomorphism
o= ok X =U, XF2 X =2, Xk, and the result follows.
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6. Further results and final remarks. As an extension of ray-type
spaces, a space X is said to be a T-type space if it is the limit X =
liinp{Xn, fn} of an end-faithful sequence where each X,, = T is the locally
finite tree T. For T' = R the euclidean line, Theorem [5.2] extends to R-type
spaces. Namely,

THEOREM 6.1. Any R-type space X is a two-ended generalized contin-
uum.

Proof. Assume that X = liilp{R, fn} is not connected with a compact
component D. As X is R-type, the one-point compactification X+ is an (S*-
like) continuum. Here we use Proposition Then, by Lemma o €D,
which is a contradiction. Therefore, all components of X are non-compact.

Suppose that X has at least three components C7, Cy and Cs. As the
canonical projections 7, : X — R are proper maps, it follows that m,(C;)
C R (1 = 1,2,3) are non-compact closed connected sets, and hence un-
bounded closed intervals. Thus, at least two of them are related by inclusion,
say m,(C1) C 7, (C2). By arguing as in the proof of Lemmal5.1] and by using
Lemma [4.5| we get

Cr = lian{ﬂ'n(Cl)a fé} - @p{ﬂ'n(cﬁa fTQL} = (b,

which is a contradiction. Here fi : 7,,41(C;) — m,(C;) are the corresponding
restrictions of the bonding maps fi,.

It remains to rule out the case that X has exactly two non-compact
components C7 and Cs. For this we observe that the connectedness of R
implies that for each n the unbounded intervals m,(C;) (i = 1, 2) must have
a non-empty intersection A, = m,(C1) Nm,(Cy) # 0, which can be assumed
to be a compact interval for all n > ng, since otherwise 7, (C1) C m,(C2) = R
(or vice versa) for each n, and we would proceed as in the previous case.

The compactness of the A,’s yields 0 # lim{A,, f;,} C C1 N C; for the
restrictions f), = fn|a,,, which is a contradiction. Hence X is a generalized
continuum.

Moreover, Corollary [4.2] shows that X has at least two ends. Here we use
the fact that the sequence defining X is end-faithful. Next we check that
the number of ends is at most 2. Indeed, assume on the contrary that ¢; =
(Q%)n>1 (1 < i < 3) are distinct ends where, for each n, Q! C X —int K, is
a quasicomponent for the exhausting sequence {Kp,},>1. Then there exists
m such that the quasicomponents QL , Q2 , Q3 are pairwise disjoint. If, for
each i < 3, C; C @, is a non-compact component given by Lemma then
for each n > 1, at least two of the three non-compact and connected sets
7 (C;) share one of the ends of R. In particular, we find a pair of indices 1 <
i < j < 3 and a subsequence {ny}r>1 such that both m,, (C;) and m,, (C;)
contain the same end of R. Hence, for each k > 1, either 7, (C;) C 7y, (C})
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or m, (Cj) C mn, (Cy). As in the proof of Lemma [5.1] we can readily infer
that either C; C C; or C; C C;. This contradicts the assumption ; # ¢;,
and the proof is finished.

Easy examples show that Theorems and on R>o-type and R-
type spaces, respectively, do not hold for other trees. More precisely, a T-
type space X, with T a one-ended tree, may fail to be connected and end-
preserving, as shown by the example at the beginning of Section[d] Moreover,
Example shows that the end space of X may even fail to be metrizable.
It is also easy to obtain an example showing that a T-type space Y with
T a tree without end vertices may fail to be connected and end-preserving;
see the figure below representing an inverse sequence of infinite triods whose
limit is the union R U R, of two disjoint copies of the euclidean line.

-2,
_1a
f2
-«— 0q
1(l
...710:00’1 5o ) FESW) ] G 12:2.(1..

Example [4.3] suggests the following question:

QUESTION 6.2. Assume that X = @p{Tn,fn} is the limit of trees T,
with a finite number of branching points. Is the end space of X metrizable?

As a consequence of Proposition [£.4] if X is an end-preserving T-type
space, then X is connected. But we do not have yet a positive answer or a
counterexample for the converse:

QUESTION 6.3. Is any connected T-type space end-preserving?

A partial positive answer was given in Proposition [£.8 Also the following
simple example shows that for some one-ended locally finite graphs G there
exist connected G-type spaces which are not end-preserving. For instance,
the euclidean line R is the inverse limit of the following sequence of one-ended
graphs where the bonding maps are the obvious extensions of the ones of
the example at the beginning of Section [4]

Oa
0q 1a

N1
Og -— 1, -— 24 v
OLl—la 5 5 g

1 2=2, 3 0 1 2 3=3,
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Appendix A. This appendix collects the basic facts of the theory of
ends for (not necessarily metrizable) locally compact o-compact Hausdorff
spaces. We follow [H| and [FG]. Throughout this appendix we will use the
notation introduced in Section [2| In particular, A stands for the family of
all closed subsets with compact frontier of a space X. We start with some
elementary lemmas whose proofs follow basically from the definitions and so
are omitted.

LEMMA A.1. An A-ultrafilter U is trivial if and only if U contains a
compact set.

LEMMA A.2. If {K,},>1 is an exhausting sequence in X, then all com-
plements X —int K, (n > 1) belong to any non-trivial A-ultrafilter U.

For any set B C X, let B” denote the intersection B n F(X) in the
Freudenthal compactification of X.

LEMMA A.3. For any A € A, B(A) = AX = AuAT particular,
UeA if and only if A€ U.

Let G denote the family of all open subsets with compact frontier in X.
Then by using Lemmas and one gets

LEMMA A4. For each G € G the set G' = GU G is open in )?, and
these sets together with the open sets of X form a basis of open sets in X.

The following statement is an immediate consequence of the previous
lemma.

LEMMA A.5. For any compact set K C X and any closed set F C X
with compact frontier ¥Fr F' C K _the difference F' — K 1s an open set in G
and (F — K)% is an open set in X.

Next we prove the main result of this appendix.

LEMMA A.6. Let f: X — Y be a proper map between admissible spaces.
Then f induces a continuous map f : X — Y which restricts to a map

f« : F(X) — F(Y).
In the proof of Lemma [A.6] we will use the following

LEMMA A.7. Let f : X — Y a proper map and A C Y. If FrA is
compact then so is Fr(f~1(A)).

Proof. By continuity the closed set Fr (f~1(A)) is contained in the com-
pact set f~!(Fr A). Here we use the fact that f is proper. Hence, Fr(f~!(A4))
is compact. =
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_Proof of Lemma [A26, Let U be a non-trivial ultrafilter. By compactness
of Y the filter f(U) generated by the images of elements of U has at least
one cluster point (see [E, 3.1.24]) and so

Zu= () FO)"
Ueu

Furthermore, this intersection contains no elements of Y. Indeed, other-
wise take y € Zy NY = (¢ f(U). Here we use the fact that each f(U)
is a closed set in Y. Thus, the compact set f~!(y) meets all U € I and so
Nue U N f1(y) # 0 (JE, 3.1.24]), which is a contradiction since U is not
trivial; see Lemma [AT]

Moreover, Z;; reduces to one element. To prove this, assume that WW; and
Ws are two distinct A-ultrafilters in Zy;. Then we can find two disjoint closed
sets W; € W; (1 = 1,2) with compact frontier. Moreover, by Lemma
(W; — Fr Wi)h is an open neighbourhood of W; in Y and hence

FO) N (Wi = FeWy)% = f(U) N (W; — Fr W;) # 0.

Thus, Wiﬁf(U);é@,andsoUﬂf YW;) # 0 forall U € U and i =
1,2. By Lemma f~1(W;) is a closed set with compact frontier. Hence
f~Y(Wy) and f~1(W3) are disjoint sets in the A-ultrafilter U/, which is a
contradiction.

__ The previous observations show that f extends to a well-defined map
I X Y by setting f( ) = f«(d) where f.(U) is the only element
in Zy. In order to prove the Contlnmty of f , let G* be a basic open set as in
Lemma Then f~! GY = f~YG) U f7Y(G7). Moreover Fr(f~1(@Q)) is
compact by Lemma and the continuity of ]?Will follow if we check the
equality

UG = (UG

yielding f~1(G?) = (f~Y(G))%. For this, given U € fr1(GT), it follows
that G? is an open neighbourhood of f, () in ¥ and hence G N f(U) =
G f(U) # 0 for all U € U. Therefore, (f"H(G))*NU = f~YG)NU
# () for all U € U; that is, U € f~1(G)”. The converse is similar.

Appendix B. Freudenthal ends of generalized continua can be defined
alternatively by using nested sequences of quasicomponents. This appendix
contains a proof of the equivalence of both approaches (Theorem [B.7).
A third description of the Freudenthal compactification by using sequences
is given in [B].

Recall that, given a space X, the quasicomponent of x € X, denoted
by Q@ = Q(z), is defined to be the intersection of all closed-open sets of
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X containing x. The partition into quasicomponents of X refines the par-
tition into components (i.e., each component is contained in a quasicompo-
nent); moreover, the continuous image of a quasicomponent is contained in a
quasicomponent. For compact metric spaces, quasicomponents coincide with
components; see [K| for details.

LEMMA B.1. Let X be an admissible space. Given a compact set K C X
and a disjoint quasicomponent Q C X, there exists a closed-open set U with

QCUand UNK = 0.

Proof. As K and @ are disjoint, for each x € K there is a closed-open
set H, with z € Hy and Q C X — H,. By compactness, K C H = |J;", Hy,
for some n > 1, and we are done by setting U = X — H. n

The space of quasicomponents of X is the set Q(X) of quasicomponents
of X endowed with the topology generated by the basis of open sets consist-
ing of all the sets A = {Q; Q € Q(X) and Q C A} where A C X ranges
over all closed-open subsets in X. Any continuous map f : X — Y between
admissible spaces induces a continuous map fz : Q(X) — Q(Y') which car-
ries a quasicomponent () C X to the unique quasicomponent ' C Y with

fQ)ca.

LEMMA B.2. Let X be a generalized continuum. For any compact set
K C X the space of quasicomponents Q(X —int K) is compact.

Proof. Consider any cover Q(X —int K) = |J,c4 AJ where each A, is a
closed-open set in X — int K. The connectedness of X guarantees that A, N
Fr K # 0 for all o, and the compactness of Fr K yields Fr K C [J;_; Aq, for
some s > 1. We claim that Q(X —int K) C 5, Agj. Indeed, by Lemma
and connectedness of X, QNFr K # () for all Q € Q(X —int K). Hence, given
x € QNFrK there is i < s with z € A,,, thus QQ C A,,, or equivalently,
Q € Agi. [

ProproSITION B.3. Let X be a generalized continuum and K C X be a
compact subset. Then Q(X — int K) is homeomorphic to a closed subspace
of the Cantor set.

Proof. By Lemma Q(X — int K) is compact, and by [K, Thm. 3
p. 148 and Thm. 5 p. 151] there exists an embedding Q(X — int K) —
[1;2,{0,1}. Here we use the fact that X — int K is second countable. m

Given an exhausting sequence { K, },>1 of X, a g-end of X is a sequence
(Qn)n>1 of quasicomponents @, C X —int K, with Q,41 C Qn. Let £(X)
denote the set of all g-ends of X. The set X = X U&(X) admits a compact
topology whose basis consists of all open sets of X together with the sets

12 = QU {(Qn)n>1; there is ng with @, C £2 for n > ny}
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where 2 C X is any open set with compact frontier. We call 9X the g-
compactification of X. Moreover, the subspace £(X) C 9X turns out to be
homeomorphic to lim Q(X — int K;,), and hence, by Proposition , to a
closed subset of the Cantor set.

Given a set M C X, let M¢ denote the intersection MmN E(X). If
M = {2 is an open set with compact frontier, then it is readily checked that
92 = 2 U 2¢. Moreover:

LEMMA B.4. The family of sets of the form A* = AU A® where A ranges
over all closed subsets with compact frontier in X forms a basis of closed sets
mn 9X.

Proof. The difference {2 = X — A is an open set with compact frontier
Fr {2 = Fr A contained in the interior of some K,. Hence AN (X — int K,,)
and 2N (X —int K,,) form a partition of X — int K, into two open sets and
so A = £(X) — 2¢. Thus, A* = 9X — 92, and the result follows. =

Let {K,} be an exhausting sequence of the generalized continuum X.
Given an A-ultrafilter U € F(X), we consider, for each i > 1, the filter

(B.1) Ui ={U e U; FrU C int K;}.

Notice that U; # ) for each i > 1 since X —int K;_1 € U;. Notice also that
for any U € U there exists ng such that U € U, for all n > ny. Moreover,
the connectedness of X yields U NFr K; # ) for all U € U;. Therefore, by
[E, 3.1.24], the compactness of Fr K; guarantees that for each i > 1 the
intersection of closed sets

Li = ( N U)ﬂFrKi

Uel;

is a non-empty compact subset of Fr K;. Moreover, the family {Fr K;};>; is
locally finite and so the union L = J;2; L; is a closed set in X. In addition
we have

LEMMA B.5. The set LE consists of exactly one q-end eyy.

Proof. Let {x;}i>1 be any sequence with z; € L;. By compactness of 91X,
there is a subsequence converging to some end ¢ € L, and so L& # (.

Next we show that L consists of exactly one g-end. For this, assume on
the contrary that ¢ = (Qy)n>1 and €’ = (Q',)n>1 are two g-ends in L¢. Then
one finds 4 > 1 such that there is a closed-open set H in X — int K; with
Qn C Hand Q,NH =0 for all n > 4. If we set H = (X —int K;) — H, then
9H and 9H' are basic open neighbourhoods of & and &’ respectively. As
g, e € qu, there are subsequences {x,, }s>1 and {zy, }+>1 of elements z,, €
Ly with zy,, € H and z,, € H' for all s,¢ > 1. Thus, zn, € (g, UNH # 0,
and so HNU # 0 for all U € U since each U € U belongs to some U, . Since
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U is an ultrafilter, we get H € Y. Similarly, H' € Y and so ) = HNH' € U,
which is a contradiction. Thus, L reduces necessarily to a single element. m

Lemma [B.5] yields a well-defined map
W F(X) — E(X)
by setting ¥ (U) = ey.
THEOREM B.6. The map U isa homeomorphism.

Proof. First we show that ¥ is bijective. For this, given two distinct
A-ultrafilters U, W € F(X) we find for any U € U a set W € W with UNW
= (). Here we use the fact that W # U is an ultrafilter. With the notation
of above, we can assume without loss of generality that U € U, and
W € W, for some ng. As the g-ends ey = (Qn)n>1 and ey = (Q))n>1
are in U¢ and W¢, respectively, we have Qno C U and Q;,, € W. Hence
Qno NQy, =0, and ey # eyy. This shows that ¥ is injective.

Furthermore, ¥ is onto. In fact, given € = (Qn)n>1 € £(X), the union
H = U, Hn, where H,, is the family of all closed-open sets in X — int K,
with {H;H € H,} = Qn, forms a basis for an A-filter. Let U be an
ultrafilter containing H. Then, for any n > 1,

Ly= ([ UNFK,C (| HNFrK, CQn1.
Uely, HeHn,

Hence ¢ € L%; that is, € = gy = U(U).

Finally, as both F(X) and £(X) are Hausdorff compact spaces, it will
be enough to check that the bijection ¥ is continuous. By using Lemma
it suffices to show

TL(Af) = B(A) N F(X)

for any closed set A with compact frontier, say Fr A C int K,,. To check this,
let U € B(A). By definition A € U, and so A € U, for all m > n + 1. Hence
Ly C A and so U(U) = iy € AE. Conversely, if ey € A then AN Ly, #0
for a subsequence {n;};>1, and so ANU # () for all U € Up;. As any set in
U belongs to Uy, for some ny, it follows that A € U; that is, U € B(A). Here
we use the fact that U/ is an ultrafilter. =

We extend ¥ to a map ¥ : X —9X by setting ¥ (U,) =z if x € X.
THEOREM B.7. ¥ is a homeomorphism.

Proof. Clearly ¥ is a bijection. Moreover, the proof of Theorem |B.06|
shows that ¥—1(A") = B(A) for any closed set with compact frontier A,
and Lemma [B4] implies the continuity of ¥. Thus ¥ is a homeomorphism
between Hausdorff compact spaces. m
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