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PARTIAL VARIATIONAL PRINCIPLE FOR FINITELYGENERATED GROUPS OF POLYNOMIAL GROWTH ANDSOME FOLIATED SPACESBYANDRZEJ BI� (�ód¹)Abstra
t. We generalize the notion of topologi
al pressure to the 
ase of a �nitelygenerated group of 
ontinuous maps and introdu
e group measure entropy. Also, we pro-vide an elementary proof that any �nitely generated group of polynomial growth admitsa group invariant measure and show that for a group of polynomial growth its measureentropy is less than or equal to its topologi
al entropy. The dynami
al properties of groupsof polynomial growth are re�e
ted in the dynami
s of some foliated spa
es.1. Introdu
tion. The 
on
ept of entropy of a transformation plays a
ru
ial role in topologi
al dynami
s. The notion of topologi
al entropy wasintrodu
ed by Adler, Konheim and M
Andrew in [1℄ as an invariant of topo-logi
al 
onjuga
y. Later, Bowen [8℄ and Dinaburg [14℄ presented an equiv-alent approa
h to the notion of entropy in the 
ase when the domain ofthe transformation is a metrizable spa
e. The topologi
al entropy h(f) of ahomeomorphism f measures the 
omplexity of the transformation a
ting ona 
ompa
t topologi
al spa
e in the sense that it shows the rate at whi
h thea
tion of the transformation disperses points.Sin
e the entropy appeared to be a very useful invariant in ergodi
 theoryand dynami
al systems, there were several attemps to �nd suitable general-izations of it to other systems, like groups, pseudogroups, graphs, foliations.Among others, Ghys, Langevin and Wal
zak [20℄ proposed a de�nition oftopologi
al entropy for �nitely generated groups and pseudogroups of 
on-tinuous transformations. Bi± and Wal
zak [7℄ applied the notion of entropyof a group to hyperboli
 groups in the sense of Gromov to study their geom-etry and dynami
s. Friedland [19℄ used the notion of entropy to study someaspe
ts of dynami
s of graphs and semigroups.2000 Mathemati
s Subje
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Adler, Konheim and M
Andrew [1℄ stated the hypothesis, 
alled the vari-ational prin
iple, that the topologi
al entropy of a dynami
al system, deter-mined by a single transformation, is the supremum of all measure entropiestaken with respe
t to all invariant Borel probability measures.Dinaburg des
ribed the relation between topologi
al entropy and measureentropy, two 
hara
teristi
s of a dynami
al system determined by a singletransformation, in the 
ase of a spa
e of �nite dimension and a homeomor-phism. Goodwyn [22℄ proved that the topologi
al entropy is not less thanthe measure entropy of a dynami
al system. Finally, Goodman [21℄ provedthe hypothesis stated by Adler, Konheim and M
Andrew in [1℄.The notion of pressure, whi
h is a generalization of topologi
al entropyfor an a
tion of the group Z

N on a 
ompa
t metri
 spa
e, was introdu
edby Ruelle in [32℄. Given a 
ontinuous real fun
tion φ on a 
ompa
t met-ri
 spa
e X one tries to maximize the fun
tional Φf (µ) = hµ(f) +
T
X

φdµ,where f : X → X is a 
ontinuous map and hµ(f) is the measure entropy of
f with respe
t to an f -invariant measure µ. The supremum of Φf (µ) overall f -invariant probability measures µ on the Borel σ-algebra is the topolog-i
al pressure P (f, φ). Then the variational prin
iple 
an be rewritten in theform

P (f, φ) = sup
{
hµ(f) +

\
X

φdµ : µ ∈ M(f)
}

where M(f) denotes the set of all f -invariant Borel probability measuresde�ned on X.A general proof of the variational prin
iple for an a
tion of Z+ was givenby Walters [36℄ and by Denker [13℄. Some generalization of the variationalprin
iple to a
tions of Z
N
+ was found by Elsanousi [17℄. A very short andelegant proof of the variational prin
iple for an a
tion of Z

N
+ on a 
ompa
tspa
e was given by Misiurewi
z [28℄. A generalization to R

n a
tions wasprovided by Tagi-Zade [34℄.In this paper we show that for arbitrary �nitely generated groups of
ontinuous maps, of polynomial growth, there exists a group invariant mea-sure. The main result of the paper states that the group measure entropy ofa �nitely generated group of polynomial growth is less than or equal to itstopologi
al entropy. The dynami
al properties of �nitely generated groups ofpolynomial growth are re�e
ted in the dynami
s of some foliated spa
es. Thenotion of foliation (or more generally of foliated spa
e) generally 
orrespondsto a de
omposition of a manifold into the union of 
onne
ted submanifoldsof the same dimension, 
alled leaves, whi
h are piled up lo
ally like pages ofa book; for a detailed introdu
tion see [9℄, [10℄.For a foliated spa
e (MG, FG) determined by the suspension of a group
(G, G1) of polynomial growth we �nd that the measure entropy of the foli-
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ation FG is upper bounded by the geometri
 entropy of FG multiplied by a
onstant dependent on the geometry of (MG, FG).Therefore, we get some partial variational prin
iple for groups of poly-nomial growth and its analogue for some foliated spa
es.The paper is organized as follows.In Se
tion 2 we re
all di�erent approa
hes to the problem of the existen
eof a group invariant measure, we 
onstru
t an example of a group withoutany group invariant measure and we re
all the known fa
t that a �nitelygenerated abelian group admits a group invariant measure. Also, we providean example of a non-abelian �nitely generated group whi
h has a groupinvariant measure. In Se
tion 3, we re
all the notion of the growth of agroup and 
ite a few results whi
h motivate our restri
ting attention to�nitely generated groups of exponential or of polynomial growth. We studythe algebrai
 stru
ture of those groups and introdu
e the notions of �ni
egroups� whi
h will be used later. The ni
e groups form a large 
lass of groupswhi
h embra
es abelian groups, hyperboli
 groups, groups of polynomialgrowth, groups of exponential growth and others. In Se
tion 4, we de�neand dis
uss the notion of topologi
al pressure P ((G, G1), f) for a �nitelygenerated group (G, G1). In Se
tion 5, we de�ne the measure entropy for a�nitely generated group and prove the main result of the paper:
Theorem 1. For a ni
e group (G, G1), measure µ ∈ M(X, (G, G1)) and

f ∈ C(X) we have the inequality
hµ(G, G1) +

\
X

f dµ ≤ P ((G, G1), f)where M(X, (G, G1)) denotes the set of G-invariant measures.In Se
tion 6, we restri
t our attention to �nitely generated groups of poly-nomial growth. We prove (Proposition 8) that any �nitely generated groupof homomorphisms of a 
ompa
t metri
 spa
e, of polynomial growth, admitsa group invariant measure. Finally, in Se
tion 7 we show that the dynami
alproperties of groups of polynomial growth are re�e
ted in the dynami
s ofsome foliated spa
es. Given a �nitely generated group (G, G1) of polynomialgrowth we 
onstru
t a 
ompa
t foliated spa
e (MG, FG) modeled transver-sally on a 
ompa
t metri
 spa
e Γ , with analogous dynami
al properties.Moreover, we get:
Corollary 3. For a 
ompa
t foliated spa
e (MG, FG), determined bythe suspension of a �nitely generated group (G, G1) of polynomial growth,with a 
ontinuous family gMG

of Riemannian stru
tures on the leaves, andfor any measure µ ∈ M(X, (G, G1)) we get
sup{hµ(G, G1); µ ∈ M(Γ, (G, G1))} ≤ ahgeom(FG, gMG

),
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where hgeom(FG, gMG

) is the geometri
 entropy of FG with respe
t to theRiemannian stru
ture gMG
, and a denotes the maximum of the lengths ofthe free homotopy 
lasses of 
urves homotopi
 to elements of G1.2. Existen
e of a group invariant measure. Let X be a 
ompa
tmetri
 spa
e with distan
e fun
tion d. Consider a group G of homeomor-phisms of X. The group G is assumed to be �nitely generated, i.e. thereexists a �nite set G1 = {idX , g1, g

−1
1 , . . . , gk, g

−1
k } su
h that

G =
⋃

n∈N

Gn,where
Gn = {g1 ◦ · · · ◦ gn : X → X}g1,...,gn∈G1 .We always assume that idX ∈ G1. This implies that Gm ⊂ Gn for all m ≤ n.To emphasize the generating set we shall write (G, G1) instead of G.Definition 1. A Borel probability measure µ on X is said to be G-invariant if µ ◦ g = µ for any g ∈ G.It is well known that if G is abelian then a G-invariant measure exists(see [17℄). But in the 
ase of an arbitrary �nitely generated group (G, G1)a G-invariant measure may not exist.Example 1. Let fi : S1 → S1 be di�eomorphisms of a 
ir
le with asour
e Ai and a sink Bi, i = 1, 2, su
h that {A1, B1}∩{A2, B2} = ∅. Then thegroup (G, G1) generated by G1 = {idS1 , f1, f

−1
1 , f2, f

−1
2 } has no G-invariantmeasure. Indeed, if µ were a G-invariant measure then suppµ (the 
omple-ment of the set of all x ∈ S1 whi
h admit an open neighbourhood V su
hthat µ(V ) = 0) would be a subset of a nonwandering set. But in this 
ase,the nonwandering set is empty.Example 2. The orthogonal group O(n) a
ting on Sn is a non-abeliangroup admitting an O(n)-invariant Haar measure. Thus, a free subgroup F2of O(n) admits an F2-invariant measure.Bounded groups and a group invariant measure. Rama
handran and Mi-siurewi
z [31℄ 
onsidered a probability spa
e (X,A, P ) and a group G of mea-surable and nonsingular transformations de�ned on (X,A, P ). They proveda ne
essary and su�
ient 
ondition for the existen
e of a �nite G-invariantmeasure.We say that a �nite additive measure µ on A is equivalent to the measure

P provided for any set E ∈ A, µ(E) = 0 i� P (E) = 0. A measurabletransformation f : X → X is 
alled nonsingular if for any E ∈ A the
ondition P (E) > 0 implies P (f−1(E)) > 0. Two measurable sets E and Fare said to be equivalent if
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1) there exist sets E′ and F ′ su
h that P ((E \ E′) ∪ (E′ \ E)) = 0 and
P ((F \ F ′) ∪ (F ′ \ F )) = 0,2) there exists a sequen
e (Ej) su
h that E′ =

⋃∞
j=1 Ej ,3) there exists a sequen
e (Fj) su
h that F ′ =

⋃∞
j=1 Fj,4) there exists a sequen
e (gj) ⊂ G su
h that for every j,

Fj = gj(Ej).Following [31℄, we say that a set E ∈ A is bounded if it is not equivalent toa measure-theoreti
ally proper subset of itself. Finally, we say that a group
G is bounded if X is bounded.Proposition 1 (Theorem 1 in [31℄). A �nite G-invariant measure equiv-alent to P exists if and only if the group G is bounded.Measure preserving groups of transformations were studied by Alpernand Prasad [2℄ and Oxtoby and Ulam [29℄. In the 
ompa
t 
ase, the topolog-i
al and algebrai
 properties of those groups were investigated by Fathi [18℄.3. Growth rate of a group. We re
ommend [25℄ as a survey of resultson the growth rate of groups. In this se
tion we shall 
onsider only �nitelygenerated groups. More pre
isely, a group G is said to be �nitely generatedif there exists a �nite set G1 = {g1, . . . , gk, g

−1
1 , . . . , g−1

k } su
h that
G =

⋃

n∈N

Gn,where
Gn = {g1 ◦ · · · ◦ gn : g1, . . . , gn ∈ G1}.We always assume that e, the neutral element of G, belongs to the generatingset G1. This implies that Gm ⊂ Gn for all m ≤ n. Let |Gn| denote the
ardinality of Gn.Following de la Harpe [25℄ we introdu
e the following de�nitions:Definition 2. Let (G, G1) be a �nitely generated group. The exponen-tial growth rate of (G, G1) is the upper limit

w(G, G1) = lim sup
k→∞

k
√

|Gk|.The limsup is in fa
t a limit be
ause the inequality |Gk+n| ≤ |Gk| |Gn|implies the existen
e of limk→∞
k
√

|Gk|.Definition 3. The group (G, G1) is said to be of(a) exponential growth if w(G, G1) > 1,(b) subexponential growth if w(G, G1) = 1,(
) polynomial growth of degree d if |Gk| ≤ akd for some a > 0 and d ≥ 0,
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(e) intermediate growth if it is of subexponential growth and not of poly-nomial growth.It is known that the property of being of exponential growth (resp., subex-ponential growth, polynomial growth, intermediate growth) depends only onthe group G, and not on the 
hoi
e of the generating set G1. Also, a �nitelygenerated group is ne
essarily of one (and only one) of three types: expo-nential growth, polynomial growth or intermediate growth (see [25℄).There are many results on �nitely generated groups of exponential orpolynomial growth; let us quote a few of them:Proposition 2 ([25, p. 187℄). A �nitely generated group whi
h 
ontainsa free semigroup on two generators is of exponential growth.Proposition 3 ([23℄). A �nitely generated group of polynomial growthhas a nilpotent subgroup of �nite index.Proposition 4 ([15℄, [24℄, [4℄). If (G, G1) is a �nitely generated nilpo-tent group, then (G, G1) is of polynomial growth and

a1k
d ≤ |Gk| ≤ a2k

d,where d is the homogeneous dimension of (G, G1) and a1, a2 are some pos-itive 
onstants.Proposition 5 ([25, Proposition 22℄). The Heisenberg group (G, G1) isof polynomial growth and there exist 
onstants c1, c2 > 0 su
h that for all
k ∈ N,

c1k
4 ≤ |Gk| ≤ c2k

4.Proposition 6 ([12℄). If (G, G1) is a hyperboli
 group, then there existpositive 
onstants c1, c2 and w > 1 su
h that for all k ∈ N,
c1w

k ≤ |Gk| ≤ c2w
k.Lemma 1. If (G, G1) is a group of either exponential growth or polyno-mial growth, then there exists a 
onstant A ≥ 1 su
h that

|Gm| |Gn| ≤ A|Gmn|for m, n ∈ N large enough.Proof. (a) Let (G, G1) be a group of exponential growth. Then
w = lim

k→∞

k
√
|Gk| > 1.Therefore, for small ε > 0 and large m, n ∈ N we get

(w + ε)m+n < (w − ε)mn.
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Moreover,
(w − ε)m ≤ |Gm| ≤ (w + ε)m,

(w − ε)n ≤ |Gn| ≤ (w + ε)n,

(w − ε)mn ≤ |Gmn| ≤ (w + ε)mn.Thus,
|Gm| |Gn| ≤ (w + ε)m+n ≤ (w − ε)mn ≤ |Gmn|.(b) Assume now that (G, G1) is of polynomial growth. Then by Proposi-tion 3, G has a nilpotent subgroup H of �nite index. Bass [4℄ proved that fora �nitely generated nilpotent group H there exist positive 
onstants A1, A2, dsu
h that

A1n
d ≤ |Hn| ≤ A2n

d.Therefore, for the �nitely generated group (G, G1) of polynomial growththere exist positive 
onstants A3, A4, d su
h that
A3n

d ≤ |Gn| ≤ A4n
d,whi
h implies that there exists a positive 
onstant A su
h that

|Gm| |Gn| ≤ A|Gmn|.The above mentioned result motivates the following de�nition:Definition 4. A �nitely generated group (G, G1) is said to be ni
e ifthere exist 
onstants A ≥ 1 and k0 su
h that for all m, n > k0,
|Gn| |Gm| ≤ A|Gmn|.

Remark. Milnor [27℄ showed that the type of growth of the fundamentalgroup of a 
ompa
t Riemannian manifold M determines the geometry of Mand is related to the growth type of the manifold. The growth type of themanifold is determined by the volumes of balls in the universal 
overing of M.One of the most important results relating both types of growth is a theoremdue to Shvarts [33℄ and Milnor [27℄, whi
h says that the fundamental group
π1(M) of a 
ompa
t manifold M and the universal 
overing of M have thesame type of growth.An approa
h to the growth of groups, originating from foliation the-ory, based on the paper of Egashira [16℄, was presented by Wal
zak in [35℄.Badura [3℄ showed that any growth type 
an be realized by a leaf of a C1-foliation of a 
ompa
t manifold.4. Topologi
al pressure of a group. Let X be a 
ompa
t metri
 spa
ewith distan
e fun
tion d. Consider a group G of homeomorphisms of X. Thegroup G is assumed to be �nitely generated, e.g. there exists a �nite set
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G1 = {idX , g1, g

−1
1 , . . . , gk, g

−1
k } su
h that

G =
⋃

n∈N

Gn,where
Gn = {g1 ◦ · · · ◦ gn : X → X}g1,...,gn∈G1 .Denote by C(X) the set of 
ontinuous fun
tions de�ned on X, and let Ddenote the set of all neighbourhoods of the diagonal in X × X.Let δ > 0 and let

Nδ := {(x, y) ∈ X × X : d(x, y) < δ}be the δ-neighbourhood of the diagonal in X × X. For �xed n ∈ N, δ > 0and a 
ontinuous fun
tion f ∈ C(X) we put
N(δ, n) :=

⋂

g∈Gn−1

(g × g)−1Nδ, fn :=
∑

g∈Gn−1

f ◦ g.

Modifying the de�nitions stated in [28, p. 1070℄, we giveDefinition 5. A �nite set E ⊂ X is 
alled(a) (n, δ)-separated if (x, y) /∈ N(δ, n) for any distin
t x, y ∈ E,(b) (n, δ)-spanning if for any x ∈ X there exists y ∈ E su
h that (x, y) ∈
N(δ, n).Definition 6. Let

p(f, E) := log
∑

x∈E

exp f(x),

Pn,δ((G, G1), f) := sup{p(f, E) : E is (n, δ)-separated},
Pδ((G, G1), f) := lim sup

n→∞

1

|Gn−1|
Pn,δ((G, G1), f).Lemma 2. If α < β, then Pn,α((G, G1), f) ≥ Pn,β((G, G1), f).Definition 7. The quantity

P ((G, G1), f) := lim
δ→0+

Pδ((G, G1), f)is 
alled the pressure of the group (G, G1) with respe
t to the fun
tion f .By Lemma 2, P ((G, G1)f) is well de�ned.
Remark. It is easy to noti
e that the pressure of (G, G1) depends on thegenerating set. However, if G1 and G′

1 are two generating sets of the samegroup G, then P ((G, G1), f) > 0 if and only if P ((G, G′
1), f) > 0. Thereforewe 
an speak about the group of positive pressure without referring to thegenerating set.
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Moreover, the topologi
al entropy htop((G, G1)) satis�es the equality
htop((G, G1)) = P ((G, G1), 0).More information on the topologi
al entropy of a group 
an be found in [5℄and [6℄.5. Partial variational prin
iple. Denote by M(X, (G, G1)) the set of

G-invariant measures. Let A be a �nite Borel partition of X. For a partition
A we de�ne the partition

An :=
∨

g∈Gn−1

g−1A.

Modifying Conze's de�nition of measure entropy for abelian groups ([11℄),we de�ne measure entropy for an arbitrary �nitely generated group in thefollowing way:Definition 8. For a �nite Borel partition A of X and measure µ ∈
M(X, (G, G1)) we de�ne

hµ((G, G1),A) := lim sup
n→∞

1

|Gn−1|
Hµ(An),where Hµ(An) denotes the standard measure entropy of the partition An.Finally,

hµ(G, G1) := sup{hµ((G, G1),A) : A a �nite Borel partition of X}.Theorem 1. For a ni
e group (G, G1), measure µ ∈ M(X, (G, G1)) and
f ∈ C(X), we have the inequality

hµ(G, G1) +
\
X

f dµ ≤ P ((G, G1), f).Corollary 1. For a ni
e group (G, G1) a
ting on a 
ompa
t metri
spa
e X and any G-invariant measure µ ∈ M(X, (G, G1)),
hµ(G, G1) ≤ h(G, G1).To prove Theorem 1 we need a few te
hni
al lemmas.Lemma 3. For a �nite Borel partition An = {a1, . . . , as} of X, any

µ ∈ M(X, (G, G1)), and any positive ζ, there exists a �nite Borel partition
B = {b0, b1, . . . , bs} of X su
h that(a) bi is a 
ompa
t subset of ai for any i = 1, . . . , s,(b) Hµ(An | B) ≤ ζ.Proof. Choose ζ, ε > 0 satisfying ε|An| log |An| < ζ. Sin
e a Borel prob-ability measure is regular, for ea
h ai ∈ An there exists a 
ompa
t set
bi ⊂ ai su
h that µ(ai \ bi) < ε, i = 1, . . . , s. Consider the partition
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B = {b0, b1, . . . , bs}, where b0 = X \

⋃s
i=1 bi. Following the proof of The-orem 8.6 in [37℄, we get

Hµ(An | B) < ε|An| log |An| < ζ.Let B = {b0, b1, . . . , bs} be the partition of X des
ribed in the abovelemma. For distin
t i and j we have
(bi × bj) ∩ {(x, x) : x ∈ X} = ∅.Therefore
Oε = (X × X) \

s⋃

i6=j; i,j=1

(bi × bj)is an open neighbourhood of the diagonal.Lemma 4. Given f ∈ C(X). For any ζ > 0 there exists 0 < δ∗ ≤ ζ su
hthat(a) if (x, y) ∈ Nδ∗ , then (y, x) ∈ Nδ∗ ,(b) if (x, y), (y, z) ∈ Nδ∗ then (x, z) ∈ Oε,(
) if (x, y) ∈ Nδ∗ , then |f(x) − f(y)| ≤ ζ.Proof. Choose ζ > 0. Denote by B(x, rx) the ball in X × X 
entered at
(x, x) of radius rx su
h that B(x, rx) ⊂ Oε. Sin
e the diagonal is 
ompa
t,it is 
overed by a �nite subfamily (B(xi, rxi

))k
i=1. Now, it is easy to noti
ethat there exists a δ > 0 su
h that

Nδ ⊂
k⋃

i=1

B(xi, rxi
).By the 
ontinuity of f we get δ1 su
h that if d(x, y) < δ1, then |f(x)− f(y)|

< ζ. Taking δ∗ ≤ min{δ, δ1, ζ} 
ompletes the proof.Definition 9. Given a group (G, G1) and a positive integer m, denoteby (G(m), G
(m)
1 ) the group generated by the set G

(m)
1 = {Gm\Gm−1}∪{idX}.Lemma 5.

Anm =
∨

k∈G
(m)
n−1

k−1
( ∨

g∈Gm−1

g−1A
)
.

Proof. Noti
e that any element a of the partition Anm may be writtenin the form
a =

⋂

g∈Gmn−1

g−1Ag, where Ag ∈ A.

On the other hand, any element b of ∨
k∈G

(m)
n−1

k−1(
∨

g∈Gm−1
g−1A) may be
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written, with Ag,k ∈ A, in the form
b =

⋂

k∈G
(m)
n−1

k−1
( ⋂

g∈Gm−1

g−1Ag,k

)
=

⋂

k∈G
(m)
n−1, g∈Gm−1

(g ◦ k)−1Ag,k.

Thus, we obtain equality of the above mentioned partitions.Let C =
∨

k∈G
(m)
n−1

k−1B, where the partition B was des
ribed in Lemma 3.For any c ∈ C de�ne
α(c) := sup{fnm(x) : x ∈ c}, β :=

∑

c∈C

expα(c).It is 
lear that \
c

fnm dµ ≤ α(c)µ(c).Lemma 6.
Hµ(C) +

\
X

fnm dµ ≤ log β.Proof. By the de�nitions of measure entropy and fnm,
Hµ(C) +

\
X

fnm dµ ≤ −
∑

c∈C

expα(c)

(
µ(c)

expα(c)

)
log

(
µ(c)

expα(c)

)

= β
∑

c∈C

expα(c)

β
L

(
µ(c)

expα(c)

)
,where L(x) = −x log x. The 
on
avity of L(x) yields

Hµ(C)+
\
X

fnm dµ≤ βL

(∑

c∈C

expα(c)

β

µ(c)

expα(c)

)
= βL

(∑

c∈C

µ(c)∑
c∈C expα(c)

)

= βL(β−1) = log β.Lemma 7. Let E be an (nm, δ)-spanning set. Then for any c ∈ C thereexists a point zc ∈ E su
h that
α(c) = sup{fnm(x) : x ∈ c and (x, zc) ∈ N(δ, nm)}.Proof. Fix c ∈ C and let x0 be a point of the 
losure of c su
h that

α(c) = fnm(x0). Then there exists y ∈ E su
h that
(x0, y) ∈ N(δ, mn) =

⋂

g∈Gmn−1

(g × g)−1Nδ.Therefore, (g(x0), g(y)) ∈ Nδ for any g ∈ Gmn−1. If x0 ∈ c, we are done. If
x0 ∈ ∂c, then by the 
ontinuity of all g ∈ Gmn−1 and the fa
t that Nδ is anopen set, there exists a ball B(x0, r) in X su
h that for ea
h x1 ∈ B(x0, r)and ea
h g ∈ Gmn−1,

(g(x1), g(y)) ∈ Nδ.So, taking x′
0 ∈ B(x0, r) ∩ c we get the desired point.
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Lemma 8. Let ζ and δ∗ be as in Lemma 4. Then for any element c ofthe partition C there exists a point zc su
h that(a) fnm(zc) ≥ α(c) − ζ|Gnm−1|,(b) card{c ∈ C : zc = y} ≤ 2|Gn−1|.Proof. (a) Let E be an (mn, δ)-spanning set. By Lemma 7 for x ∈ c thereexists zc ∈ E su
h that

(x, zc) ∈
⋂

g∈Gnm−1

(g × g)−1Nδ∗ .Therefore, (h(x), h(zc)) ∈ Nδ∗ for any h ∈ Gmn−1. By Lemma 4 we get
|f(h(x)) − f(h(zc))| < ζ.Thus

fnm(zc) =
∑

h∈Gmn−1

f ◦ h(zc) ≥
∑

h∈Gmn−1

(f ◦ h(x) − ζ)

≥ sup{fmn(x) : x ∈ c} − ζ|Gmn−1| = α(c) − ζ|Gmn−1|.(b) The proof is similar to the proof of equation (8) in [28, p. 1072℄.Proof of Theorem 1. Fix ζ > 0 and 
hoose large m su
h that
log 2

|Gm−1|
≤ ζ.Let E be an (mn, δ∗)-separated set. By Lemma 8,

2|Gn−1|
∑

y∈E

exp fmn(y) ≥ card{c ∈ C : zc = y}
∑

y∈E

exp fmn(y)

≥
∑

c∈C

exp(α(c) − ζ|Gmn−1|).Taking logarithms of both sides we arrive at
|Gn−1| log 2 + log

( ∑

y∈E

exp fmn(y)
)
≥ −ζ|Gmn−1| + log

∑

c∈C

expα(c).

Thus,(1) |Gn−1| log 2 + p(fmn, E) ≥ −ζ|Gmn−1| + log β.On the other hand, by Lemma 6,
Hµ(C)

|Gmn−1|
+
\
X

f dµ ≤
Hµ(C) + |Gmn−1|

T
X

f dµ

|Gmn−1|
=

Hµ(C) +
T
X

fmn dµ

|Gmn−1|

≤
log β

|Gmn−1|
.
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Let A be as in De�nition 4. By (1) we get
log β

|Gmn−1|
≤

|Gn−1| log 2 + p(fmn, E) + ζ|Gmn−1|

|Gmn−1|

≤
Pmn,δ∗((G, G1), f)

|Gmn−1|
+ (A + 1)ζbe
ause log 2 ≤ ζ|Gm−1| and

|Gn−1| |Gm−1| ≤ A|G(n−1)(m−1)| ≤ A|Gmn−1|.So, �nally we obtain(2) Hµ(C)

|Gmn−1|
+
\
X

f dµ ≤
Pmn,δ∗((G, G1), f)

|Gmn−1|
+ (A + 1)ζ.

The 
onstru
tion of the partition B implies that for any g ∈ G
(m)
n ,

Hµ(g−1Am | g−1B) ≤ ζ.So,
Hµ(Amn | C) = Hµ

( ∨

g∈G
(m)
n−1

g−1Am

∣∣∣
∨

g∈G
(m)
n−1

g−1B
)
≤ |G

(m)
n−1|ζ ≤ |Gmn−1|ζ.

Using the basi
 properties of 
onditional entropy we arrive at
Hµ(Amn) ≤ Hµ(C) + Hµ(Amn | C) ≤ Hµ(C) + |Gmn−1|ζ.Therefore,
Hµ(Amn)

|Gmn−1|
+
\
X

f dµ ≤

(
Hµ(C)

|Gmn−1|
+
\
X

f dµ

)
+ ζ

|Gmn−1|

|Gmn−1|

≤
Pmn,δ∗((G, G1), f)

|Gmn−1|
+ (A + 2)ζ.Passing to the limsup with respe
t to n we obtain

hµ((G, G1),A) +
\
X

f dµ ≤ Pδ∗((G, G1), f) + (A + 2)ζ.Letting ζ → 0+ (then also δ∗ → 0+) and taking into 
onsideration that A isan arbitrary �nite Borel partition, we arrive at
hµ(G, G1) +

\
X

f dµ ≤ P ((G, G1), f).

6. Existen
e of a group invariant measure for a group of poly-nomial growth. In this se
tion (G, G1) is a �nitely generated group ofhomeomorphisms of a 
ompa
t metri
 spa
e (X, d). Again, we assume that
G1 = {idX , g1, g

−1
1 , . . . , gk, g

−1
k }.
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Remark. It is 
lear that the group (G, G1) generated by G1 = {idS1 , f1,

f−1
1 , f2, f

−1
2 }, where fi, i = 1, 2, were des
ribed in Example 1, has no G-invariant measure. It is an example of a group of exponential growth. Thatis why in the following we restri
t our attention to the groups of polynomialgrowth.Definition 10. Let (G, G1) be a �nitely generated group and A ⊂ G.The G1-boundary of a subset A of G is the set

∂G1A := {g ∈ G : g /∈ A and ∃s∈G1sg ∈ A}.Proposition 7 ([30℄). Let (G, G1) be a �nitely generated group of poly-nomial growth. Then
lim

n→∞

|Gn ∪ ∂G1Gn|

|Gn|
= 1.Corollary 2. Let (G, G1) be a �nitely generated group of polynomialgrowth, and let g0 ∈ G1. De�ne A

(n)
1 = Gn−1 \ g0Gn−1 and A

(n)
2 =

g0Gn−1 \ Gn−1. Then
lim

n→∞

|A
(n)
i |

|Gn−1|
= 0, i = 1, 2.Proof. By Proposition 7,(3) lim

n→∞

|∂G1Gn|

|Gn|
= 0.It is easy to observe that A

(n)
1 = Gn−1 \ g0Gn−1 ⊂ ∂G1Gn−2. So, by (3),

lim
n→∞

|A
(n)
1 |

|Gn−1|
= 0.In a similar way we observe that

A
(n)
2 = g0Gn−1 \ Gn−1 ⊂ ∂G1Gn−1and using the same argument we 
on
lude that

lim
n→∞

|A
(n)
2 |

|Gn−1|
= 0.Proposition 8. If (G, G1) is a �nitely generated group of homeomor-phisms of a 
ompa
t metri
 spa
e (X, d), of polynomial growth, then thereexists a G-invariant measure.Proof. Let En be an (n, δ)-separated subset of X. Choose a 
ontinuousfun
tion f ∈ C(X) and �x g0 ∈ G1. De�ne a measure σn 
on
entrated on

En by
σ({y}) :=

exp fn(y)∑
y∈En

exp fn(y)
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for ea
h y ∈ En, and let
µn :=

1

|Gn−1|

∑

g∈Gn−1

σn ◦ g.

It is well known that the spa
e M(X) of all Borel probability measuresde�ned on X is a 
ompa
t metri
 spa
e in the weak w∗-topology. Therefore,the sequen
e µn has a 
luster point in M(X).Consider the mapping Φf,g0 : M(X) → R de�ned by
Φf,g0(m) :=

\
X

f dm −
\
X

f ◦ g0 dm

for any measure m ∈ M(X). It is easy to 
he
k that Φf,g0 is a 
ontinuousmap. Thus if µ is a 
luster point of the sequen
e (µn) then Φf,g0(µ) is a
luster point of (Φf,g0(µn)). To 
al
ulate the norm of the fun
tional Φf,g0note �rst that
Φf,g0(µn) =

\
X

(f − f ◦ g0) d

(
1

|Gn−1|

∑

g∈Gn−1

σn ◦ g

)

=
1

|Gn−1|

∑

g∈Gn−1

\
X

(f − f ◦ g0) dσn ◦ g

=
1

|Gn−1|

∑

g∈Gn−1

\
X

(f ◦ g−1 − f ◦ g0 ◦ g−1) dσn

=
1

|Gn−1|

∑

g∈Gn−1

∑

y∈En

(f ◦ g−1(y) − f ◦ g0 ◦ g−1(y))
exp fn(y)∑

y∈En
exp fn(y)

=
1

|Gn−1|

∑

y∈En

exp fn(y)∑
y∈En

exp fn(y)

∑

g∈A
(n)
1 ∪A

(n)
2

(f ◦ g−1(y) − f ◦ g0 ◦ g−1(y)),

where A
(n)
1 = Gn−1 \ g0Gn−1 and A

(n)
2 = g0Gn−1 \ Gn−1.Finally, in view of Corollary 2 we arrive at

‖Φf,g0(µn)‖ ≤
1

|Gn−1|

∑

y∈En

exp fn(y)∑
y∈En

exp fn(y)
2‖f‖ |A

(n)
1 ∪ A

(n)
2 |

≤ 4‖f‖
max{|A

(n)
1 |, |A

(n)
2 |}

|Gn−1|
.So, letting n → ∞ we see that Φf,g0(µ) = 0, and therefore the measure µ is

g0-invariant. But g0 is an arbitrary element of G1, thus µ is G-invariant.
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7. Suspension of a group of polynomial growth and the varia-tional prin
iple for the geometri
 entropy of foliations. The geomet-ri
 entropy hgeom(F, g∗) of a foliation F on a 
ompa
t Riemannian manifold

(M, g∗), de�ned by Ghys, Langevin and Wal
zak [20℄ for a regular foliation,measures the exponential rate of growth of separated leaves of F. An equiv-alent de�nition of hgeom(F, g∗) was given in terms of points separated byelements of a holonomy pseudogroup. Given a foliation F on a 
ompa
t Rie-mannian manifold (M, g) and a ni
e 
overing U whi
h determines a holonomypseudogroup (HU , H1) of the foliated manifold (M, F ) (see [20℄), we get:Proposition 9 (see [20℄). The geometri
 entropy hgeom(F, g) of a foli-ated manifold (M, F ) (with respe
t to a 
ontinuous family g of Riemannianstru
tures on the leaves) is equal to
hgeom(F, g) = sup

U

h(HU ,H1)

△(U)
,where U ranges over the family of all �nite ni
e 
overings of (M, F ), and

△(U) denotes the the maximum of the diameters of the plaques of U mea-sured with respe
t to the Riemannian stru
tures indu
ed on the leaves.The variational prin
iple for the geometri
 entropy of foliations is anopen problem. Wal
zak ([35, p. 141℄) writes that it seems interesting andimportant to sear
h for a good de�nition of a measure-theoreti
 entropy forfoliations whi
h 
ould provide a kind of variational prin
iple for geometri
entropy. In this se
tion we show that Theorem 1 provides a kind of partialvariational prin
iple for geometri
 entropy for some 
lass of foliations.We present a suspension 
onstru
tion whi
h dire
tly relates the dynami
sof a group to the dynami
s of the foliated spa
e. To do this, take a 
ompa
tmetri
 spa
e (Z, d), a 
ompa
t Riemannian manifold B and its fundamentalgroup G = π1(B, b) at a base point b ∈ B. The fundamental group π1(B)a
ts on the right in a natural way on B̃, the universal 
overing of B. Assumethat there exists a left a
tion of G on Z. Let
M := (B̃ × Z)/=rwhere the equivalen
e relation =r is de�ned in the following way: (xg, z)

=r (x, gz) for any g ∈ G, x ∈ B̃ and z ∈ Z. The spa
e M �bres over B with�bre Z. Moreover, M 
an be equipped with a foliation F whi
h 
onsists ofthe leaves of the form L = π(B̃ × {z}), where z ∈ Z and π : B̃ × Z → Mis the 
anoni
al proje
tion. The foliated spa
e (M, F ) is a �bre bundle with�bre Z. Then the holonomy group of (M, F ) 
oin
ides with G = π1(B, b).Given a �nitely generated group (G, G1) of polynomial growth there isa 
ompa
t manifold M su
h that G = π1(M). Denote by Γ the one-point
ompa
ti�
ation of the graph of (G, G1). Then G a
ts on the 
ompa
t metri
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spa
e Γ (see [26℄), so we 
an 
onsider the 
ompa
t foliated spa
e
MG := (M̃ × Γ )/=rwith leaves FG = {L = π(M̃ ×{γ}) : γ ∈ Γ}. The distan
e fun
tion dΓ on Γand the Riemannian metri
 gM on M lifted via the 
anoni
al proje
tion π tothe leaves of FG determine the natural metri
 gMG

on MG whi
h 
oin
ideswith dΓ on Γ and with gM along the leaves.Following Example 4.3 in [20℄ or the last se
tion in [7℄ we obtain
1

a
h(G, G1) ≤ hgeom(FG),where a denotes the maximum of the lengths of the free homotopy 
lasses of
urves homotopi
 to elements of G1. Finally, we get a kind of partial varia-tional prin
iple for the geometri
 entropy of the foliation (MG, FG) modelledtransversally on Γ.Corollary 3. For a 
ompa
t foliated spa
e (MG, FG), determined bythe suspension 
onstru
tion of a �nitely generated group (G, G1) of polyno-mial growth, with a 
ontinuous family gMG

of Riemannian stru
tures on theleaves, and for any measure µ ∈ M(Γ, (G, G1)) we get
sup{hµ(G, G1) : µ ∈ M(Γ, (G, G1))} ≤ ahgeom(FG, gMG

),where hgeom(FG, gMG
) is the geometri
 entropy of FG with respe
t to theRiemannian stru
ture gMG

, and a denotes the maximum of the lengths ofthe free homotopy 
lasses of 
urves homotopi
 to elements of G1.A
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