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MINIMAL MODELS FOR Z*-ACTIONS
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Abstract. We prove that on a metrizable, compact, zero-dimensional space every
Z%-action with no periodic points is measurably isomorphic to a minimal Z%action with
the same, i.e. affinely homeomorphic, simplex of measures.

1. Basics. In 1970 Robert Jewett proved that for any weakly mixing
dynamical system there exists an isomorphic strictly ergodic (i.e. uniquely
ergodic and minimal) topological dynamical system. Extended by Wolfgang
Krieger to the class of all ergodic transformations, it was one of the first ma-
jor results concerning modelling measure-theoretical dynamical systems by
topological systems with preassigned topological conditions, like minimality.
One of the recent theorems of this kind was proved by Tomasz Downarowicz
in [1]: an aperiodic, continuous map of a compact, metric, zero-dimensional
space is Borel* isomorphic to a minimal one. Borel* isomorphism is a rela-
tion which involves not only a measurable isomorphism between dynamical
systems, but also an affine homeomorphism between simplices of invariant
measures. Our present paper is a sequel of [1]—we adapt the methods used
there to obtain such an isomorphism theorem for continuous Z%-actions.

We consider a compact zero-dimensional metrizable space X and a col-
lection T' = {T1,...,Ty} of commuting homeomorphisms of X. We call a
pair (X,T) a d-dimensional dynamical system. For n = (ny,...,ng) € Z%
we write T™ for the superposition 77" .. .T;d. We say that a system (X, T")
is aperiodic if T™(z) # x for all x € X and all n # (0,...,0). It is minimal
if X contains no proper nonempty closed subset which is invariant (a set F'
is invariant if T;F = F for ¢ = 1,...,d). Equivalently, (X,T') is minimal if
and only if the orbit {7T™z: n € Z} of every x € X is dense.

We denote by Pr(X) the set of all Borel probability measures on X
invariant under T' (i.e. under all T;, i = 1,...,d). It is well known that in
our case Pp(X) endowed with the weak* topology is a compact, metrizable
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and convex subset of the space of all Borel probability measures on X. Every
point of Pp(X) has a unique representation as a barycenter of a certain
Borel measure concentrated on the Borel set of all ergodic measures. These
properties are usually abbreviated by saying that Pr(X) is a Choquet simplex
(see [4] for details). A set E C X is called full if u(E) = 1 for every u €
Pr(X).

DEFINITION. We say that two d-dimensional dynamical systems (X, T)
and (Y, S) are Borel™ isomorphic if there exists an equivariant Borel-measur-
able bijection @ : Xy — Yy between full invariant subsets Xg C X and
Yy C Y such that the conjugate map ¢* : Pr(X) — Ps(Y) given by the
formula &* (1) = po®~ ! is an (affine) homeomorphism with respect to weak*
topologies.

We will extensively use a special type of dynamical systems, namely d-
dimensional symbolic systems over a compact alphabet A. These are defined
in the following way: on a compact space AZ* we define shift maps o; setting
(0i(Y))n = Ynte, for all y € AZd, neZand i =1,...,d, where e; =
(0,...,0,1,0,...,0) € Z% with the only 1 occurring at the ith place. A
d-dimensional symbolic system is a nonempty closed subset Y of AZ* which
is invariant under all o;.

We use the following conventions. For a set A a function M : Z% — A, i.e.
an element of AZd, is called an array. For a finite set A C Z% and an array
M we define the configuration M4 to be M restricted to A. In particular,
for n € Z¢ we denote by M, the single symbol M. If A = A+ m for some

m € Z%, and (Mg)n = (MA)n+m for every n € A, then we say that M4 and

M3 have the same pattern. In this case both A and A are called the shape of
the pattern. More formally, shapes and patterns are cosets of the equivalence
relation based on the translation of the domain. Thus one can define inclusion
for shapes S, S as follows: S’ C S if A’ C A for some A’ C Z? representing
S" and A C Z¢ representing S. A shape S is bounded if sets representing S
are bounded. A cube with mazimal vertexr v = (v1,...,v4) and edge length
b is the set
Ky ={nez:v;—b<n; <uv}

then (v1 —b+1,...,v4 —b+1) will be called the minimal vertex of K. For
b€ Ny, v=(b...,b)wealso write K, = Ky, for the cube fixed at the
origin. We will also use the name “cube” for shapes based on cubes in Z%. It
will be convenient to denote (0,...,0) € Z¢ by 0, (1,...,1) € Z¢ by 1, and
(k,...,k) € Z4by k- 1.

In a symbolic system (Y,o), by blocks we will mean patterns having
bounded shapes. A restriction of a block of the shape S to some shape
S’ C S is called a subblock. A block B occurs in y € AZ if it is a pattern
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of some configuration y4; B occurs in a system (Y, o) if it occurs in some
y € Y. Let dy be a metric on the alphabet A. On the set of all blocks of
the same shape we define a distance D to be the supremum of distances
d s between symbols occupying identical positions. Note that if Bf,B) are
identically shaped subblocks of B; and Ba, respectively, and D(Bj, Bs) < ¢,
then D(B], B) < e.

The following theorem is the main result of this work.

THEOREM 1. If X is a metrizable, compact, zero-dimensional space then
every d-dimensional aperiodic dynamical system (X, T') is Borel* isomorphic
to a minimal dynamical system ()~(, 7) (with X being also metrizable, compact
and zero-dimensional).

The first step of the construction of (X,7) will be to replace (X,T)
by a conjugate, thus having “the same” simplex of measures, d-dimensional
symbolic system (X*, o) over the infinite alphabet A = (X U Ng)No, where
Ny denotes the set of all nonnegative integers and Ny is the set N U {oo}.
Elements of A and X U Ny will be referred to as symbols and characters,
respectively. Then we will construct a Borel* isomorphism @ between (X*, o)
and a minimal symbolic system ()A(: ,7) with the same alphabet. The map &
will be defined as the pointwise limit of a sequence of topological conjugacies
given by block codes.

We will now mention two of the difficulties typical for the multidimen-
sional case. Similarly to [1], the construction relies on a choice of a decreasing
sequence of clopen sets, called markers. For every x in the underlying space,
each of these markers induces a division of the trajectory of x into nonover-
lapping blocks in such a way that every block created for the (n+1)st marker
is a concatenation of blocks specified by the nth marker. In several dimen-
sions, the operation of dividing trajectories into blocks requires much more
effort. Rectangular blocks are not possible and even Voronoi regions seem to
be unsuitable for our purposes, so we develop a new algorithm. The second
problem, which was not present in dimension one, concerns boundaries of
blocks induced by markers. The elements with badly behaving boundaries
have to be ruled out, which forces another calculation to ensure that we get
rid only of a set of measure zero.

2. Markers. For p € Ny we denote the central cube with edge length
2p+1 by

Ky={n=(n,...,nq) € 2% : max{|n|,...,|na|} <p}.

DEFINITION. A set F' C X is a marker of order p € Ny or simply a
p-marker if:

(i) elements of {T™F: n € K,} are pairwise disjoint,
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(ii) {T"F: n € Ky} is a cover of X for some N € Ny. The number
2N + 1 with minimal such N will be called the covering constant of
the marker F.

We say that (X, T) has the marker property if X contains a clopen p-marker
for every p € Np.

LEMMA 2 (Marker lemma). Any aperiodic Z*-action (X,T) on a com-
pact zero-dimenstonal Hausdorff space has the marker property. Moreover,
for any increasing sequence (p;) of positive integers there is a descending
sequence of py-markers, with the covering constant q; of the p.-marker equal
to dpy + qr—1.

Proof. 1t is clear that the whole space X is a O-marker with covering
constant 1. We will show that given a clopen k-marker F* and an integer
p > k we can find a clopen p-marker F? C F*. The covering constant of F*
will be denoted by 2K + 1.

For every x € F* we choose a clopen neighbourhood E, of x, contained
in F'*, such that {T"E,: n € Egp} consists of pairwise disjoint sets. From
the cover {E,: x € FF} of the clopen set F* we choose a finite subcover
V={V;:l=1,...,L}. Now we set

F=Vi, Fa=Au(Via\ J TR).
mEEzp
Finally, F? = F,. Obviously, F? is clopen.

We skip the induction that proves disjointness of T™FP for n € /@,, but
we show that {T®FP: n € Kopik} is a cover. Every z € F* belongs to one
of V’s. Either it was appended to F; C FP at the [th step of the construction
or it had already been contained in T™F;_1 C T™FP for some m € Egp.
Thus F* c |, e, TPFP, and X C | TFP. u

nE/CQp n€K2p+K

3. The space X*. Fix the summable sequence e; = 1/2!*3, t € Ny. Let
dr, be the metric on Ny given by dg, (k. 1) = Zf&:kﬂ gt for k < [. Let dx
denote a metric on X. We define a compact metric d on X U Ng by

dx(z,y) forz,ye X,
d(z,y) = { diam(X) forzec X, ye¢€ Ngor z € Ny, y € X,
dg, (x,y) for x,y € N,

and the distance d between x = (2%, z!,...) and y = (y°,y*,...) in A by

da(x,y) = > 2 (', y).
=0

Note that (A,d,) is a compact metric space.
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For an array M € A% and neZ let M} denote the kth character of the
symbol My. The function mapping ne€Z? to MF is called the kth level of M.

Fix an increasing sequence (p;) and let (F}) be a descending sequence
of pi-markers with covering constants ¢; (see Lemma 2). Let Q; = ZE:O ;-
In Section 5 we will give more information about the choice of the sequence
(pt). In particular, the inequality @Q; < py+1 will be satisfied.

In the first step of the construction of (X* o) we replace each z € X
by an array [z] : Z¢ — A such that [z]¥ = 0 for k > 1, [z]] = T™z and
[2]% =t if T2 € F,,, Tz ¢ F,,,, or [z]% = oo if z belongs to all markers.
We say that [x] has the marker t at position n € Z if [2]%, = . The space
X* ={[z] : # € X} is homeomorphic to X and the collection ¢ of shifts o; is
topologically conjugate to T'. According to the definition of a marker, every
[x] € X* has the following properties:

(i) every configuration in [z] based on a cube with edge length p; has
(at some position) at most one marker > t,

(ii) every configuration in [z] based on a cube with edge length ¢; has at
least one marker > ¢.

4. t-blocks. In the current section we describe an inductive algorithm
of partitioning every [z] € X* into disjoint configurations. The sequence of
partitions, induced by a fixed sequence of markers, thus depending only on
the zero level of [z], will be the base of our construction of a topological
conjugacy between X* and a minimal system.

On every cone n + Ng = {m € Z¢: m > n}, where n € Z¢, we define a
maximolexicographic order “<*” as follows. For m € N¢ let sort(m) denote
the element of Z? whose coordinates are equal to those of m, but arranged in
nonincreasing order, and let “<” be the usual lexicographic order. We write
m <* m’ if

e sort(m) < sort(m’) or
e sort(m) = sort(m’) and m < m’.

Figure 1 presents the scheme of the order for d = 2. The relation “<*” is

a linear order. The operation of taking minimum with respect to this order
%99

will be denoted by “min*”.

9 11 13 15
4 8§ 14
1 7 12
0 5 10

Fig. 1. The scheme of the maximolexicographic order for d = 2. Number 0 is the vertex
of a cone; consecutive integers are placed according to the maxlex order on this cone.
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Let Q1 = 0 and pg = g9 = 1. First we define 0-configurations as single
symbols [z]n, n € Z%. To proceed with the induction, we assume that we have
defined t-configurations in such a way that every ¢-configuration contains on
the zero level exactly one marker u > t. Let us denote the position of this
marker in a t-configuration [x]4 by n(¢, A). We define a (¢ + 1)-configuration
as a concatenation of ¢-configurations as follows. Every (¢ + 1)-configuration
[z]c consists of exactly one t-configuration [z]4 with a marker v > t+1 and
some other ¢-configurations [x]4/ such that n(¢, A) = min*{m >* n(¢, A’) :
[2]%, > t + 1}, where the ordering “>*" is inverse to “<*” defined for the
cone n(t, A') + N&. We obtain n(t + 1,C) = n(t, A). Roughly speaking, the
t-marker of A’ searches for the nearest (in “<*”) (t41)-marker of some A, and
then the t-configuration A’ is glued to A. Figure 2 pictures the distribution
of 1-blocks and 2-blocks in two dimensions.

Patterns of ¢-configurations will be called t¢-blocks. The collection of all
t-blocks which occur in the system X* will be denoted by B;. Below we
summarize the main properties of ¢-blocks.

LEMMA 3. Let B be a t-block.

(1) B is a finite concatenation of (t — 1)-blocks (t > 0).

(2) B has ezactly one marker u > t.

(3) The marker u >t is situated at the mazimal vertexr of B, i.e. at the
mazimal vertex of the smallest cube containing the domain of B.

(4) The shape of B contains a cube with edge length py — Q¢—1.

(5) The shape of B is contained in a cube with edge length Q.

Proof. Properties (1) and (2) follow immediately from the construction.
Properties (3)—(5) will be proved by induction.

Let [z] € X*. Observe that 0-blocks obey these rules. Assume that con-
ditions (3)—(5) hold for every t¢-block in B;. Consider a (¢ + 1)-configuration
[z]c with marker > t+1 at n(t+1, C). We will show that the cube KT} o
with v=mn(t+1,C) — (Q:- 1) is a subset of C.

Let n € K} o, . The point n is in the domain of [z]4 for some ¢-
configuration [x]4 with marker ¢t at n(¢, A). By the induction hypothesis, the
domain A of [x]4 is a subset of a cube of edge length @; and the marker ¢ is
situated at the maximal vertex of A. Hence, having in mind that Q; < py41,
we get n(t,A) € K?f_ﬁl’c). Therefore n(t 4+ 1,C) lies in the cube £ with
minimal vertex n(¢, A) and edge length pyy1. At n(¢+1, C) there is a marker
> ¢+ 1 and in £ there are no other markers > ¢ + 1. So A must be a subset
of C and n lies in C.

To prove (5), we will show that the domain of the (¢ 4+ 1)-configuration

(HLO) ot
t+1 ’
The position n lies in the domain of some ¢-configuration [z]4 with marker

[z]c is a subset of the cube IC?2 n be situated outside this cube.
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Fig. 2. The construction of 1- and 2-blocks in two dimensions for p1 = 3, ¢1 = 7, p2 = 22.
1-blocks are distinguished by shades of grey. The bold line separates 2-blocks. Each of
marked squares with edge length p; has a unique 1-marker in the right upper corner. The
big hatched square is an area with a unique 2-marker.

>t at n(t, A). The cube with minimal vertex n(¢, A) and edge length g1
contains at least one marker > ¢ + 1 and it does not contain the position

n(t+1,C) (because the cube JoR+1,0)

Qt+1—Qt

the t-configuration [x]4 is part of a (¢ + 1)-configuration with marker > ¢+ 1
outside [z]c. Hence n ¢ C.

does not contain n(t, A)). Therefore

Observe that the marker > ¢ +1 of [z]¢ lies at the maximal vertex of the

cube ’Cg(til’C) which contains C. This proves (3). =

Recall that on t-blocks of the same shape we have a metric D, defined
as the supremum of the distances d4 between symbols occurring at identical
positions. Since there are only finitely many shapes available for ¢-blocks,
the metric D is compact on every B;.
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5. Block codes ¢;. Now, we will simultaneously define a sequence (p;)
of marker constants and a sequence (¢;) of codes, with each ¢; acting on ¢-
blocks. To start the induction we set pg = go = 1 (as in the previous section)
and let ¢o be the identity. We also choose a finite gp-dense collection B’
from the set By (with metric D) and put ro = #B8;".

In step t + 1 we assume that we have already defined ps, g5 and ¢, for
s < t and that each ¢4 maps s-blocks into patterns of the same shape (images
of s-blocks under ¢4 will be called s-images). Every [z] € X* is a uniquely
determined concatenation of s-blocks so we can define a mapping @ on X*,
which applies ¢ to every s-block of [z]. Moreover, we assume that the orbit
of  was moved by ¢ from the first level of [z] to a level not farther than
(s+1)st. Let 95 be an auxiliary mapping on s-blocks that only changes every
marker u > s into marker s, and let ¢s denote 150 ¢5. Let B5* be an &4-dense
subset of By and 1y = #(B;*). We put

Qu([¢re] +2)
P11 = ——————.
Et4+1
Let B € B; occur in [z] € X* on a domain A. We will define ¢t+1(§) as

a pattern of the same shape, by describing a configuration M on A.
v

By Lemma 3 the domain A contains a cube K = leHl_Qt for some
veA Let K= K3, ., be a smaller cube with edge length by = Q (/7]
and maximal vertex w = v — [(pg41 — Q¢ — biy1)/2] - 1. Let [x]y denote
the concatenation of all ¢-configurations whose domains have nonempty in-
tersections with K'. The configuration [z]y will be called a buffer. Observe
that W C A. The code ¢y preserves shapes of ¢t-blocks and it will follow from
this construction that it differs from ¢;_; only inside buffers. The buffer
has to be large enough to enclose the whole ,-dense collection B* of cardi-
nality r;. Syndetic appearance of buffers will then imply minimality of the
final model. On the other hand, buffers must be relatively small compared
to whole blocks in order to preserve the set of invariant measures.

We start the construction of M by inserting in My all images ¢;(B) of
t-blocks B from the e4-dense collection B;*, so that their markers ¢ lie at
positions w — ); - m, where m € IC(W. The rest of My (let U denote its
domain) will be filled with ¢4(B;) for By € Bg, s < t, in the following way.
Put Uy ={neU: Ko, C U}, the set of possible maximal vertices for cubes
with edge length @)y, totally contained in U. Consider the order <* on the
cone (min{n; :n € Ui})i=1,. a4+ Nd. If Uy is nonempty, choose B; € B; and
place Q_St(Bt) in My, so that its marker ¢ lies at min* U;. Reduce the set U
by subtracting the area where ¢;(B;) was placed and create new U, for the
reduced U. Until U; is empty repeat this procedure choosing blocks from B;
and pasting their images in My so that markers lie at minimal points of Uy.



MINIMAL MODELS FOR Z*-ACTIONS 469

Then repeat this procedure for what has remained of U, replacing t by ¢t — 1,
then by t — 2 and so on. In the last step for ¢ = 0 we fill up the whole My
with 0-blocks.

Now we complete M outside the buffer W. The configuration [z] AW 18
a concatenation of t-configurations. For every C' being the domain of such
a t-configuration with pattern B; we place in M¢ a t-image ¢(B;). By the
induction hypothesis, the (¢ + 2)nd level of My consists of zeros. So for
n e W weset MiT2 = [z]L.

Having defined My made of s-images for s < ¢ and M\ made of
t-images, we have determined the whole configuration M, whose pattern
is ¢r41(B).

It has to be stressed that the construction of levels 0 to t + 1 of My
may be performed in such a way that it depends only on the shape of the
buffer W. We do so to ensure that if two (¢ + 1)-blocks have buffers of the
same shape then their images coincide in buffers on every level except ¢ + 2.

Properties of the codes are summarized in the following lemma.

LEMMA 4.

(1) The orbit of x can be read in Pi([x]) on the level not farther than
(t 4 1)st guaranteeing that ®; is one-to-one.

(2) ¢¢ and Py differ from ¢r—1 and y_1 only in buffers of t-blocks.

(3) ¢¢ and P; do not change markers > t.

(4) ¢¢ is continuous on By.

(5) If D(B, B') < &; for t-blocks B and B’', then D(¢¢(B), ¢+(B')) < .

(6) Let B € B;. Inside the buffer, the image ¢¢(B) is a concatenation of
s-images for s < t — 1 (with markers uw > s changed to s). Outside
the buffer it is a concatenation of (t — 1)-images.

Proof. Properties (1), (2) and (6) follow directly from the construction
of ¢. All others are clearly satisfied for ¢¢. To prove (3) note that by (2) it
suffices to check the markers in the buffer; but every marker in the buffer of
a (t+ 1)-block is less than or equal to ¢, while ¢;;1 replaces s-blocks (s < t)
from the buffer only by s-images with markers changed to s. We leave the
straightforward verification of (4) and (5) to the reader. m

Let gt denote the collection of all t-images and let
Bt = {$4(B): B e B}
Note that by (5) of the above lemma, gft is £4-dense in B;.
6. Frequency of buffers and borders. Let A = {4,: x € X} be a

collection of subsets of Z¢. We will say that A occurs in a system X with
frequency < « if there exist a and b such that a/b% < o and for every z € X
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in any cube K} lying in the domain of [z] the cardinality of A, N K} is less
than or equal to a.

A position n in the domain of a t-configuration M belongs to the border
of the t-configuration (or, simply, to the t-border) if at least one of the 2d
positions n + e; belongs to the domain of another t-configuration.

LEMMA 5. For the sequences (pt) and (q;) defined above we have:

(1) if A denotes a set of t-buffers, i.e. Ay is the union of all buffers of
t-configurations in [z], then A occurs in X with frequency < (4g4)%,
(2) the set of t-borders occurs in X with frequency < (1 — 10724)t,

Proof. Throughout the proof ¢; = [ /7] + 2.

(1) Consider an arbitrary array [z] € X* and a cube K with edge length
pt/2, lying in the domain of [z]. The domain of every t-configuration [z]4
contains a cube with edge length p; — Q:—1 > p;/2, carrying a buffer of
a t-block. The buffer is situated at positions lying at least 3p;/16 from the
closest face of this cube. It follows that L may intersect the domains of buffers
of at most 2¢ t-configurations. A buffer of a t-configuration [z] 4 is contained
in a cube with edge length Q;_1c;—1. Thus, among all positions in K, at
most 2%(Qy_1c;_1)? positions lie in t-buffers. By the recursive definition of
pr we have Qi_1c:—1 = pier. So the frequency of the set of symbols lying in
t-buffers is less than or equal to

2d(Qt—lct—1)d _ Qd(pt&:)d

= = (4Et)d.
(pe/2)? (pe/2)4
(2) Since ¢—1 < Q-1 and ¢y < 1 < ¢ for every ¢t > 0,
Pt Pt _ Qt—1¢1—1 S _ G- 1

G Aptan (499 g ) T daa e T D

Fix [z] € X*. In every cube with edge length ¢; one can find a marker

u > t. Every domain of a t-configuration contains a cube with edge length
— @¢—1. Hence, in every cube with edge length ¢; + p; there is a cube with
edge length p; — Q;_1, totally contained in the domain of one t-configuration.
Cutting off a border of thickness one we obtain a cube with edge length
— Q+—1 — 2, no position of which belongs to a t-border.

Set pg = po and qo = qq. Inductively, let p; be the largest integer multiple
of g;—1 less than or equal to p;/4 and let g; be the smallest integer multiple
of p; greater than or equal to 2¢;. For ¢t > 1 we have

Pt Pi-1_ Pi-1 TP

bi
>t bt _ 2otz Mmoo 8
Dt | qtl_l qt—1 ptl_l 16 . = G4

SO

Peo P Tpy

— > > 1072,
G 2q:+pr  64(2q; +pi/4)
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In the domain of [z] consider a cube K with edge length being an integer
multiple of g;. The cube K consists of disjoint cubes L4, ..., L,, with edges
of common length ¢;. Every cube £; can be divided into cubes L;; with
edges p;. Since 2p; < pr — Q¢—1 — 2 and q; > q; + pt, for every ¢ at least one
of L; ;’s does not contain any position from the ¢-border. Suppose that £; 1
is such. Put £! = U; £i,1- The set Lt covers at least a 10724 fraction of the
cube L. In the next step we perform an analogous reasoning, replacing £ by
L\ L, and t by ¢t — 1 (note that £\ £; is a concatenation of cubes with
edge length G;_1). We define £/~!, which again covers 1072% of a new £, and
remove it from L. In the kth step we divide the current set £ into cubes L;
with edge length g;_44+1, and £;’s into £; ;’s with edge length p;_j41, and
define £!7F+1 = \U; £i,1 that occupies 10~2¢ of £. The algorithm is repeated
until k& = t. In every step we diminish £ at least by 1072¢ of it, so after
t steps we obtain an £ which is at least (1 — 10724)* times smaller, but it
contains the whole ¢-border.

7. The space (X, 7). We will distinguish a full subset of X* which will
become the support of a Borel* isomorphism & defined as the pointwise limit
of maps @;.

Let XP% denote the set of all [z] € X* whose position 0 lies in a t-buffer.
Using the first part of Lemma 5 and Tempel’'man’s ergodic theorem for d
commuting endomorphisms of a probability space (see [2]), for any ergodic
measure pg on X* we obtain

1
ME(X;/buf) = lim 3 Z 1Xguf oo™ < (4€t)d.

Let XP% be the set of those [x] € X* whose zero position lies in a ¢-buffer for
at most finitely many ¢, and let X’ be the set of [z] each of whose positions
lies in a t-buffer for at most finitely many ¢. Then

oo 0
X =x\ (Y JXP and X'= () o™(XP).
s=1t=s necZzd
The sequence ((4¢;)?); is summable, so g (XP™) = 1. Since pg is invariant,

we also obtain pg(X’) = 1. This holds for any ergodic up € P(X*), thus
pu(X’) =1 for any measure p € P(X*) and X' is a full subset of X*.

Similarly we define X" to be the subset of X’ consisting of the points
whose zero position belongs to a t-border,

Xborder — Xl\ ﬁ [j Xg)order and X// _ ﬂ O_n(Xborder).

s=1t=s neZd
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Analogously to the above considerations, the second part of Lemma 5
and the ergodic theorem yield pup(XPorder) < (1 — 10724)! for any ergodic
measure fi, hence the sets XPo"er and X are full subsets of X*. It follows
that for all y € X” any cube appearing in the domain of y is covered by one
t-configuration for sufficiently large t.

Recall that according to Lemma 4 the map @, differs from &; only in
buffers of (¢ 4 1)-blocks. Consequently, for any y from X" each position is
changed by @; only for a finite number of ¢. Thus we can define a map ¢ on
X" as the pointwise limit of the maps ®; as t — oo. Let X be the closure
of (X" in A%" where A = (X UNg)Yo, and let 7 be the set of shift maps

on X.

For each t every element y of #(X") is a concatenation of s-images for
s < t. Shapes of s-images are the same as shapes of s-blocks, so they
satisfy (4) and (5) of Lemma 3. As in the proof of Lemma 5 every cube
with edge length p;/2 in the domain of y intersects at most 27 buffers of ¢-
configurations. Hence for elements of @(X”) we obtain the same upper bound
on the frequency of {-buffers as in Lemma 5. We now show that this bound is
also valid for elements of X. Pick y = limy y € X, where (yg)reny C @(X").
For a given t consider a cube K = IC;’t /2 in the domain of y. If for any y the

cube K intersects the domain of a buffer of some s-configuration for s < t,
then its marker belongs to £ = IC;;%, a larger cube sharing the minimal
vertex with /. Hence, if y; converges to y, location of s-buffers for s <t on
(yx)xc is for sufficiently large k the same as on yx. In particular, we get an
upper bound on the frequency of t-buffers for the tholeNX' as in Lemma 5.
In the same way as in X* we define a full subset X’ of X, consisting of the
points each of whose positions lies in a t-buffer for finitely many ¢ only.

On X' N®(X") a position belongs to a t-border either if it belonged to
a t-border in X" and it does not lie in any of u-buffers for u > t, or if it lies
in u-buffers for v > ¢ and it has fallen into a t-border by filling the buffer
for the largest such u. The first case happens with frequency < (1 — 10_2d)t,
according to Lemma 5. The frequency of the second case is bounded from
above by the sum of the frequencies of the u-buffers for u > ¢, which is equal
to >, +1(45i)d. Hence the frequency of observing a t-border is bounded on

X' N®(X") by the terms of the summable sequence (1 — 10724)t 4 494, To

prove that this bound is also valid for X' consider y = limg yp € X' , where

(Yr)ken C @(X"). In the domain of y select a cube K = ). Let £ = ICZ:Z%;I.

Since y is the limit of y’s, positions of markers ¢ in (yx ) are for sufficiently
large k the same as in y,, except for the markers ¢t which will be replaced by
higher markers during the construction. Therefore ¢-configurations in (yx)x
for large k have the same shapes as t-configurations in yx, and they have the
same t-borders. It follows that on X’ the frequency of t-borders has the same
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upper bound as on X’ N ®(X"). Setting X” to be the set of all elements of
X' whose positions belong to t-borders for at most finitely many ¢, we obtain
again a full subset of X', hence also of X.

REMARK 6. Note also that for j € X" every cube K} in y has the same
distribution of markers as an identical cube in some y € @(X"”). Thus the

structure of ¢t-configurations on ’CZ:Q%t in 7 is the same as in y.

8. (X,7) is minimal. A set A C Z% is syndetic with constant L > 0 if
ANKY # @ forevery v € Z%. We say that a block B with the shape contained
in some cube with edge length k appears in an array y syndetically with a
constant L if it appears as a subblock of every cube with edge length L + k.
We skip the standard proof of the following lemma.

LEMMA 7. Let Y be a d-dimensional symbolic system over a compact
alphabet A. Let By, be a countable collection of blocks satisfying the following
condition: for every € > 0 and every block B occurring in' Y one can find
B’ € By, such that D(B,B") < ¢ for a certain subblock B" of B'.

If there exists a dense set Y' C'Y consisting of elements y in which every
B € By occurs syndetically with constant depending only on B, then the
symbolic system (Y, o) is minimal.

We will use the above lemma for ¥ = X , taking as B/)? the collection

U, B, and as a dense subset of X the set &(X").

Consider a block B with the shape of cube, occurring in X. For arbitrarily
small e the block is e-close to a configuration in some element of ¢(X").
For large t this configuration is contained in a {-image B; € gt, whose &4~
approximation will be denoted by Bj € B;*. Pick any y € &(X"). It suffices
to show that Bj (with entries at positions on levels farther than ¢+ 1 possibly
changed from zeros to other characters) occurs syndetically in y. The distance
D between B and an appropriate subblock of B] will be bounded by ¢+ (1+
diam(X))e;.

The block B. appears in the buffer of every (¢ 4+ 1)-image. Fix n € Z<.

We will show that for some subset E of Kgggtl“ the configuration yg cor-

responds to a (¢ + 1)-image. It will prove that Bj appears syndetically with
constant 3Q¢+1 — Q.

Recall that the array y is a concatenation of (¢ + 1)-images apart from
u-buffers for u > t 4+ 1, while the buffer of a u-block is a concatenation
of s-images for s < w. Consider a block consisting of the cube ICZ‘Qt+1 in y
together with all u-blocks, v > ¢ + 1, whose buffers intersect this cube and
will not be changed by higher codes (note that any two buffers, possibly of

different order, are either disjoint or ordered by inclusion). If no such blocks
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exist, then n belongs to the domain of some (¢ + 1)-image, which will be the
final outcome of the action of @. This block is contained in a cube with edge
length @41, so its domain is contained in K;’ggtl“. On the other hand, if
there are some u > t + 1 such that u-buffers intersect K5t+1, then pick one
of those u-buffers and study its structure. It was concatenated of u/-images
for v’ < u, whose buffers may intersect /ngtﬂ. Each of these u/-images again
is a certain concatenation and so on. Let ug denote the least v’ > ¢t + 1 such
that a u/-buffer intersects our cube. If IC?QH_1 is completely covered by the
buffer of a ug-block, then it intersects the domain of some s-block, where
t+1<s < wup (because of the algorithm of filling the buffer). Hence, there
is a position n’ € K5t+17 which belongs to the domain of an s-image (take
the smallest such s > ¢+ 1), but not to its buffer. Then it lies in the domain

of some (¢ + 1)-image, which is contained in ICnQ—S_Sf+1 C /ngﬁtlﬂ.

But if the cube IC“t+1 is not completely covered by the buffer of a ug-
block, then a certain position n” € ICnt+1 lies outside this buffer and inside

the same ug-image. Thus n” belongs to the domain of a (¢ + 1)-block, which

is contained in the cube ICQQ—E%H C K;gﬁtl“.

9. ¢ is a Borel* isomorphism. It remains to prove that (X* o) and
(X, 7) are Borel* isomorphic. The sets X” and X" are full subsets of X* and
X , respectively. We will show that @ is a bijection between them.

Since for every [x] € X" we have &([z])E # 0 for at most finitely many k,
and the last nonzero level contains x, @ is injective. To prove that it is also
surjective, choose §y € X”. By Remark 6, at every position only a finite
number of nonzero levels is allowed. Let x be the character that appears at
the last level of position 0 in 3. The character is a member of the original
space X, and its array representation in X* is denoted by [z]. Consider a
central cube Ky in the domain of 7. It is contained in the domain of some
t-configuration, representing a block B. Since § Y€ X there exists a sequence
(By) of t-blocks such that B = limy ¢¢(By). Note that since B has z at
the last nonzero level of the position corresponding to position 0 of y, By’s
must approach x at the first level of the same position. The metric D on the
set of t-blocks is compact, thus we can choose a subsequence (Bj,) of (Bj)
convergent to some t-block B, which surrounds position 0 in [z]. Recall that
¢ is continuous, hence

B = lim ¢y(By) = lim ¢x(By) = ¢r(lim By) = éu(B).

Thus the equality ¥ = @;([x]) holds on the whole K. Since K can be
taken arbitrarily large and the calculation above is correct for any sufficiently
large t, every position of [z] lies in buffers of at most finitely many ¢-blocks



MINIMAL MODELS FOR Z*-ACTIONS 475

and y = &([z]). To show that a position n of [z] visits borders finitely many
times, fix ¢t and note that the set of ¢-border positions in [z] coincides with
the t-border of @,([z]), v > t, apart from s-buffers for ¢ < s < u. Take
Ky > n and t so large that for u > t we have § = @,,([z]) on Kj and [z]y, lies
outside u-buffers. From the fact that 7, belongs only to a finite number of
borders, we get the same property for [z]y.

Measurability of @ follows from the fact that it is the pointwise limit of
a sequence of continuous maps @;, and measurability of its inverse is thus
granted by the Kuratowski theorem (see [3]).

Since X is metric, the space C ()~( ) is separable. Choosing a dense count-
able set {f,} € C(X) and setting fx = fu/||fxllso we can define a metric on
73()? ), compatible with the weak™ topology, by the formula

o) = e | it —§ i),

We can also demand that the set {fk} consists of simple functions combined
from characteristic functions of clopen cylinders. B

We will show that the sequence of maps @;: P(X*) — P(X), t € N,
converges uniformly, by verifying the Cauchy criterion. Fix € > 0. We need
to find T such that o(®;(p),P5(n)) < € for all t > T and p € P(X*).
Since all @;’s are affine, p — o(Pf(n), P5(1)) is convex (and continuous),
hence attains its maximum on the set of extremal points of P(X™*). Thus it
is enough to consider ergodic measures.

Find K € N such that > 3% ;- ; 1/2F < /2. For every pair of measures
fi, U, the kth element of the series o(j, 7) is bounded by 1/2%, so the task boils
down to finding T such that for every ¢t > T and every ergodic u € P(X™*),

K

> s [ a0~ fidi)| <

k=1

| ™

Since the above sum is finite and each fj is a linear combination of charac-
teristic functions of cylinders, it is enough to prove that for every § > 0 and
every cylinder A there exists T such that for every t > T and every ergodic
measure p € P(X"),

§1ad; () = {14 03 ()| = (@7 4) = (@7 )] <.

Note that @7 and @; differ only in buffers of s-markers for T' < s < t. Thus
the above inequality follows from the Z?-ergodic theorem by estimating the
frequency of visits of &r(x) and @.(z) in A.
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