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MINIMAL MODELS FOR Z
d-ACTIONSBYBARTOSZ FREJ and AGATA KWA�NICKA (Wro
ªaw)Abstra
t. We prove that on a metrizable, 
ompa
t, zero-dimensional spa
e every

Z
d-a
tion with no periodi
 points is measurably isomorphi
 to a minimal Z

d-a
tion withthe same, i.e. a�nely homeomorphi
, simplex of measures.1. Basi
s. In 1970 Robert Jewett proved that for any weakly mixingdynami
al system there exists an isomorphi
 stri
tly ergodi
 (i.e. uniquelyergodi
 and minimal) topologi
al dynami
al system. Extended by WolfgangKrieger to the 
lass of all ergodi
 transformations, it was one of the �rst ma-jor results 
on
erning modelling measure-theoreti
al dynami
al systems bytopologi
al systems with preassigned topologi
al 
onditions, like minimality.One of the re
ent theorems of this kind was proved by Tomasz Downarowi
zin [1℄: an aperiodi
, 
ontinuous map of a 
ompa
t, metri
, zero-dimensionalspa
e is Borel∗ isomorphi
 to a minimal one. Borel∗ isomorphism is a rela-tion whi
h involves not only a measurable isomorphism between dynami
alsystems, but also an a�ne homeomorphism between simpli
es of invariantmeasures. Our present paper is a sequel of [1℄�we adapt the methods usedthere to obtain su
h an isomorphism theorem for 
ontinuous Z
d-a
tions.We 
onsider a 
ompa
t zero-dimensional metrizable spa
e X and a 
ol-le
tion T = {T1, . . . , Td} of 
ommuting homeomorphisms of X. We 
all apair (X,T ) a d-dimensional dynami
al system. For n = (n1, . . . , nd) ∈ Z

dwe write Tn for the superposition Tn1

1 . . . Tnd

d . We say that a system (X,T )is aperiodi
 if Tn(x) 6= x for all x ∈ X and all n 6= (0, . . . , 0). It is minimalif X 
ontains no proper nonempty 
losed subset whi
h is invariant (a set Fis invariant if TiF = F for i = 1, . . . , d). Equivalently, (X,T ) is minimal ifand only if the orbit {Tnx : n ∈ Z
d} of every x ∈ X is dense.We denote by PT (X) the set of all Borel probability measures on Xinvariant under T (i.e. under all Ti, i = 1, . . . , d). It is well known that inour 
ase PT (X) endowed with the weak∗ topology is a 
ompa
t, metrizable2000 Mathemati
s Subje
t Classi�
ation: 28D05, 28D15, 37A05, 37B05.Key words and phrases: Z

d-a
tion, invariant measure, Choquet simplex, Borel isomor-phism, blo
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and 
onvex subset of the spa
e of all Borel probability measures on X. Everypoint of PT (X) has a unique representation as a bary
enter of a 
ertainBorel measure 
on
entrated on the Borel set of all ergodi
 measures. Theseproperties are usually abbreviated by saying that PT (X) is a Choquet simplex(see [4℄ for details). A set E ⊂ X is 
alled full if µ(E) = 1 for every µ ∈
PT (X).Definition. We say that two d-dimensional dynami
al systems (X,T )and (Y, S) are Borel ∗ isomorphi
 if there exists an equivariant Borel-measur-able bije
tion Φ : X0 → Y0 between full invariant subsets X0 ⊂ X and
Y0 ⊂ Y su
h that the 
onjugate map Φ∗ : PT (X) → PS(Y ) given by theformula Φ∗(µ) = µ◦Φ−1 is an (a�ne) homeomorphism with respe
t to weak∗topologies.We will extensively use a spe
ial type of dynami
al systems, namely d-dimensional symboli
 systems over a 
ompa
t alphabet Λ. These are de�nedin the following way: on a 
ompa
t spa
e ΛZ

d we de�ne shift maps σi setting
(σi(y))n = yn+ei

for all y ∈ ΛZ
d , n ∈ Z

d and i = 1, . . . , d, where ei =
(0, . . . , 0, 1, 0, . . . , 0) ∈ Z

d with the only 1 o

urring at the ith pla
e. A
d-dimensional symboli
 system is a nonempty 
losed subset Y of ΛZ

d whi
his invariant under all σi.We use the following 
onventions. For a set Λ a fun
tionM : Z
d → Λ, i.e.an element of ΛZ

d , is 
alled an array. For a �nite set A ⊂ Z
d and an array

M we de�ne the 
on�guration MA to be M restri
ted to A. In parti
ular,for n ∈ Z
d we denote by Mn the single symbol M{n}. If Ã = A+m for some

m ∈ Z
d, and (M̃

Ã
)n = (MA)n+m for every n ∈ Ã, then we say that MA and

M̃
Ã
have the same pattern. In this 
ase both A and Ã are 
alled the shape ofthe pattern. More formally, shapes and patterns are 
osets of the equivalen
erelation based on the translation of the domain. Thus one 
an de�ne in
lusionfor shapes S, S′ as follows: S′ ⊂ S if A′ ⊂ A for some A′ ⊂ Z

d representing
S′ and A ⊂ Z

d representing S. A shape S is bounded if sets representing Sare bounded. A 
ube with maximal vertex v = (v1, . . . , vd) and edge length
b is the set

Kv

b = {n ∈ Z
d : vi − b < ni ≤ vi};then (v1 − b+ 1, . . . , vd − b+ 1) will be 
alled the minimal vertex of Kv

b . For
b ∈ N0, v = (b, . . . , b) we also write Kb = Kv

b+1 for the 
ube �xed at theorigin. We will also use the name �
ube� for shapes based on 
ubes in Z
d. Itwill be 
onvenient to denote (0, . . . , 0) ∈ Z

d by 0, (1, . . . , 1) ∈ Z
d by 1, and

(k, . . . , k) ∈ Z
d by k · 1.In a symboli
 system (Y, σ), by blo
ks we will mean patterns havingbounded shapes. A restri
tion of a blo
k of the shape S to some shape

S′ ⊂ S is 
alled a subblo
k. A blo
k B o

urs in y ∈ ΛZ
d if it is a pattern
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of some 
on�guration yA; B o

urs in a system (Y, σ) if it o

urs in some
y ∈ Y . Let dΛ be a metri
 on the alphabet Λ. On the set of all blo
ks ofthe same shape we de�ne a distan
e D to be the supremum of distan
es
dΛ between symbols o

upying identi
al positions. Note that if B′

1,B′
2 areidenti
ally shaped subblo
ks of B1 and B2, respe
tively, and D(B1, B2) < ε,then D(B′

1, B
′
2) < ε.The following theorem is the main result of this work.Theorem 1. If X is a metrizable, 
ompa
t , zero-dimensional spa
e thenevery d-dimensional aperiodi
 dynami
al system (X,T ) is Borel ∗ isomorphi
to a minimal dynami
al system (X̃, τ) (with X̃ being also metrizable, 
ompa
tand zero-dimensional).The �rst step of the 
onstru
tion of (X̃, τ) will be to repla
e (X,T )by a 
onjugate, thus having �the same� simplex of measures, d-dimensionalsymboli
 system (X∗, σ) over the in�nite alphabet Λ = (X ∪ N0)

N0 , where
N0 denotes the set of all nonnegative integers and N0 is the set N0 ∪ {∞}.Elements of Λ and X ∪ N0 will be referred to as symbols and 
hara
ters,respe
tively. Then we will 
onstru
t a Borel∗ isomorphism Φ between (X∗, σ)and a minimal symboli
 system (X̃, τ) with the same alphabet. The map Φwill be de�ned as the pointwise limit of a sequen
e of topologi
al 
onjuga
iesgiven by blo
k 
odes.We will now mention two of the di�
ulties typi
al for the multidimen-sional 
ase. Similarly to [1℄, the 
onstru
tion relies on a 
hoi
e of a de
reasingsequen
e of 
lopen sets, 
alled markers. For every x in the underlying spa
e,ea
h of these markers indu
es a division of the traje
tory of x into nonover-lapping blo
ks in su
h a way that every blo
k 
reated for the (n+1)st markeris a 
on
atenation of blo
ks spe
i�ed by the nth marker. In several dimen-sions, the operation of dividing traje
tories into blo
ks requires mu
h moree�ort. Re
tangular blo
ks are not possible and even Voronoi regions seem tobe unsuitable for our purposes, so we develop a new algorithm. The se
ondproblem, whi
h was not present in dimension one, 
on
erns boundaries ofblo
ks indu
ed by markers. The elements with badly behaving boundarieshave to be ruled out, whi
h for
es another 
al
ulation to ensure that we getrid only of a set of measure zero.2. Markers. For p ∈ N0 we denote the 
entral 
ube with edge length
2p+ 1 by

Kp = {n = (n1, . . . , nd) ∈ Z
d : max{|n1|, . . . , |nd|} ≤ p}.Definition. A set F ⊂ X is a marker of order p ∈ N0 or simply a

p-marker if:(i) elements of {TnF : n ∈ Kp} are pairwise disjoint,
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(ii) {TnF : n ∈ KN} is a 
over of X for some N ∈ N0. The number

2N + 1 with minimal su
h N will be 
alled the 
overing 
onstant ofthe marker F .We say that (X,T ) has the marker property if X 
ontains a 
lopen p-markerfor every p ∈ N0.Lemma 2 (Marker lemma). Any aperiodi
 Z
d-a
tion (X,T ) on a 
om-pa
t zero-dimensional Hausdor� spa
e has the marker property. Moreover ,for any in
reasing sequen
e (pt) of positive integers there is a des
endingsequen
e of pt-markers , with the 
overing 
onstant qt of the pt-marker equalto 4pt + qt−1.Proof. It is 
lear that the whole spa
e X is a 0-marker with 
overing
onstant 1. We will show that given a 
lopen k-marker F k and an integer

p > k we 
an �nd a 
lopen p-marker F p ⊂ F k. The 
overing 
onstant of F kwill be denoted by 2K + 1.For every x ∈ F k we 
hoose a 
lopen neighbourhood Ex of x, 
ontainedin F k, su
h that {TnEx : n ∈ K2p} 
onsists of pairwise disjoint sets. Fromthe 
over {Ex : x ∈ F k} of the 
lopen set F k we 
hoose a �nite sub
over
V = {Vl : l = 1, . . . , L}. Now we set

F1 = V1, Fl+1 = Fl ∪
(
Vl+1 \

⋃

m∈K2p

TmFl

)
.

Finally, F p = FL. Obviously, F p is 
lopen.We skip the indu
tion that proves disjointness of TnF p for n ∈ Kp, butwe show that {TnF p : n ∈ K2p+K} is a 
over. Every x ∈ F k belongs to oneof Vl's. Either it was appended to Fl ⊂ F p at the lth step of the 
onstru
tionor it had already been 
ontained in TmFl−1 ⊂ TmF p for some m ∈ K2p.Thus F k ⊂ ⋃
n∈K2p

TnF p, and X ⊂ ⋃
n∈K2p+K

TnF p.3. The spa
e X∗. Fix the summable sequen
e εt = 1/2t+3, t ∈ N0. Let
d

N0
be the metri
 on N0 given by d

N0
(k, l) =

∑l
t=k+1 εt for k ≤ l. Let dXdenote a metri
 on X. We de�ne a 
ompa
t metri
 d on X ∪ N0 by

d(x, y) =





dX(x, y) for x, y ∈ X,
diam(X) for x ∈ X, y ∈ N0 or x ∈ N0, y ∈ X,
d

N0
(x, y) for x, y ∈ N0,and the distan
e dΛ between x = (x0, x1, . . . ) and y = (y0, y1, . . . ) in Λ by
dΛ(x,y) =

∞∑

i=0

2−id(xi, yi).Note that (Λ, dΛ) is a 
ompa
t metri
 spa
e.
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For an array M ∈ΛZd and n∈Z
d let Mk

n
denote the kth 
hara
ter of thesymbolMn. The fun
tion mapping n∈Z

d toMk
n
is 
alled the kth level ofM .Fix an in
reasing sequen
e (pt) and let (Ft) be a des
ending sequen
eof pt-markers with 
overing 
onstants qt (see Lemma 2). Let Qt =

∑t
i=0 qi.In Se
tion 5 we will give more information about the 
hoi
e of the sequen
e

(pt). In parti
ular, the inequality Qt < pt+1 will be satis�ed.In the �rst step of the 
onstru
tion of (X∗, σ) we repla
e ea
h x ∈ Xby an array [x] : Z
d → Λ su
h that [x]k

n
= 0 for k > 1, [x]1

n
= Tnx and

[x]0
n

= t if Tnx ∈ Fpt , Tnx /∈ Fpt+1
or [x]0

n
= ∞ if x belongs to all markers.We say that [x] has the marker t at position n ∈ Z

d if [x]0
n

= t. The spa
e
X∗ = {[x] : x ∈ X} is homeomorphi
 to X and the 
olle
tion σ of shifts σi istopologi
ally 
onjugate to T . A

ording to the de�nition of a marker, every
[x] ∈ X∗ has the following properties:(i) every 
on�guration in [x] based on a 
ube with edge length pt has(at some position) at most one marker ≥ t,(ii) every 
on�guration in [x] based on a 
ube with edge length qt has atleast one marker ≥ t.4. t-blo
ks. In the 
urrent se
tion we des
ribe an indu
tive algorithmof partitioning every [x] ∈ X∗ into disjoint 
on�gurations. The sequen
e ofpartitions, indu
ed by a �xed sequen
e of markers, thus depending only onthe zero level of [x], will be the base of our 
onstru
tion of a topologi
al
onjuga
y between X∗ and a minimal system.On every 
one n + N

d
0 = {m ∈ Z

d : m ≥ n}, where n ∈ Z
d, we de�ne amaximolexi
ographi
 order �<∗� as follows. For m ∈ N

d let sort(m) denotethe element of Z
d whose 
oordinates are equal to those of m, but arranged innonin
reasing order, and let �≺� be the usual lexi
ographi
 order. We write

m <∗ m′ if
• sort(m) ≺ sort(m′) or
• sort(m) = sort(m′) and m ≺ m′.Figure 1 presents the s
heme of the order for d = 2. The relation �<∗� isa linear order. The operation of taking minimum with respe
t to this orderwill be denoted by �min∗�. 9 11 13 154 6 8 141 3 7 120 2 5 10Fig. 1. The s
heme of the maximolexi
ographi
 order for d = 2. Number 0 is the vertexof a 
one; 
onse
utive integers are pla
ed a

ording to the maxlex order on this 
one.
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Let Q−1 = 0 and p0 = q0 = 1. First we de�ne 0-
on�gurations as singlesymbols [x]n, n ∈ Z

d. To pro
eed with the indu
tion, we assume that we havede�ned t-
on�gurations in su
h a way that every t-
on�guration 
ontains onthe zero level exa
tly one marker u ≥ t. Let us denote the position of thismarker in a t-
on�guration [x]A by n(t, A). We de�ne a (t+1)-
on�gurationas a 
on
atenation of t-
on�gurations as follows. Every (t+ 1)-
on�guration
[x]C 
onsists of exa
tly one t-
on�guration [x]A with a marker u ≥ t+1 andsome other t-
on�gurations [x]A′ su
h that n(t, A) = min∗{m ≥∗ n(t, A′) :
[x]0

m
≥ t + 1}, where the ordering �≥∗� is inverse to �<∗� de�ned for the
one n(t, A′) + N

d
0. We obtain n(t+ 1, C) = n(t, A). Roughly speaking, the

t-marker of A′ sear
hes for the nearest (in �<∗�) (t+1)-marker of some A, andthen the t-
on�guration A′ is glued to A. Figure 2 pi
tures the distributionof 1-blo
ks and 2-blo
ks in two dimensions.Patterns of t-
on�gurations will be 
alled t-blo
ks. The 
olle
tion of all
t-blo
ks whi
h o

ur in the system X∗ will be denoted by Bt. Below wesummarize the main properties of t-blo
ks.Lemma 3. Let B be a t-blo
k.(1) B is a �nite 
on
atenation of (t− 1)-blo
ks (t > 0).(2) B has exa
tly one marker u ≥ t.(3) The marker u ≥ t is situated at the maximal vertex of B, i.e. at themaximal vertex of the smallest 
ube 
ontaining the domain of B.(4) The shape of B 
ontains a 
ube with edge length pt −Qt−1.(5) The shape of B is 
ontained in a 
ube with edge length Qt.Proof. Properties (1) and (2) follow immediately from the 
onstru
tion.Properties (3)�(5) will be proved by indu
tion.Let [x] ∈ X∗. Observe that 0-blo
ks obey these rules. Assume that 
on-ditions (3)�(5) hold for every t-blo
k in Bt. Consider a (t+ 1)-
on�guration
[x]C with marker ≥ t+1 at n(t+1, C). We will show that the 
ube Kv

pt+1−Qtwith v = n(t+ 1, C) − (Qt · 1) is a subset of C.Let n ∈ Kv

pt+1−Qt
. The point n is in the domain of [x]A for some t-
on�guration [x]A with marker t at n(t, A). By the indu
tion hypothesis, thedomain A of [x]A is a subset of a 
ube of edge length Qt and the marker t issituated at the maximal vertex of A. Hen
e, having in mind that Qt < pt+1,we get n(t, A) ∈ Kn(t+1,C)

pt+1
. Therefore n(t + 1, C) lies in the 
ube L withminimal vertex n(t, A) and edge length pt+1. At n(t+1, C) there is a marker

≥ t+ 1 and in L there are no other markers ≥ t+ 1. So A must be a subsetof C and n lies in C.To prove (5), we will show that the domain of the (t + 1)-
on�guration
[x]C is a subset of the 
ube Kn(t+1,C)

Qt+1
. Let n be situated outside this 
ube.The position n lies in the domain of some t-
on�guration [x]A with marker



MINIMAL MODELS FOR Z
d-ACTIONS 467

Fig. 2. The 
onstru
tion of 1- and 2-blo
ks in two dimensions for p1 = 3, q1 = 7, p2 = 22.
1-blo
ks are distinguished by shades of grey. The bold line separates 2-blo
ks. Ea
h ofmarked squares with edge length p1 has a unique 1-marker in the right upper 
orner. Thebig hat
hed square is an area with a unique 2-marker.
≥ t at n(t, A). The 
ube with minimal vertex n(t, A) and edge length qt+1
ontains at least one marker ≥ t + 1 and it does not 
ontain the position
n(t+1, C) (be
ause the 
ube Kn(t+1,C)

Qt+1−Qt
does not 
ontain n(t, A)). Thereforethe t-
on�guration [x]A is part of a (t+1)-
on�guration with marker ≥ t+1outside [x]C . Hen
e n /∈ C.Observe that the marker ≥ t+1 of [x]C lies at the maximal vertex of the
ube Kn(t+1,C)

Qt+1
whi
h 
ontains C. This proves (3).Re
all that on t-blo
ks of the same shape we have a metri
 D, de�nedas the supremum of the distan
es dΛ between symbols o

urring at identi
alpositions. Sin
e there are only �nitely many shapes available for t-blo
ks,the metri
 D is 
ompa
t on every Bt.
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5. Blo
k 
odes φt. Now, we will simultaneously de�ne a sequen
e (pt)of marker 
onstants and a sequen
e (φt) of 
odes, with ea
h φt a
ting on t-blo
ks. To start the indu
tion we set p0 = q0 = 1 (as in the previous se
tion)and let φ0 be the identity. We also 
hoose a �nite ε0-dense 
olle
tion Bε0

0from the set B0 (with metri
 D) and put r0 = #Bε0

0 .In step t + 1 we assume that we have already de�ned ps, qs and φs for
s ≤ t and that ea
h φs maps s-blo
ks into patterns of the same shape (imagesof s-blo
ks under φs will be 
alled s-images). Every [x] ∈ X∗ is a uniquelydetermined 
on
atenation of s-blo
ks so we 
an de�ne a mapping Φs on X∗,whi
h applies φs to every s-blo
k of [x]. Moreover, we assume that the orbitof x was moved by φs from the �rst level of [x] to a level not farther than
(s+1)st. Let ψs be an auxiliary mapping on s-blo
ks that only 
hanges everymarker u ≥ s into marker s, and let φ̄s denote ψs ◦φs. Let Bεt

t be an εt-densesubset of Bt and rt = #(Bεt

t ). We put
pt+1 =

Qt(⌈ d
√
rt⌉ + 2)

εt+1
.

Let B̃ ∈ Bt o

ur in [x] ∈ X∗ on a domain A. We will de�ne φt+1(B̃) asa pattern of the same shape, by des
ribing a 
on�guration M on A.By Lemma 3 the domain A 
ontains a 
ube K = Kv

pt+1−Qt
for some

v ∈ A. Let K′ = Kw

bt+1
be a smaller 
ube with edge length bt+1 = Qt⌈ d

√
rt⌉and maximal vertex w = v − ⌈(pt+1 − Qt − bt+1)/2⌉ · 1. Let [x]W denotethe 
on
atenation of all t-
on�gurations whose domains have nonempty in-terse
tions with K′. The 
on�guration [x]W will be 
alled a bu�er. Observethat W ⊂ A. The 
ode φt preserves shapes of t-blo
ks and it will follow fromthis 
onstru
tion that it di�ers from φt−1 only inside bu�ers. The bu�erhas to be large enough to en
lose the whole εt-dense 
olle
tion Bεt

t of 
ardi-nality rt. Syndeti
 appearan
e of bu�ers will then imply minimality of the�nal model. On the other hand, bu�ers must be relatively small 
omparedto whole blo
ks in order to preserve the set of invariant measures.We start the 
onstru
tion of M by inserting in MW all images φ̄t(B) of
t-blo
ks B from the εt-dense 
olle
tion Bεt

t , so that their markers t lie atpositions w −Qt · m, where m ∈ K⌈ d
√

rt⌉. The rest of MW (let U denote itsdomain) will be �lled with φ̄s(Bs) for Bs ∈ Bs, s ≤ t, in the following way.Put Ut = {n ∈ U : Kn

Qt
⊂ U}, the set of possible maximal verti
es for 
ubeswith edge length Qt, totally 
ontained in U . Consider the order <∗ on the
one (min{ni : n ∈ Ut})i=1,...,d + N

d
0. If Ut is nonempty, 
hoose Bt ∈ Bt andpla
e φ̄t(Bt) in MW so that its marker t lies at min∗ Ut. Redu
e the set Uby subtra
ting the area where φ̄t(Bt) was pla
ed and 
reate new Ut for theredu
ed U . Until Ut is empty repeat this pro
edure 
hoosing blo
ks from Btand pasting their images in MW so that markers lie at minimal points of Ut.



MINIMAL MODELS FOR Z
d-ACTIONS 469

Then repeat this pro
edure for what has remained of U , repla
ing t by t−1,then by t− 2 and so on. In the last step for t = 0 we �ll up the whole MWwith 0-blo
ks.Now we 
omplete M outside the bu�er W . The 
on�guration [x]A\W isa 
on
atenation of t-
on�gurations. For every C being the domain of su
ha t-
on�guration with pattern Bt we pla
e in MC a t-image φt(Bt). By theindu
tion hypothesis, the (t + 2)nd level of MW 
onsists of zeros. So for
n ∈W we set M t+2

n
= [x]1

n
.Having de�ned MW made of s-images for s ≤ t and MA\W made of

t-images, we have determined the whole 
on�guration M , whose patternis φt+1(B̃).It has to be stressed that the 
onstru
tion of levels 0 to t + 1 of MWmay be performed in su
h a way that it depends only on the shape of thebu�er W . We do so to ensure that if two (t + 1)-blo
ks have bu�ers of thesame shape then their images 
oin
ide in bu�ers on every level ex
ept t+ 2.Properties of the 
odes are summarized in the following lemma.Lemma 4.(1) The orbit of x 
an be read in Φt([x]) on the level not farther than
(t+ 1)st guaranteeing that Φt is one-to-one.(2) φt and Φt di�er from φt−1 and Φt−1 only in bu�ers of t-blo
ks.(3) φt and Φt do not 
hange markers ≥ t.(4) φt is 
ontinuous on Bt.(5) If D(B,B′) < εt for t-blo
ks B and B′, then D(φt(B), φt(B

′)) < εt.(6) Let B ∈ Bt. Inside the bu�er , the image φt(B) is a 
on
atenation of
s-images for s ≤ t − 1 (with markers u > s 
hanged to s). Outsidethe bu�er it is a 
on
atenation of (t− 1)-images.Proof. Properties (1), (2) and (6) follow dire
tly from the 
onstru
tionof φt. All others are 
learly satis�ed for φ0. To prove (3) note that by (2) itsu�
es to 
he
k the markers in the bu�er; but every marker in the bu�er ofa (t+ 1)-blo
k is less than or equal to t, while φt+1 repla
es s-blo
ks (s ≤ t)from the bu�er only by s-images with markers 
hanged to s. We leave thestraightforward veri�
ation of (4) and (5) to the reader.Let B̃t denote the 
olle
tion of all t-images and let

B̃εt

t = {φt(B) : B ∈ Bεt

t }.Note that by (5) of the above lemma, B̃εt

t is εt-dense in B̃t.6. Frequen
y of bu�ers and borders. Let A = {Ax : x ∈ X} be a
olle
tion of subsets of Z
d. We will say that A o

urs in a system X withfrequen
y ≤ α if there exist a and b su
h that a/bd ≤ α and for every x ∈ X
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in any 
ube Kv

b lying in the domain of [x] the 
ardinality of Ax ∩ Kv

b is lessthan or equal to a.A position n in the domain of a t-
on�guration M belongs to the borderof the t-
on�guration (or, simply, to the t-border) if at least one of the 2dpositions n ± ei belongs to the domain of another t-
on�guration.Lemma 5. For the sequen
es (pt) and (qt) de�ned above we have:(1) if A denotes a set of t-bu�ers, i.e. Ax is the union of all bu�ers of
t-
on�gurations in [x], then A o

urs in X with frequen
y ≤ (4εt)

d,(2) the set of t-borders o

urs in X with frequen
y ≤ (1 − 10−2d)t.Proof. Throughout the proof ct = ⌈ d
√
rt⌉ + 2.(1) Consider an arbitrary array [x] ∈ X∗ and a 
ube K with edge length

pt/2, lying in the domain of [x]. The domain of every t-
on�guration [x]A
ontains a 
ube with edge length pt − Qt−1 > pt/2, 
arrying a bu�er ofa t-blo
k. The bu�er is situated at positions lying at least 3pt/16 from the
losest fa
e of this 
ube. It follows that Kmay interse
t the domains of bu�ersof at most 2d t-
on�gurations. A bu�er of a t-
on�guration [x]A is 
ontainedin a 
ube with edge length Qt−1ct−1. Thus, among all positions in K, atmost 2d(Qt−1ct−1)
d positions lie in t-bu�ers. By the re
ursive de�nition of

pt we have Qt−1ct−1 = ptεt. So the frequen
y of the set of symbols lying in
t-bu�ers is less than or equal to

2d(Qt−1ct−1)
d

(pt/2)d
=

2d(ptεt)
d

(pt/2)d
= (4εt)

d.(2) Sin
e qt−1 ≤ Qt−1 and εt < 1 < ct for every t > 0,
pt

qt
=

pt

4pt + qt−1
=

Qt−1ct−1

εt

(
4Qt−1ct−1

εt
+ qt−1

) ≥ ct−1

4ct−1 + εt
>

1

5
.Fix [x] ∈ X∗. In every 
ube with edge length qt one 
an �nd a marker

u ≥ t. Every domain of a t-
on�guration 
ontains a 
ube with edge length
pt −Qt−1. Hen
e, in every 
ube with edge length qt + pt there is a 
ube withedge length pt−Qt−1, totally 
ontained in the domain of one t-
on�guration.Cutting o� a border of thi
kness one we obtain a 
ube with edge length
pt −Qt−1 − 2, no position of whi
h belongs to a t-border.Set p̃0 = p0 and q̃0 = q0. Indu
tively, let p̃t be the largest integer multipleof q̃t−1 less than or equal to pt/4 and let q̃t be the smallest integer multipleof p̃t greater than or equal to 2qt. For t ≥ 1 we have

p̃t ≥
pt

4
− q̃t−1 ≥ pt

4
− 2qt−1 − p̃t−1 ≥ pt

4
− 2

pt−1

16
− pt−1

4
≥ 7pt

64
,so

p̃t

q̃t
≥ p̃t

2qt + p̃t
≥ 7pt

64(2qt + pt/4)
≥ 10−2.
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In the domain of [x] 
onsider a 
ube K with edge length being an integermultiple of q̃t. The 
ube K 
onsists of disjoint 
ubes L1, . . . ,Ln, with edgesof 
ommon length q̃t. Every 
ube Li 
an be divided into 
ubes Li,j withedges p̃t. Sin
e 2p̃t < pt −Qt−1 − 2 and q̃t > qt + pt, for every i at least oneof Li,j 's does not 
ontain any position from the t-border. Suppose that Li,1is su
h. Put Lt =
⋃

i Li,1. The set Lt 
overs at least a 10−2d fra
tion of the
ube L. In the next step we perform an analogous reasoning, repla
ing L by
L \ Lt, and t by t − 1 (note that L \ Lt is a 
on
atenation of 
ubes withedge length q̃t−1). We de�ne Lt−1, whi
h again 
overs 10−2d of a new L, andremove it from L. In the kth step we divide the 
urrent set L into 
ubes Liwith edge length q̃t−k+1, and Li's into Li,j 's with edge length p̃t−k+1, andde�ne Lt−k+1 =

⋃
i Li,1 that o

upies 10−2d of L. The algorithm is repeateduntil k = t. In every step we diminish L at least by 10−2d of it, so after

t steps we obtain an L whi
h is at least (1 − 10−2d)t times smaller, but it
ontains the whole t-border.
7. The spa
e (X̃, τ). We will distinguish a full subset of X∗ whi
h willbe
ome the support of a Borel∗ isomorphism Φ de�ned as the pointwise limitof maps Φt.Let Xbuf

t denote the set of all [x] ∈ X∗ whose position 0 lies in a t-bu�er.Using the �rst part of Lemma 5 and Tempel'man's ergodi
 theorem for d
ommuting endomorphisms of a probability spa
e (see [2℄), for any ergodi
measure µE on X∗ we obtain
µE(Xbuf

t ) = lim
r→∞

1

rd

∑

n∈Kr

1Xbuf
t

◦ σn ≤ (4εt)
d.

Let Xbuf be the set of those [x] ∈ X∗ whose zero position lies in a t-bu�er forat most �nitely many t, and let X ′ be the set of [x] ea
h of whose positionslies in a t-bu�er for at most �nitely many t. Then
Xbuf = X \

∞⋂

s=1

∞⋃

t=s

Xbuf
t and X ′ =

⋂

n∈Zd

σn(Xbuf).
The sequen
e ((4εt)

d)t is summable, so µE(Xbuf) = 1. Sin
e µE is invariant,we also obtain µE(X ′) = 1. This holds for any ergodi
 µE ∈ P(X∗), thus
µ(X ′) = 1 for any measure µ ∈ P(X∗) and X ′ is a full subset of X∗.Similarly we de�ne Xborder

t to be the subset of X ′ 
onsisting of the pointswhose zero position belongs to a t-border,
Xborder = X ′ \

∞⋂

s=1

∞⋃

t=s

Xborder
t and X ′′ =

⋂

n∈Zd

σn(Xborder).
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Analogously to the above 
onsiderations, the se
ond part of Lemma 5and the ergodi
 theorem yield µE(Xborder

t ) ≤ (1 − 10−2d)t for any ergodi
measure µE , hen
e the sets Xborder and X ′′ are full subsets of X∗. It followsthat for all y ∈ X ′′ any 
ube appearing in the domain of y is 
overed by one
t-
on�guration for su�
iently large t.Re
all that a

ording to Lemma 4 the map Φt+1 di�ers from Φt only inbu�ers of (t + 1)-blo
ks. Consequently, for any y from X ′′ ea
h position is
hanged by Φt only for a �nite number of t. Thus we 
an de�ne a map Φ on
X ′′ as the pointwise limit of the maps Φt as t → ∞. Let X̃ be the 
losureof Φ(X ′′) in ΛZ

d , where Λ = (X ∪ N0)
N0 , and let τ be the set of shift mapson X̃.For ea
h t every element y of Φ(X ′′) is a 
on
atenation of s-images for

s ≤ t. Shapes of s-images are the same as shapes of s-blo
ks, so theysatisfy (4) and (5) of Lemma 3. As in the proof of Lemma 5 every 
ubewith edge length pt/2 in the domain of y interse
ts at most 2d bu�ers of t-
on�gurations. Hen
e for elements of Φ(X ′′) we obtain the same upper boundon the frequen
y of t-bu�ers as in Lemma 5. We now show that this bound isalso valid for elements of X̃. Pi
k y = limk yk ∈ X̃, where (yk)k∈N ⊂ Φ(X ′′).For a given t 
onsider a 
ube K = Kv

pt/2 in the domain of y. If for any y the
ube K interse
ts the domain of a bu�er of some s-
on�guration for s ≤ t,then its marker belongs to L = Kv+pt

3pt/2, a larger 
ube sharing the minimalvertex with K. Hen
e, if yk 
onverges to y, lo
ation of s-bu�ers for s ≤ t on
(yk)K is for su�
iently large k the same as on yK. In parti
ular, we get anupper bound on the frequen
y of t-bu�ers for the whole X̃ as in Lemma 5.In the same way as in X∗ we de�ne a full subset X̃ ′ of X̃, 
onsisting of thepoints ea
h of whose positions lies in a t-bu�er for �nitely many t only.On X̃ ′ ∩ Φ(X ′′) a position belongs to a t-border either if it belonged toa t-border in X ′′ and it does not lie in any of u-bu�ers for u > t, or if it liesin u-bu�ers for u > t and it has fallen into a t-border by �lling the bu�erfor the largest su
h u. The �rst 
ase happens with frequen
y ≤ (1− 10−2d)t,a

ording to Lemma 5. The frequen
y of the se
ond 
ase is bounded fromabove by the sum of the frequen
ies of the u-bu�ers for u > t, whi
h is equalto ∑∞

i=t+1(4εi)
d. Hen
e the frequen
y of observing a t-border is bounded on

X̃ ′ ∩ Φ(X ′′) by the terms of the summable sequen
e (1− 10−2d)t + 4dεd
t . Toprove that this bound is also valid for X̃ ′ 
onsider y = limk yk ∈ X̃ ′, where

(yk)k∈N ⊂ Φ(X ′′). In the domain of y sele
t a 
ube K = Kv

b . Let L = Kv+Qt·1
b+2Qt

.Sin
e y is the limit of yk's, positions of markers t in (yk)L are for su�
ientlylarge k the same as in yL, ex
ept for the markers t whi
h will be repla
ed byhigher markers during the 
onstru
tion. Therefore t-
on�gurations in (yk)Kfor large k have the same shapes as t-
on�gurations in yK, and they have thesame t-borders. It follows that on X̃ ′ the frequen
y of t-borders has the same
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upper bound as on X̃ ′ ∩ Φ(X ′′). Setting X̃ ′′ to be the set of all elements of
X̃ ′ whose positions belong to t-borders for at most �nitely many t, we obtainagain a full subset of X̃ ′, hen
e also of X̃.Remark 6. Note also that for ỹ ∈ X̃ ′′ every 
ube Kv

b in ỹ has the samedistribution of markers as an identi
al 
ube in some y ∈ Φ(X ′′). Thus thestru
ture of t-
on�gurations on Kv−Qt

b−2Qt
in ỹ is the same as in y.

8. (X̃, τ) is minimal. A set A ⊂ Z
d is syndeti
 with 
onstant L ≥ 0 if

A∩Kv

L 6= ∅ for every v ∈ Z
d. We say that a blo
k B with the shape 
ontainedin some 
ube with edge length k appears in an array y syndeti
ally with a
onstant L if it appears as a subblo
k of every 
ube with edge length L+ k.We skip the standard proof of the following lemma.Lemma 7. Let Y be a d-dimensional symboli
 system over a 
ompa
talphabet Λ. Let B′

Y be a 
ountable 
olle
tion of blo
ks satisfying the following
ondition: for every ε > 0 and every blo
k B o

urring in Y one 
an �nd
B′ ∈ B′

Y su
h that D(B,B′′) < ε for a 
ertain subblo
k B′′ of B′.If there exists a dense set Y ′ ⊂ Y 
onsisting of elements y in whi
h every
B ∈ B′

Y o

urs syndeti
ally with 
onstant depending only on B, then thesymboli
 system (Y, σ) is minimal.We will use the above lemma for Y = X̃, taking as B′
X̃

the 
olle
tion
⋃

t B̃εt

t , and as a dense subset of X̃ the set Φ(X ′′).Consider a blo
k B̃ with the shape of 
ube, o

urring in X̃. For arbitrarilysmall ε the blo
k is ε-
lose to a 
on�guration in some element of Φ(X ′′).For large t this 
on�guration is 
ontained in a t-image Bt ∈ B̃t, whose εt-approximation will be denoted by B′
t ∈ B̃εt

t . Pi
k any y ∈ Φ(X ′′). It su�
esto show that B′
t (with entries at positions on levels farther than t+1 possibly
hanged from zeros to other 
hara
ters) o

urs syndeti
ally in y. The distan
e

D between B̃ and an appropriate subblo
k of B′
t will be bounded by ε+(1+

diam(X))εt.The blo
k B′
t appears in the bu�er of every (t + 1)-image. Fix n ∈ Z

d.We will show that for some subset E of Kn+Qt+1

3Qt+1
the 
on�guration yE 
or-responds to a (t+ 1)-image. It will prove that B′

t appears syndeti
ally with
onstant 3Qt+1 −Qt.Re
all that the array y is a 
on
atenation of (t + 1)-images apart from
u-bu�ers for u > t + 1, while the bu�er of a u-blo
k is a 
on
atenationof s-images for s < u. Consider a blo
k 
onsisting of the 
ube Kn

Qt+1
in ytogether with all u-blo
ks, u > t + 1, whose bu�ers interse
t this 
ube andwill not be 
hanged by higher 
odes (note that any two bu�ers, possibly ofdi�erent order, are either disjoint or ordered by in
lusion). If no su
h blo
ks
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exist, then n belongs to the domain of some (t+1)-image, whi
h will be the�nal out
ome of the a
tion of Φ. This blo
k is 
ontained in a 
ube with edgelength Qt+1, so its domain is 
ontained in Kn+Qt+1

2Qt+1
. On the other hand, ifthere are some u > t+ 1 su
h that u-bu�ers interse
t Kn

Qt+1
, then pi
k oneof those u-bu�ers and study its stru
ture. It was 
on
atenated of u′-imagesfor u′ < u, whose bu�ers may interse
t Kn

Qt+1
. Ea
h of these u′-images againis a 
ertain 
on
atenation and so on. Let u0 denote the least u′ > t+ 1 su
hthat a u′-bu�er interse
ts our 
ube. If Kn

Qt+1
is 
ompletely 
overed by thebu�er of a u0-blo
k, then it interse
ts the domain of some s-blo
k, where

t+ 1 ≤ s < u0 (be
ause of the algorithm of �lling the bu�er). Hen
e, thereis a position n′ ∈ Kn

Qt+1
, whi
h belongs to the domain of an s-image (takethe smallest su
h s ≥ t+1), but not to its bu�er. Then it lies in the domainof some (t+ 1)-image, whi
h is 
ontained in Kn

′+Qt+1

2Qt+1
⊂ Kn+Qt+1

3Qt+1
.But if the 
ube Kn

Qt+1
is not 
ompletely 
overed by the bu�er of a u0-blo
k, then a 
ertain position n′′ ∈ Kn

Qt+1
lies outside this bu�er and insidethe same u0-image. Thus n′′ belongs to the domain of a (t+ 1)-blo
k, whi
his 
ontained in the 
ube Kn

′′+Qt+1

2Qt+1
⊂ Kn+Qt+1

3Qt+1
.9. Φ is a Borel∗ isomorphism. It remains to prove that (X∗, σ) and

(X̃, τ) are Borel∗ isomorphi
. The sets X ′′ and X̃ ′′ are full subsets of X∗ and
X̃, respe
tively. We will show that Φ is a bije
tion between them.Sin
e for every [x] ∈ X ′′ we have Φ([x])k

0
6= 0 for at most �nitely many k,and the last nonzero level 
ontains x, Φ is inje
tive. To prove that it is alsosurje
tive, 
hoose ỹ ∈ X̃ ′′. By Remark 6, at every position only a �nitenumber of nonzero levels is allowed. Let x be the 
hara
ter that appears atthe last level of position 0 in ỹ. The 
hara
ter is a member of the originalspa
e X, and its array representation in X∗ is denoted by [x]. Consider a
entral 
ube Kb in the domain of ỹ. It is 
ontained in the domain of some

t-
on�guration, representing a blo
k B̃. Sin
e ỹ ∈ X̃, there exists a sequen
e
(Bk) of t-blo
ks su
h that B̃ = limk φt(Bk). Note that sin
e B̃ has x atthe last nonzero level of the position 
orresponding to position 0 of ỹ, Bk'smust approa
h x at the �rst level of the same position. The metri
 D on theset of t-blo
ks is 
ompa
t, thus we 
an 
hoose a subsequen
e (B′

k) of (Bk)
onvergent to some t-blo
k B, whi
h surrounds position 0 in [x]. Re
all that
φt is 
ontinuous, hen
e

B̃ = lim
k
φt(Bk) = lim

k
φt(B

′
k) = φt(lim

k
B′

k) = φt(B).Thus the equality ỹ = Φt([x]) holds on the whole Kb. Sin
e Kb 
an betaken arbitrarily large and the 
al
ulation above is 
orre
t for any su�
ientlylarge t, every position of [x] lies in bu�ers of at most �nitely many t-blo
ks
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and ỹ = Φ([x]). To show that a position n of [x] visits borders �nitely manytimes, �x t and note that the set of t-border positions in [x] 
oin
ides withthe t-border of Φu([x]), u ≥ t, apart from s-bu�ers for t < s ≤ u. Take
Kb ∋ n and t so large that for u ≥ t we have ỹ = Φu([x]) on Kb and [x]n liesoutside u-bu�ers. From the fa
t that ỹn belongs only to a �nite number ofborders, we get the same property for [x]n.Measurability of Φ follows from the fa
t that it is the pointwise limit ofa sequen
e of 
ontinuous maps Φt, and measurability of its inverse is thusgranted by the Kuratowski theorem (see [3℄).Sin
e X̃ is metri
, the spa
e C(X̃) is separable. Choosing a dense 
ount-able set {f̃k} ⊂ C(X̃) and setting fk = f̃k/‖f̃k‖∞ we 
an de�ne a metri
 on
P(X̃), 
ompatible with the weak∗ topology, by the formula

̺(µ̃, ν̃) =

∞∑

k=1

1

2k+1

∣∣∣
\
fk dµ̃−

\
fk dν̃

∣∣∣.

We 
an also demand that the set {f̃k} 
onsists of simple fun
tions 
ombinedfrom 
hara
teristi
 fun
tions of 
lopen 
ylinders.We will show that the sequen
e of maps Φ∗
t : P(X∗) → P(X̃), t ∈ N,
onverges uniformly, by verifying the Cau
hy 
riterion. Fix ε > 0. We needto �nd T su
h that ̺(Φ∗

t (µ), Φ∗
T (µ)) < ε for all t > T and µ ∈ P(X∗).Sin
e all Φ∗

t 's are a�ne, µ 7→ ̺(Φ∗
t (µ), Φ∗

T (µ)) is 
onvex (and 
ontinuous),hen
e attains its maximum on the set of extremal points of P(X∗). Thus itis enough to 
onsider ergodi
 measures.Find K ∈ N su
h that ∑∞
k=K+1 1/2k < ε/2. For every pair of measures

µ̃, ν̃, the kth element of the series ̺(µ̃, ν̃) is bounded by 1/2k, so the task boilsdown to �nding T su
h that for every t > T and every ergodi
 µ ∈ P(X∗),
K∑

k=1

1

2k+1

∣∣∣
\
fk dΦ

∗
t (µ) −

\
fk dΦ

∗
T (µ)

∣∣∣ < ε

2
.Sin
e the above sum is �nite and ea
h fk is a linear 
ombination of 
hara
-teristi
 fun
tions of 
ylinders, it is enough to prove that for every δ > 0 andevery 
ylinder A there exists T su
h that for every t > T and every ergodi
measure µ ∈ P(X∗),

∣∣∣
\
1A dΦ

∗
t (µ) −

\
1A dΦ

∗
T (µ)

∣∣∣ = |µ(Φ−1
t A) − µ(Φ−1

T A)| < δ.Note that ΦT and Φt di�er only in bu�ers of s-markers for T < s ≤ t. Thusthe above inequality follows from the Z
d-ergodi
 theorem by estimating thefrequen
y of visits of ΦT (x) and Φt(x) in A.A
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