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PARTIAL VARIATIONAL PRINCIPLE FOR FINITELY
GENERATED GROUPS OF POLYNOMIAL GROWTH AND
SOME FOLIATED SPACES

BY

ANDRZEJ BIS (Lodz)

Abstract. We generalize the notion of topological pressure to the case of a finitely
generated group of continuous maps and introduce group measure entropy. Also, we pro-
vide an elementary proof that any finitely generated group of polynomial growth admits
a group invariant measure and show that for a group of polynomial growth its measure
entropy is less than or equal to its topological entropy. The dynamical properties of groups
of polynomial growth are reflected in the dynamics of some foliated spaces.

1. Introduction. The concept of entropy of a transformation plays a
crucial role in topological dynamics. The notion of topological entropy was
introduced by Adler, Konheim and McAndrew in |1] as an invariant of topo-
logical conjugacy. Later, Bowen [8] and Dinaburg [14]| presented an equiv-
alent approach to the notion of entropy in the case when the domain of
the transformation is a metrizable space. The topological entropy h(f) of a
homeomorphism f measures the complexity of the transformation acting on
a compact topological space in the sense that it shows the rate at which the
action of the transformation disperses points.

Since the entropy appeared to be a very useful invariant in ergodic theory
and dynamical systems, there were several attemps to find suitable general-
izations of it to other systems, like groups, pseudogroups, graphs, foliations.
Among others, Ghys, Langevin and Walczak [20] proposed a definition of
topological entropy for finitely generated groups and pseudogroups of con-
tinuous transformations. Bi§ and Walczak [7] applied the notion of entropy
of a group to hyperbolic groups in the sense of Gromov to study their geom-
etry and dynamics. Friedland [19] used the notion of entropy to study some
aspects of dynamics of graphs and semigroups.
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Adler, Konheim and McAndrew [1] stated the hypothesis, called the vari-
ational principle, that the topological entropy of a dynamical system, deter-
mined by a single transformation, is the supremum of all measure entropies
taken with respect to all invariant Borel probability measures.

Dinaburg described the relation between topological entropy and measure
entropy, two characteristics of a dynamical system determined by a single
transformation, in the case of a space of finite dimension and a homeomor-
phism. Goodwyn [22]| proved that the topological entropy is not less than
the measure entropy of a dynamical system. Finally, Goodman [21] proved
the hypothesis stated by Adler, Konheim and McAndrew in [1].

The notion of pressure, which is a generalization of topological entropy
for an action of the group ZV on a compact metric space, was introduced
by Ruelle in [32]|. Given a continuous real function ¢ on a compact met-
ric space X one tries to maximize the functional @ () = h,(f) + { ¢ dp,
where f: X — X is a continuous map and h,(f) is the measure entropy of
[ with respect to an f-invariant measure p. The supremum of ®¢(u) over
all f-invariant probability measures p on the Borel o-algebra is the topolog-
ical pressure P(f,¢). Then the variational principle can be rewritten in the
form

P(f,8) = sup {hu(f) + | odp s p € M(f) |

X

where M(f) denotes the set of all f-invariant Borel probability measures
defined on X.

A general proof of the variational principle for an action of Z was given
by Walters [36] and by Denker [13]. Some generalization of the variational
principle to actions of Zf was found by Elsanousi [17]. A very short and
elegant proof of the variational principle for an action of Z_]\J on a compact
space was given by Misiurewicz [28]. A generalization to R™ actions was
provided by Tagi-Zade [34].

In this paper we show that for arbitrary finitely generated groups of
continuous maps, of polynomial growth, there exists a group invariant mea-
sure. The main result of the paper states that the group measure entropy of
a finitely generated group of polynomial growth is less than or equal to its
topological entropy. The dynamical properties of finitely generated groups of
polynomial growth are reflected in the dynamics of some foliated spaces. The
notion of foliation (or more generally of foliated space) generally corresponds
to a decomposition of a manifold into the union of connected submanifolds
of the same dimension, called leaves, which are piled up locally like pages of
a book; for a detailed introduction see [9], [10].

For a foliated space (Mg, Fz) determined by the suspension of a group
(G, G1) of polynomial growth we find that the measure entropy of the foli-
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ation F is upper bounded by the geometric entropy of F multiplied by a
constant dependent on the geometry of (Mg, Fg).

Therefore, we get some partial variational principle for groups of poly-
nomial growth and its analogue for some foliated spaces.

The paper is organized as follows.

In Section 2 we recall different approaches to the problem of the existence
of a group invariant measure, we construct an example of a group without
any group invariant measure and we recall the known fact that a finitely
generated abelian group admits a group invariant measure. Also, we provide
an example of a non-abelian finitely generated group which has a group
invariant measure. In Section 3, we recall the notion of the growth of a
group and cite a few results which motivate our restricting attention to
finitely generated groups of exponential or of polynomial growth. We study
the algebraic structure of those groups and introduce the notions of “nice
groups” which will be used later. The nice groups form a large class of groups
which embraces abelian groups, hyperbolic groups, groups of polynomial
growth, groups of exponential growth and others. In Section 4, we define
and discuss the notion of topological pressure P((G,G1), f) for a finitely
generated group (G, G1). In Section 5, we define the measure entropy for a
finitely generated group and prove the main result of the paper:

THEOREM 1. For a nice group (G,G1), measure p € M(X, (G,G1)) and
f € C(X) we have the inequality

h,u(Ga Gl) + S fdﬂ < P(<G7G1)7f)
X

where M (X, (G,G1)) denotes the set of G-invariant measures.

In Section 6, we restrict our attention to finitely generated groups of poly-
nomial growth. We prove (Proposition 8) that any finitely generated group
of homomorphisms of a compact metric space, of polynomial growth, admits
a group invariant measure. Finally, in Section 7 we show that the dynamical
properties of groups of polynomial growth are reflected in the dynamics of
some foliated spaces. Given a finitely generated group (G, G1) of polynomial
growth we construct a compact foliated space (Mg, Fg) modeled transver-
sally on a compact metric space I', with analogous dynamical properties.
Moreover, we get:

COROLLARY 3. For a compact foliated space (Mg, F), determined by
the suspension of a finitely generated group (G,G1) of polynomial growth,
with a continuous family gy, of Riemannian structures on the leaves, and
for any measure pp € M (X, (G,G1)) we get

Sup{hM(Ga Gl)a 1% S M(F7 (G7 Gl))} S ahgeom(FG7gMG)7
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where hgeom(Fa, gMmy) s the geometric entropy of Fg with respect to the
Riemannian structure gnr,, and a denotes the maximum of the lengths of
the free homotopy classes of curves homotopic to elements of G.

2. Existence of a group invariant measure. Let X be a compact
metric space with distance function d. Consider a group G of homeomor-
phisms of X. The group G is assumed to be finitely generated, i.e. there
exists a finite set G1 = {idX,gl,gfl, o ,gk,gk*l} such that

G =] Gn

neN
where
Gp = {91 o-rogp: X — X}gl,‘..,gnEGl'

We always assume that idx € G1. This implies that G,,, C G, for all m < n.
To emphasize the generating set we shall write (G, G1) instead of G.

DEFINITION 1. A Borel probability measure g on X is said to be G-
wwvariant if o g =y for any g € G.

It is well known that if G is abelian then a G-invariant measure exists
(see [17]). But in the case of an arbitrary finitely generated group (G, G1)
a G-invariant measure may not exist.

EXAMPLE 1. Let f; : S' — S! be diffeomorphisms of a circle with a
source A; and a sink B;, i = 1,2, such that { Ay, By }N{ A3, Bo} = (). Then the
group (G, G1) generated by Gy = {idg1, f1, f{ ', f2, fo '} has no G-invariant
measure. Indeed, if y were a G-invariant measure then supp p (the comple-
ment of the set of all z € S! which admit an open neighbourhood V such
that (V) = 0) would be a subset of a nonwandering set. But in this case,
the nonwandering set is empty.

EXAMPLE 2. The orthogonal group O(n) acting on S™ is a non-abelian
group admitting an O(n)-invariant Haar measure. Thus, a free subgroup F;
of O(n) admits an Fy-invariant measure.

Bounded groups and a group invariant measure. Ramachandran and Mi-
siurewicz [31] considered a probability space (X, .4, P) and a group G of mea-
surable and nonsingular transformations defined on (X, .A, P). They proved
a necessary and sufficient condition for the existence of a finite G-invariant
measure.

We say that a finite additive measure u on A is equivalent to the measure
P provided for any set E € A, u(E) = 0 iff P(E) = 0. A measurable
transformation f : X — X is called nonsingular if for any £ € A the
condition P(E) > 0 implies P(f~*(E)) > 0. Two measurable sets E and F
are said to be equivalent if
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1) there exist sets E’ and F’ such that P((E'\ E') U (E'\ E)) = 0 and
P((F\F)U(F'\ F)) =0,

2) there exists a sequence (Ej) such that E' = ;2 Ej,

3) there exists a sequence () such that F' = (J;2, Fj,

4) there exists a sequence (gj) C G such that for every j,

Fy = g;(Ej).
Following [31], we say that a set E' € A is bounded if it is not equivalent to

a measure-theoretically proper subset of itself. Finally, we say that a group

G is bounded if X is bounded.

PROPOSITION 1 (Theorem 1in [31]). A finite G-invariant measure equiv-
alent to P exists if and only if the group G is bounded.

Measure preserving groups of transformations were studied by Alpern
and Prasad [2] and Oxtoby and Ulam [29]. In the compact case, the topolog-
ical and algebraic properties of those groups were investigated by Fathi [18].

3. Growth rate of a group. We recommend [25] as a survey of results
on the growth rate of groups. In this section we shall consider only finitely
generated groups. More precisely, a group G is said to be finitely generated
if there exists a finite set G1 = {g1, ... ,gk,gl_l, e ,gk_l} such that

G =] Gn

neN
where
Gn={g10--0gn:91,-..,9n € G1}.
We always assume that e, the neutral element of G, belongs to the generating
set Gi. This implies that G, C G, for all m < n. Let |G,,| denote the
cardinality of G,,.
Following de la Harpe [25] we introduce the following definitions:

DEFINITION 2. Let (G, G1) be a finitely generated group. The ezponen-
tial growth rate of (G,G1) is the upper limit

w(G,G1) = limsup /|G|

k—oo

The limsup is in fact a limit because the inequality |Giin| < |Gi| |Gy
implies the existence of limyg_o, /|G|

DEFINITION 3. The group (G,G1) is said to be of
(a) exponential growth if w(G,G1) > 1,
(b) subexponential growth if w(G,G1) =1,
(c) polynomial growth of degree d if |G| < ak? for some a > 0 and d > 0,
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(e) intermediate growth if it is of subexponential growth and not of poly-
nomial growth.

It is known that the property of being of exponential growth (resp., subex-
ponential growth, polynomial growth, intermediate growth) depends only on
the group G, and not on the choice of the generating set G1. Also, a finitely
generated group is necessarily of one (and only one) of three types: expo-
nential growth, polynomial growth or intermediate growth (see [25]).

There are many results on finitely generated groups of exponential or
polynomial growth; let us quote a few of them:

PROPOSITION 2 (|25, p. 187|). A finitely generated group which contains
a free semigroup on two generators is of exponential growth.

PROPOSITION 3 (|23]). A finitely generated group of polynomial growth
has a nilpotent subgroup of finite index.

ProprosITION 4 ([15], [24], [4]). If (G,G1) is a finitely generated nilpo-
tent group, then (G, G1) is of polynomial growth and

ark? < |Gyl < agk?,

where d is the homogeneous dimension of (G,G1) and a1,as are some pos-
ttive constants.

PROPOSITION 5 (|25, Proposition 22|). The Heisenberg group (G,G1) is
of polynomial growth and there exist constants c1,co > 0 such that for all

keN,
01k4 S ’Gk‘ S 62k4.

PROPOSITION 6 ([12]). If (G,G1) is a hyperbolic group, then there exist
positive constants ci,ca and w > 1 such that for oll k € N,

cw® < |G| < cow.

LEMMA 1. If (G,G1) is a group of either exponential growth or polyno-
mial growth, then there exists a constant A > 1 such that

G| |Gnl < A|Grn
for m,n € N large enough.
Proof. (a) Let (G,G1) be a group of exponential growth. Then
w= lim {/|Gg| > 1.
k—o0
Therefore, for small € > 0 and large m,n € N we get

(w+ &)™ < (w—e)™".
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Moreover,
(w—e)" < |G| < (w+e)™,
(w—e)" <|Gp| < (w+e)",
(w—2e)™" < |Gpn| < (w+e)™™.
Thus,

|Gl |G| < (w+2)™™ < (w =)™ < |Ginnl.

(b) Assume now that (G, G1) is of polynomial growth. Then by Proposi-
tion 3, G has a nilpotent subgroup H of finite index. Bass [4] proved that for
a finitely generated nilpotent group H there exist positive constants Ay, As, d
such that

Al’I’Ld S ’Hn| S Agnd.

Therefore, for the finitely generated group (G,G1) of polynomial growth
there exist positive constants Az, A4, d such that

Asnd < |G| < A4nd,
which implies that there exists a positive constant A such that
Gl |Gl < AlGn]- m
The above mentioned result motivates the following definition:

DEFINITION 4. A finitely generated group (G,G1) is said to be nice if
there exist constants A > 1 and kg such that for all m,n > kg,

|Gl |G| < AlGinl-

REMARK. Milnor [27]| showed that the type of growth of the fundamental
group of a compact Riemannian manifold M determines the geometry of M
and is related to the growth type of the manifold. The growth type of the
manifold is determined by the volumes of balls in the universal covering of M.
One of the most important results relating both types of growth is a theorem
due to Shvarts [33] and Milnor [27], which says that the fundamental group
m1(M) of a compact manifold M and the universal covering of M have the
same type of growth.

An approach to the growth of groups, originating from foliation the-
ory, based on the paper of Egashira [16], was presented by Walczak in [35].
Badura [3] showed that any growth type can be realized by a leaf of a C'-
foliation of a compact manifold.

4. Topological pressure of a group. Let X be a compact metric space
with distance function d. Consider a group G of homeomorphisms of X. The
group G is assumed to be finitely generated, e.g. there exists a finite set
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G = {idX,g1,gl_1, . ,gk,gk_l} such that

G= ]G,

neN
where
Gn = {gl O-+-0(gn: X — X}gl,...,gnEGl'

Denote by C'(X) the set of continuous functions defined on X, and let D
denote the set of all neighbourhoods of the diagonal in X x X.
Let 6 > 0 and let

Ns :={(z,y) € X x X :d(z,y) <}
be the d-neighbourhood of the diagonal in X x X. For fixed n € N, § > 0
and a continuous function f € C'(X) we put
N@Gn)= () (gx9)'Ns, fa:= > fog.
geGn—l geGn—l
Modifying the definitions stated in [28, p. 1070], we give
DEFINITION 5. A finite set £ C X is called

(a) (n,d)-separated if (x,y) ¢ N(0,n) for any distinct x,y € E,
(b) (n,d)-spanning if for any x € X there exists y € E such that (z,y) €
N(6,n).

DEFINITION 6. Let

p(f,E):

log Y _ exp f(x),

L))
P, s((G,Gh), f) == sup{p(f, E) : E is (n,d)-separated},

Ps((G,G1), f) := limsup P,;((G,G1), f).

1
n—00 m
LEMMA 2. If a < f3, then P, o((G,G1), f) > P, 3((G,G1), f).
DEFINITION 7. The quantity

P((G7 Gl)’f) = dl_i)%l_‘_ P(S((Gv Gl)af)

is called the pressure of the group (G,G1) with respect to the function f.
By Lemma 2, P((G,G1)f) is well defined.

REMARK. It is easy to notice that the pressure of (G, G1) depends on the
generating set. However, if G1 and G are two generating sets of the same
group G, then P((G,G1), f) > 0 if and only if P((G,GY), f) > 0. Therefore
we can speak about the group of positive pressure without referring to the
generating set.
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Moreover, the topological entropy hiop((G, G1)) satisfies the equality
htop(<G7 Gl)) - P(<G7 G1)7 0)

More information on the topological entropy of a group can be found in [5]
and [6].

5. Partial variational principle. Denote by M (X, (G, G1)) the set of
G-invariant measures. Let A be a finite Borel partition of X. For a partition
A we define the partition

A, = \/ g LA
9€Gn_1

Modifying Conze’s definition of measure entropy for abelian groups ([11]),
we define measure entropy for an arbitrary finitely generated group in the
following way:

DEFINITION 8. For a finite Borel partition A of X and measure u €
M(X, (G, G1)) we define

hu((G,G1), A) := limsup

n—00 |Gn—1|

HH(‘AH)7

where H,,(Ay) denotes the standard measure entropy of the partition A,,.
Finally,

hu(G,Gh) :==sup{h,((G,G1),A) : A a finite Borel partition of X}.

THEOREM 1. For a nice group (G, G1), measure p € M (X, (G,G1)) and
f € C(X), we have the inequality

h(G,Gh) + | fdu < P((G,Gh), f).
X
COROLLARY 1. For a nice group (G,G1) acting on a compact metric
space X and any G-invariant measure p € M(X, (G, G1)),
hu(G,G1) < h(G,Gh).
To prove Theorem 1 we need a few technical lemmas.

LEMMA 3. For a finite Borel partition A, = {ai,...,as} of X, any
uw € M(X,(G,Gh)), and any positive , there exists a finite Borel partition
B = {by,b1,...,bs} of X such that

(a) b; is a compact subset of a; for anyi=1,...,s,

(b) Hu(An|B) < ¢.

Proof. Choose (,e > 0 satisfying ¢|.A,|log|A,| < (. Since a Borel prob-
ability measure is regular, for each a; € A, there exists a compact set
b; C a; such that p(a; \ b;)) < e, i = 1,...,s. Consider the partition
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B = {bo,b1,...,bs}, where by = X \ |J;_; b;. Following the proof of The-
orem 8.6 in [37], we get

HM(An|B) < 8|~An|10g’-’4n| < C L

Let B = {bo,b1,...,bs} be the partition of X described in the above
lemma. For distinct ¢ and j we have

(by x bj)N{(z,z):x € X} =0.
Therefore

0. = (X x X)\ U (b; x b;)
i#754,5=1

is an open neighbourhood of the diagonal.

LEMMA 4. Given f € C(X). For any ¢ > 0 there exists 0 < §* < { such
that

(a) if (z,y) € Ng«, then (y,z) € Ne-,
(b) if (x,y),(y,2) € Ns= then (z,z) € O,
(©) if (w,y) € Nov, then | f(z) — f(y)| < C.

Proof. Choose ¢ > 0. Denote by B(x,r;) the ball in X x X centered at
(x,x) of radius r; such that B(x,r;) C O.. Since the diagonal is compact,
it is covered by a finite subfamily (B(z;,74,))% ;. Now, it is easy to notice
that there exists a 6 > 0 such that

k
Ns C U B(zi,ry,).
=1
By the continuity of f we get 41 such that if d(z,y) < 61, then |f(z) — f(v)]
< (. Taking 0* < min{d, 1, (} completes the proof. m

DEFINITION 9. Given a group (G, G1) and a positive integer m, denote
by (G™), G(m)) the group generated by the set G(m) ={Gn\Gm-1}U{idx}.

\/ k:_l( \/ g_l.A).

kea(™), 9€Gm—1

LEMMA 5.

Proof. Notice that any element a of the partition A,,, may be written
in the form

a= ﬂ gflAg, where A, € A.
gEGmn—l

On the other hand, any element b of \/keG(m) k_l(\/geG ) g 1 A) may be
n—1 m-
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written, with Ay ; € A, in the form

b= () k—l( N g‘lAg,k> = N (90 k)" Agy
kEGglni)l 9€Gm—1 keG™) gEGm_1

n—17

Thus, we obtain equality of the above mentioned partitions. m
Let C = vkeG(m) k~1B, where the partition B was described in Lemma 3.
n—1
For any c € C define
a(c) = sup{fam(x) :x €c}, p[:= Zexp a(c)
ceC

It is clear that
anm dp < afc)p(c).

C

LEMMA 6.

HM(C) + S Jnm dp <log 3.
X
Proof. By the definitions of measure entropy and f,,

Hu(C) + | fomdu < — Zexpa(o)(%) 10g(%)

X ceC

=055 e

ceC

where L(x) = —xlogx. The concavity of L( ) yields

exp a(c)
H,(C)+ fnmd,u,gﬁL< ) m( )
. )S( Z; B expa(c) ;Zcecexpa (c)
— BL(3") = log 3. u
LEMMA 7. Let E be an (nm,d)-spanning set. Then for any ¢ € C there
exists a point z. € E such that

a(c) = sup{ fum(x) : z € ¢ and (z, z.) € N(J,nm)}.

Proof. Fix ¢ € C and let g be a point of the closure of ¢ such that
a(c) = fum(xo). Then there exists y € E such that

(zo,y) € N@6,mn) = [ (9x9) 'Ns.
9EGmn—1
Therefore, (g(zo),g(y)) € Ns for any g € Gpp—1. If 29 € ¢, we are done. If
xo € Jc, then by the continuity of all g € Gy,—1 and the fact that Ns is an
open set, there exists a ball B(zg,r) in X such that for each z; € B(xq,r)
and each g € Gpyp—1,

(9(x1),9(y)) € Ns.
So, taking z(, € B(zo,7) N c we get the desired point. =
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LEMMA 8. Let { and 6* be as in Lemma 4. Then for any element c¢ of
the partition C there exists a point z. such that

(@) fam(ze) > alc) = C|Gnm—1],
(b) card{c € C : z. = y} < 21Cn-1l,

Proof. (a) Let E be an (mn, §)-spanning set. By Lemma 7 for = € ¢ there
exists z. € F such that

(,2) €[] (9%x9) 'Ns-
gEGnmfl
Therefore, (h(x), h(z.)) € N5« for any h € Gpyp—1. By Lemma 4 we get
|[f(h(x)) = f(h(z))] < C.
Thus

fnm(zc) = Z fo h(Zc) > Z (f © h(fE) - C)

heGmnfl hEGmnfl
> sup{ fmn () : € ¢} = (|Gmn-1| = alc) = (|Gmn-1]-
(b) The proof is similar to the proof of equation (8) in [28, p. 1072]. =

Proof of Theorem 1. Fix ¢ > 0 and choose large m such that
log2
<.
|Gm 1|
Let E be an (mn, §*)-separated set. By Lemma 8,
2lGn—1l Z exp fmn(y) > card{c € C: z. = y} Z exp fmn(y)

yeE yeE
> ZQXP(Q(C) - C|Gmn—1|)
ceC
Taking logarithms of both sides we arrive at
‘Gn—l‘ log 2 + log ( Z exp fmn(y)) > _C’Gmn—l‘ + log Z €xp a(c).
yer ceC
Thus,

(1) |Gn71|10g2+p(fmmE) > _C’Gmn71| +logﬁ-
On the other hand, by Lemma 6,

HM(C) HM(C) + |Gmn—1| SX fdM — HM(C) + SX fmn d#
|Gmn 1’ |Gmn—1| |Gmn—1|

) ddus

log 3
- |Gmn—l| '
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Let A be as in Definition 4. By (1) we get
logﬂ < |Gn—l|log2+p(fmn7E)+C|Gmn—1’
|Gmn—l| - |Gmn—1’

Ppn 5*((G Gl) f)
< TEm + (A+1)¢

because log2 < (|G,,—1| and
|Gl [Gm-1] < AIG(-1)im-1)| < AlGmn—1l.
So, finally we obtain

HM(C)

Ppn 5*((G Gl) f)
|Gmn—l|

Sfd + (A+1)C.

The construction of the partition B implies that for any g € G%m),

Hu(gilAm ‘ 9716) <.
So,
H C) 14 “18) < 16" |c < |G
( mn| g m g n71|< = ’ mn—l’(-
gEG(m) gEG(m)
Using the basic properties of conditional entropy we arrive at
HM(Amn) < HM(C) + HM(Amn |C) < H,u(c) + ’Gmn—llg

Therefore,

HH(Amn) + S fd,u< < H, (C) Sfd >+C|Gmn—1‘
X

’Gmn—1’ ‘Gmn— ‘ ‘Gmn—l‘
|Gmn71|

Passing to the limsup with respect to n we obtain
hu((G,Gh), A) + | fdu < Ps-((G,G1), f) + (A +2)C.
X

Letting ¢ — 07 (then also §* — 07) and taking into consideration that A is
an arbitrary finite Borel partition, we arrive at

hu(G,G1) + | fdu < P((G,G1). f). =
X

6. Existence of a group invariant measure for a group of poly-
nomial growth. In this section (G,G}) is a finitely generated group of
homeomorphisms of a compact metric space (X, d). Again, we assume that

Gy = {idx, 91,97 -+, 9k G5}
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REMARK. It is clear that the group (G, G1) generated by G1 = {idg1, f1,
ffl,fg, f;l}, where f;, ¢ = 1,2, were described in Example 1, has no G-
invariant measure. It is an example of a group of exponential growth. That
is why in the following we restrict our attention to the groups of polynomial
growth.

DEFINITION 10. Let (G, G1) be a finitely generated group and A C G.
The G1-boundary of a subset A of G is the set

Oy A ={g€G:g¢ A and J4cq,s9 € A}.

PROPOSITION 7 ([30]). Let (G,G1) be a finitely generated group of poly-
nomial growth. Then

. |Gn U@GlGn|
lim = YGinl _ g
e Gl

COROLLARY 2. Let (G,G1) be a finitely generated group of polynomial

growth, and let g9 € Gi. Define Ag") = Gp-1 \ 90Gn_1 and Ag") _
90Gn—1\ Gn—1. Then

43"
lim t— =0, i=1,2.
Proof. By Proposition 7,
. ‘6671 GTL‘
1 =0.
¥ LTI

It is easy to observe that Agn) = Gp-1\ 90Gn-1 C 95, Gn—2. So, by (3),

A(”)
lim | 1 | =

S TN

0.

In a similar way we observe that
A5 = goGoi \ Gno1 C 06, Gs
and using the same argument we conclude that

A8
1 =0.
00 |G -

PROPOSITION 8. If (G,G1) is a finitely generated group of homeomor-
phisms of a compact metric space (X,d), of polynomial growth, then there
ezxists a G-invariant measure.

Proof. Let E, be an (n,d)-separated subset of X. Choose a continuous
function f € C(X) and fix g9 € G;. Define a measure o,, concentrated on
E, by

L exp fn(y)
W) = e o)
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for each y € E,, and let

tn

Z On©g.

| " 1|g€Gn 1

It is well known that the space M (X) of all Borel probability measures
defined on X is a compact metric space in the weak w*-topology. Therefore,
the sequence pu,, has a cluster point in M (X).

Consider the mapping @4, : M(X) — R defined by

Ppgo(m):= | fdm = fogodm
X X
for any measure m € M(X). It is easy to check that @4, is a continuous
map. Thus if p is a cluster point of the sequence (u,) then @, (p) is a
cluster point of (@ 4, (itn)). To calculate the norm of the functional ®¢ g
note first that

D g0 (Hn) = S(f fogo0) (

3 Unog)

‘Gn_ g€G, _

1
a1 —J© doy, o
|Gn1|geezm§(<f fogo)donog
= 1 O _1— o o —1 d
|Gn1|g€GZM \(roa™ = fomog™ o,
0gyo gL exp fn(y)
|Gn 1|9€§ 1y§n ~fegeosm ) > yer, XD fn(y)

DR WS (fog )~ Fomog W),

yEEn 2eyer, 5P fn(Y) geA™ualm

where Agn) = Gn-1\ goGp—1 and Agn) = goGn-1\ Gn-1-
Finally, in view of Corollary 2 we arrive at

eprn y)

2| 7] 14T U A5V
oD o) IFIFAY™ LA™

H(pf,go(/ﬁn |G | Z E

max{\A&” 1,145}
’anll

< 4[]l

So, letting n — oo we see that @ 4 (1) = 0, and therefore the measure p is
go-invariant. But gg is an arbitrary element of GG1, thus p is G-invariant. =
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7. Suspension of a group of polynomial growth and the varia-
tional principle for the geometric entropy of foliations. The geomet-
ric entropy hgeom(F, g«) of a foliation F' on a compact Riemannian manifold
(M, g.), defined by Ghys, Langevin and Walczak |20| for a regular foliation,
measures the exponential rate of growth of separated leaves of F. An equiv-
alent definition of hgeom(F, g«x) was given in terms of points separated by
elements of a holonomy pseudogroup. Given a foliation F' on a compact Rie-
mannian manifold (M, g) and a nice covering U which determines a holonomy
pseudogroup (Hy, Hy) of the foliated manifold (M, F') (see |20]), we get:

PROPOSITION 9 (see [20]). The geometric entropy hgeom(F, g) of a foli-
ated manifold (M, F) (with respect to a continuous family g of Riemannian
structures on the leaves) is equal to

h‘(HU)Hl)
AU)
where U ranges over the family of all finite nice coverings of (M, F), and

A(U) denotes the the mazimum of the diameters of the plaques of U mea-
sured with respect to the Riemannian structures induced on the leaves.

hgeom(Fvg) = Sll/llp

The variational principle for the geometric entropy of foliations is an
open problem. Walczak (|35, p. 141|) writes that it seems interesting and
important to search for a good definition of a measure-theoretic entropy for
foliations which could provide a kind of variational principle for geometric
entropy. In this section we show that Theorem 1 provides a kind of partial
variational principle for geometric entropy for some class of foliations.

We present a suspension construction which directly relates the dynamics
of a group to the dynamics of the foliated space. To do this, take a compact
metric space (Z,d), a compact Riemannian manifold B and its fundamental
group G = m1(B,b) at a base point b € B. The fundamental group m(B)
acts on the right in a natural way on B , the universal covering of B. Assume
that there exists a left action of G on Z. Let

M :=(BxZ)/=,

where the equivalence relation =, is defined in the following way: (xg, 2)
=, (x,g2) for any g € G, x € B and z € Z. The space M fibres over B with
fibre Z. Moreover, M can be equipped with a foliation F' which consists of
the leaves of the form L = 7(B x {z}), where z € Zand 7 : Bx Z — M
is the canonical projection. The foliated space (M, F') is a fibre bundle with
fibre Z. Then the holonomy group of (M, F') coincides with G = w1 (B, b).
Given a finitely generated group (G, G1) of polynomial growth there is
a compact manifold M such that G = 71(M). Denote by I" the one-point
compactification of the graph of (G, G1). Then G acts on the compact metric
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space I" (see |26]), so we can consider the compact foliated space
Mg :=(M xT)/=,

with leaves Fg = {L = n(M x {y}) : v € I'}. The distance function d; on I’
and the Riemannian metric gps on M lifted via the canonical projection 7 to
the leaves of Fig determine the natural metric gy, on Mg which coincides
with dr on I' and with gjs along the leaves.

Following Example 4.3 in [20] or the last section in [7] we obtain

1
— (G, Gh) < hgeom(FG),

where a denotes the maximum of the lengths of the free homotopy classes of
curves homotopic to elements of GG1. Finally, we get a kind of partial varia-
tional principle for the geometric entropy of the foliation (Mg, F¢) modelled
transversally on I

COROLLARY 3. For a compact foliated space (Mg, Fe), determined by
the suspension construction of a finitely generated group (G,G1) of polyno-
maal growth, with a continuous family g, of Riemannian structures on the
leaves, and for any measure p € M (I, (G,G1)) we get

Sup{hu(Gv Gl) Y S M(F7 (G7 Gl))} S ahgeom(FG7gMG)7

where hgeom(Fa, gnmg) s the geometric entropy of Fg with respect to the
Riemannian structure gy, and a denotes the maximum of the lengths of
the free homotopy classes of curves homotopic to elements of G.
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