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SHADOWING IN MULTI-DIMENSIONAL SHIFT SPACES

BY

PIOTR OPROCHA (Kraków)

Abstract. We show that the class of expansive Z
d actions with P.O.T.P. is wider

than the class of actions topologically hyperbolic in some direction ν ∈ Z
d. Our main

tool is an extension of a result by Walters to the multi-dimensional symbolic dynamics
case.

1. Introduction. In this paper we consider multi-dimensional shift
spaces. The books [1, 11] give an introduction to one-dimensional shift spaces
theory. Multi-dimensional shift spaces arise in a natural way when we gen-
eralize the standard shift map σ to a Z

d-action n 7→ σn. The vector n ∈ Z
d

informs us how many cells we shift in each direction. The dynamics in higher
dimensions is more complex than in the one-dimensional case (see, for ex-
ample, [2, 9]). It turns out that there exist one-dimensional results which are
not true in higher dimensions and also some higher dimensional properties
have no analogue in dimension one [4].

Studying the pseudo-orbit tracing property (P.O.T.P.) of dynamical sys-
tems is an important part of stability theory (see [6, 7]). P.O.T.P. for group
actions has recently been established by Pilyugin and Tikhomirov in [8]. In
his fundamental paper [10] Peter Walters proved that a (one-dimensional)
subshift has P.O.T.P. if and only if it is a shift of finite type. In this paper we
prove an analogous result for multi-dimensional shift spaces. We also show
a stronger property: every shift of finite type has Lipschitz P.O.T.P. and for
ε < 1 any pseudo-orbit may be ε-traced by exactly one point. This result is
used to study connections between P.O.T.P. of a Z

d-action Φ and P.O.T.P.
of the homeomorphisms Φν where ν ∈ Z

d.

2. Preliminaries. Let A be a finite set, d ∈ N, and let A
Z

d

be the set
of all maps x : Z

d → A. For any (j1, . . . , jd) = j ∈ Z
d we define ‖j‖ =

max{|ji| : i = 1, . . . , d}. The usual prefix metric on the one-dimensional full
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shift may be generalized to a metric ̺ on A
Zd

given by ̺(x, y) = 2−j where

j = sup({k ∈ N : xn = yn, n ∈ Z
d, ‖n‖ < k}).

For each n ∈ Z
d we define a homeomorphism σn : A

Zd

→ A
Zd

putting

(σn(x))m = xm+n for all x ∈ A
Zd

and m ∈ Z
d. The Z

d-action n 7→ σn is

called the shift action on Z
d. The d-dimensional full shift is the space A

Z
d

with metric ̺ and the shift action. Any closed subset X of A
Z

d

invariant
under σ (i.e. σn(X) = X for all n ∈ Z

d) is called a d-dimensional shift space

(or simply a shift space). If X, Y are shift spaces and X ⊂ Y then we say
that X is a subshift of Y .

Given two d-dimensional shift spaces X, Y we may always assume that

both are subshifts of some d-dimensional full shift. Namely, if X ⊂ (AX)Z
d

and Y ⊂ (AY )Z
d

we may set A = AX ∪ AY and then X, Y ⊂ A
Zd

. Due to
this observation, when we consider a finite number of shift spaces, we may
always assume that they have the same alphabets.

For x ∈ A
Z

d

and F ⊂ Z
d let xF denote the restriction of x to F . If

F = {a} for some a ∈ Z
d we simply write xa. A shape is a finite subset

of Z
d. A pattern on the shape F is a function f : F → A.
A pattern f : F → A is said to be allowed for the shift X if there exists

x ∈ X such that xF = f . If f : F → A is a pattern then we write [f ] =
{x : xF = f}. This generalizes the notion of one-dimensional cylinder set to
d dimensions.

The k-cube with lowest corner at the origin is the set

Λ(k) = {0, . . . , k − 1}d.

For n ∈ Z
d the set n + Λ(k) = {n + m : m ∈ Λ(k)} is called the k-cube

with the lowest corner at n. The k-cube centered at the origin is the set
Λ(k) = {−k+1, . . . , k−1}d. Observe that if ̺(x, y) ≤ 2−k then xΛ(k) = yΛ(k).

By a k-block we mean a pattern f : Λ(k) → A. A pattern f is called a
block if it is a k-block for some k. We write Bk(A) for the set of all k-blocks
and B(A) for the set of all possible blocks (i.e. B(A) =

⋃∞
k=1 Bk(A)). For

any shift space X and k ∈ N we denote by Bk(X) the set of all k-blocks
allowed for X and by B(X) the set of all blocks allowed for X.

If f ∈ Bk(X) and x ∈ X then we say that f occurs in x with lowest

corner at n ∈ Z
d whenever f(m) = x(m + n) for all m ∈ Λ(k). We then

write f = xn+Λ(k). Given l ≥ k, we say that f ∈ Bk(X) occurs in xb+Λ(l) if

there exists a ∈ Z
d such that a + Λ(k) ⊂ b + Λ(l) and f = xa+Λ(k).

3. Shifts of finite type. Let F be a set of patterns. We denote by XF

the set of all points of A
Z

d

which do not contain any pattern from F, i.e.

x ∈ XF ⇔ ∀(f : E → A) ∈ F ∀n ∈ Z
d xn+E 6= f.

Elements of F are called forbidden patterns.
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Lemma 3.1. A set X ⊂ A
Zd

is a shift space if and only if there exists a

set F of patterns such that X = XF.

The proof is analogous to that in [1, Thm. 6.1.21] for the one-dimensional
case, and therefore is omitted.

Corollary 3.2. A set X ⊂ A
Z

d

is a shift space if and only if there

exists F ⊂ B(A) such that X = XF.

Proof. Any set F ⊂ B(X) is a set of patterns and so XF is a shift space.
Conversely, let F be any fixed set of patterns such that X = XF. If

f : E → A is a pattern then there exists k ∈ N such that E ⊂ Λ(k), and so
w + E ⊂ Λ(2k + 1) where w = (k, . . . , k) ∈ Z

d. We define Af ⊂ B(X) by

Af = {g ∈ B2k+1(A) : gw+E = f}.

Set F̃ =
⋃

f∈F
Af . Observe that F̃ ⊂ B(A) and XF = X

F̃
.

Definition 3.3. Let X be a shift space. We say that X is a shift of finite

type if there exists a finite set of patterns F such that X = XF. A shift of
finite type X is M -step if X = XF for some F ⊂ BM+1(A).

Example 3.4 (Chessboard). Let A
(n) = {0, 1, . . . , n−1} be an alphabet

interpreted as a set of n colors. We construct a shift X(n) of finite type such
that adjacent cells of any point have different colors. Such a shift space
may be obtained as X(n) = X

F(n) where the set of forbidden patterns F
(n)

consists of:

a a
a

a

where a is any color from A(n). Observe that if we denote by H(n) the set
containing all possible patterns of the form

a b

a c

a a

b c

where a, b, c ∈ A
(n), then X(n) = X

H(n). However, H
(n) ⊂ B2(A

(n)) and
then X(n) is a 1-step shift of finite type.

In view of Corollary 3.2 every shift X of finite type may be defined by a
finite set F ⊂ B(A). By the same arguments there always exists a positive
integer M such that X is an M -step shift of finite type.

Definition 3.5. Let X be a subshift of A
Z

d

. A map φ : X → A
Z

d

is
called k-local if there exists Φ : B2k+1(X) → A such that for every x ∈ X
and n ∈ Z

d,
φ(x)n = Φ((σn(x))Λ(k)).

A map φ is called local if it is k-local for some k ∈ N.
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This definition generalizes the definition of a sliding block code (one-
dimensional case). In fact, the well known Curtis–Lyndon–Hedlund theorem
(see [1, Thm. 6.2.9]) may be extended to the d-dimensional case and k-local
maps. This implies that the k-local maps are exactly the functions which are
continuous and shift commuting (i.e. σn(φ(x)) = φ(σn(x)) for any x ∈ X
and n ∈ Z). Furthermore, if X, Y are shift spaces and φ : X → Y is
a local map which is one-to-one and onto, then φ is a shift commuting
homeomorphism (see [1, Thm. 1.5.14] for the one-dimensional case). This
leads to the following definition:

Definition 3.6. Two shift spaces X, Y are conjugate if there exists a
bijective local map φ : X → Y . Every such φ is called a conjugacy between
X and Y .

In view of previous facts the above definition of conjugacy is equivalent
to the definition of topological conjugacy of two Z

d-actions.

Let X be a shift space and let N be a positive integer. Define a map
βN : X → BN (X)Z

d

by (βN (x))n = xn+Λ(N).

Definition 3.7. Let X be a shift space. Then the Nth higher block shift

X [N ] is the image X [N ] = βN (X).

Observe that βN is an N -local invertible mapping, so the shift spaces X
and X [N ] are conjugate.

Proposition 3.8. Let X be an M -step shift of finite type. Then it is

conjugate to a 1-step shift of finite type.

Proof. By previous remarks, X and X [M ] are conjugate. Because any
M + 1 block in X may be regarded as a 2-block in X [M ], this space is a
1-step shift of finite type. This is an immediate generalization of the one-
dimensional case [1, Prop. 2.3.9].

4. Shift spaces and shadowing. Fix a positive number δ. We say that

a set ξ = {x(n) ∈ A
Z

d

: n ∈ Z
d} is a δ pseudo-orbit if

̺(x(n±ei), σ±ei(x(n))) < δ

for any n ∈ Z
d and i = 1, . . . , d, where ei ∈ Z

d is the ith standard basis
vector.

Definition 4.1. Let X be a shift space. A δ pseudo-orbit ξ={x(n)∈A
Z

d

:
n ∈ Z

d} is ε-traced by x ∈ X if ̺(xn, σn(x)) < ε for any n ∈ Z
d.

The definition below is a particular case of the general definition of
P.O.T.P. (see [8]). Similarly to the one-dimensional case it is easy to see
that P.O.T.P. is a topological conjugacy invariant.
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Definition 4.2. A shift space X has the pseudo-orbit tracing property

(P.O.T.P., shadowing) if for any ε > 0 there exists δ > 0 such that each
δ pseudo-orbit ξ ⊂ X is ε-traced by some point y ∈ X.

Definition 4.3. A shift space X has the Lipschitz pseudo-orbit tracing

property (Lipschitz P.O.T.P., Lipschitz shadowing) if there exists a constant

L > 0 such that for any δ pseudo-orbit ξ = {x(n) ∈ A
Zd

: n ∈ Z
d} there is a

point x ∈ X satisfying

̺(x(n), σn(x)) < Lδ, n ∈ Z
d.

The following definition generalizes the well known concept of expan-
siveness.

Definition 4.4. We say that a shift space X is expansive if there exists
a constant b > 0 (expansive constant) such that whenever for any x, y ∈ X,

̺(σn(x), σn(y)) < b for all n ∈ Z
d,

then x = y.

The main tool we will use is the following:

Theorem 4.5. Let X be a shift space. Then the following conditions are

equivalent :

(1) X is a shift of finite type.

(2) X has the pseudo-orbit tracing property.

(3) X has the Lipschitz pseudo-orbit tracing property.

In particular , if X is an M -step shift of finite type then it has the Lipschitz

pseudo-orbit tracing property with constant L = 2M+1.

Proof. The implication (3)⇒(2) is always true. We will show that
(1)⇒(3) and (2)⇒(1) hold.

(1)⇒(3). Suppose that X is a shift of finite type. We may assume that
X is an M -step shift, that is, there exists F ⊂ BM+1(A) such that X = XF.
This means that x ∈ X if and only if xn+Λ(M+1) 6∈ F for any n ∈ Z

d. First,
let us make an observation which is crucial for this part of the proof.

Let m > M , δ = 2−m and let ξ = {x(n) ∈ X : n ∈ Z
d} be a δ pseudo-

orbit. By definition, ̺(x(n±ei), σ±ei(x(n))) < δ for any n ∈ Z
d. This implies

that

x
(n±ei)

Λ(m)
= (σ±ei(x(n)))Λ(m).(4.1)

Let y ∈ A
Z

d

with y(n) = x(n)(0) for any n ∈ Z
d. We will show that y ∈ X.

Fix any a = (a1, . . . , ad) ∈ Λ(m). Applying (4.1) we find that x(n±ei)(j)

= x(n)(j ± ei) for all j ∈ Λ(m), n ∈ Z
d. We will use (4.1) recursively. For

simplicity, we assume that ai ≥ 0. When ai < 0 it is enough to replace −1
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by 1 in the following equalities (i.e. increase values at the ith coordinate
instead of decreasing them):

x(n+a)(0) = x(n+(a1,...,ad))(0)
(4.1)
= (σe1(x(n+(a1,...,ad)−e1)))(0)(4.2)

= x(n+(a1−1,a2,...,ad))(e1)
(4.1)
= · · ·

= x(n+(0,a2,...,ad))(a1e1)
(4.1)
= · · ·

= x(n+(0,0,a3,...,ad))(a1e1 + a2e2)
(4.1)
= · · ·

= x(n+(0,...,0))(a1e1 + · · · + aded)

= x(n)(a).

We have just shown that y(n+a) = x(n+a)(0) = x(n)(a) for any a ∈ Λ(m).

Observe that Λ(M + 1) ⊂ Λ(m), so yn+Λ(M+1) = x
(n)
0+Λ(M+1) /∈ F for any

n ∈ Z
d and hence y ∈ X.

The point y defined above is a good candidate to trace the pseudo-
orbit ξ and, as we will see, it really does. The set ξ is a 2−m pseudo-orbit, so
by (4.2) we obtain x(n+a)(0) = x(n)(a) for all a ∈ Λ(m). This implies that
̺(σn(y), x(n)) < 2−m and so ξ is δ traced by y.

Let L = 2M+1. Take any δ > 0. If δ > 2−M then Lδ > 1 and there is
nothing to prove. Suppose that K ≥ M is an integer such that 2−(K+1) <
δ ≤ 2−K . Observe that any δ pseudo-orbit is also a 2−K pseudo-orbit, thus by
previous observations it is 2−K-traced. Additionally, 2−K ≤ 2−(K+1)L ≤ Lδ,
which finishes the proof of (1)⇒(3).

(2)⇒(1). Suppose that X has P.O.T.P., fix ε = 1/2 and take δ > 0
such that every δ pseudo-orbit is ε-traced. Choose N large enough to have
2−N < δ.

We will show that X is an M -step shift of finite type where M = 2N +2.
Let F = BM+1(A) \ BM+1(X). Obviously X ⊂ XF. We have to show that
XF ⊂ X.

Fix y ∈ XF. By the definition of XF for every n ∈ Z
d we have yn+Λ(N+1)

∈ BM+1(X), thus for every n ∈ Z
d there exists x(n) ∈ X such that x

(n)

Λ(N+1)
=

yn+Λ(N+1). Set ξ = {x(n) ∈ X : n ∈ Z
d}. Obviously Λ(N) ± ei ⊂ Λ(N + 1),

so

(σ±ei(x(n)))Λ(N) = x
(n)

Λ(N)±ei

= yn+(Λ(N)±ei)
= y(n±ei)+Λ(N) = x

(n±ei)

Λ(N)
.

This implies that ̺(σ±ei(x(n)), x(n±ei)) ≤ 2−N < δ and so ξ is a δ pseudo-
orbit. Thus there exists x ∈ X such that ξ is ε-traced by x. Observe that

̺(σn(x), x(n)) < 1/2, which implies that xn+Λ(1) = x
(n)

Λ(1)
= yn+Λ(1). We have

just shown that x(n) = y(n) for any n ∈ Z
d, so y = x and hence y ∈ X.
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Theorem 4.6. Let X be a shift space. If 0 < ε < 1 then for any δ
pseudo-orbit ξ ⊂ X there exists at most one point x ∈ X which ε-traces ξ.

Proof. Fix any 0 < ε < 1 and let ξ = {x(n) : n ∈ Z
d} ⊂ X be any fixed

δ pseudo-orbit. Suppose that ξ is ε-traced by some point x. For any n ∈ Z
d

we have ̺(x(n), σn(x)) = 2−j < ε < 1. Observe that ̺(x(n), σn(x)) ≤ 1/2

and so x
(n)
0 = (σn(x))0 = xn for any n ∈ Z

d. This implies that there is at
most one such x.

The orbit of any point y ∈ X is a δ pseudo-orbit for any δ > 0. This
implies the following:

Corollary 4.7. Let X be a shift space. Then X is expansive with ex-

pansive constant b = 1.

We may also use Theorem 4.6 to define δ0 such that any δ pseudo-orbit
is traced by exactly one point provided that δ < δ0. Strictly speaking, we
have the following:

Corollary 4.8. Let X be an M -step shift of finite type, let 0 < ε < 1
and let δ0 = ε2−(M+1). If δ < δ0 then every δ pseudo-orbit ξ ⊂ X is ε-traced
by exactly one point yξ ∈ X.

Proof. Let ξ ⊂ X be a δ pseudo-orbit, where δ < δ0. By Theorem 4.5
the pseudo-orbit ξ is Lδ-traced by some point y ∈ X, where L = 2M+1.
Observe that Lδ < ε < 1, so by Theorem 4.6 there is exactly one such y.

5. Topologically Anosov homeomorphisms and shadowing. We
recall that a homeomorphism h is topologically Anosov (or equivalently topo-
logically hyperbolic [3, 5]) if it is expansive and has P.O.T.P. The authors
of [8] proved that if for a given Z

d-action Φ there exists ν ∈ Z
d such that

the homeomorphism f = Φν is topologically Anosov then Φ has P.O.T.P.
We will show that the assumptions about f cannot be weakened (it is not
enough to assume that f has P.O.T.P. or f is expansive alone). We will also
show that there exist Z

d-actions with P.O.T.P. which are not topologically
Anosov for any ν ∈ Z

d, so [8, Thm. 1] is only a sufficient condition.

Example 5.1. Consider a one-dimensional shift space X which is not
of finite type (e.g. X may be an “even shift” because it belongs to the class
of strictly sofic shift spaces [1, Ex. 2.1.9]). Let F be the set of forbidden
words for X, i.e. X = XF. We define a set F

′ of two-dimensional patterns
as follows:

F
′ =

{
u1 u2 · · · u|u| : u ∈ F

}
∪

{
a

b
: a, b ∈ A, a 6= b

}
.
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Observe that the two-dimensional shift space Y = XF′ contains points which
consist of infinitely many copies of elements of X and any point of Y is
determined by symbols on the Z × {0} line. Strictly speaking, y ∈ Y if:

(1) y(i, j) = y(i, j + m) for all (i, j) ∈ Z
2 and m ∈ Z.

(2) y(·, j) ∈ X.

The map σ(1,0) is expansive with expansive constant b = 1/2; however,
Y does not have P.O.T.P. because it is not a shift of finite type.

Next, observe that if ξ = {x(n) : n ∈ N} is a 2−k pseudo-orbit for σ(0,1)

then x
(n)

Λ(k)
= x

(0)

Λ(k)
for all n ∈ N (every point of Y consists of vertical lines

of the same symbol). This implies that ξ is 2−k-traced by x0. Thus the map
σ(0,1) has P.O.T.P. but (Y, σ) does not.

Example 5.1 shows that even if we know that for some ν ∈ Z
d the

mapping Φν for a Z
d-action Φ is expansive or has P.O.T.P. we may say

nothing about P.O.T.P. of Φ unless we can find a ν such that Φν has both
properties at the same time (is topologically Anosov).

Next, we will show that there exist Z
d-actions with P.O.T.P. which are

not topologically Anosov for any ν ∈ Z
d. In the following example we present

a Z
2-action Φ with P.O.T.P. but with Φν not expansive for any ν ∈ Z

2.

m

Fig. 1. Sketch of the set
⋃

s∈Z
ns + Λ(k) from Example 5.2

Example 5.2. Consider the full two-dimensional shift X over the two-
letter alphabet A = {0, 1}. Figure 1 shows that for any n ∈ Z

2 the mapping
σn is not expansive. Given b > 0, fix k large enough that 2−k < b. If we
choose µ /∈

⋃
s∈Z

ns + Λ(k) and x, y ∈ X such that x(i, j) = y(i, j) for all

(i, j) 6= µ and x(µ) 6= y(µ) then ̺(f l(x), f l(y)) < b for all l ∈ Z where
f = σn.

In the following example we construct a Z
2-action T which has P.O.T.P.

but T ν does not have P.O.T.P. for any nonzero ν ∈ Z
2 (and T 0 is not

expansive).
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Example 5.3. We will construct a two-dimensional shift X of finite type
(Wang tiling) as follows. The alphabet A of X consists of 1×1 closed squares
(tiles) with colored edges as in Fig. 2.

1 2 3 4 5

Fig. 2

Elements of A are divided into five groups. Two tiles are only allowed to
touch along edges of the same color, so tiles from groups 1, 2 and 3 may not
appear together at any point of X. Then we obtain three types of points
in X as presented in Figure 3. Observe that we may construct points with
black regions (strip-like patterns) as wide as we want. Thus for any nonzero
ν ∈ Z

2 and any δ > 0 we can construct a δ pseudo-orbit ξ = {x(n)}n∈N for
the mapping σν with the property that for some k, l ∈ Z the points x(k) and
x(l) are of different type. We may also choose ξ so that any x which 1

2 -traces
it must contain symbols from two different groups 1, 2 or 3. This implies
that x /∈ X and so σν does not have P.O.T.P.

Fig. 3. Three types of points in X

Remark 5.4. It is clear that in the case of shift spaces, σ0 always has
P.O.T.P. It would be nice to construct a Z

d-action T with P.O.T.P. such
that T ν does not have P.O.T.P. for any ν ∈ Z

d.
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