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Abstract. The aim of this paper is to describe the set of periods of a Morse-Smale
diffeomorphism of the two-dimensional sphere according to its homotopy class. The main
tool for proving this is the Lefschetz fixed point theory.

1. Introduction and statement of the main results. An important
class of dynamical systems on smooth compact manifolds consists of the
Morse—Smale diffeomorphisms. These have a relatively simple orbit structure
and this structure is preserved under small C' perturbations.

During the last quarter of the XXth century several papers were pub-
lished analyzing the relationships between the dynamics of Morse-Smale
diffeomorphisms and the topology of the manifold where they are defined;
see for instance [5, 7, 11, 13].

Each Morse—Smale diffeomorphism has a finite set of periodic orbits.
Franks [5] linked the periodic behavior of a Morse-Smale diffeomorphism to
its action on homology. For a given manifold and a homotopy (or isotopy)
class of maps on that manifold, this result provides a necessary condition
for the Morse-Smale dynamics to occur in that homotopy (or isotopy) class.
Narasimhan [11| showed for a compact surface that a diffeomorphism ho-
motopic to the identity can exhibit a given Morse—Smale dynamics provided
it satisfies Franks’s condition [5] and two other necessary properties. Essen-
tially, the homotopy class of the identity on a compact surface can admit any
periodic behavior consistent with the Lefschetz zeta function. In Section 2
we provide precise definitions of all these notions.

We focus on Morse-Smale diffeomorphisms of the two-dimensional
sphere S?. For orientation-reversing diffcomorphisms there are additional
obstructions to the ones given by the Lefschetz zeta function; they were
obtained by Batterson, Handel and Narasimhan [2]. Blanchard and Franks
[3] have shown that if an orientation-reversing homeomorphism of S? has
periodic orbits with two distinct odd periods, then the topological entropy
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of this homeomorphism is positive. This implies that orientation-reversing
Morse-Smale diffeomorphisms of S? cannot have more than one odd period,
because they have zero topological entropy.

Our aim in this work is to characterize the set Per(f) of periods for an
orientation-preserving and for an orientation-reversing Morse—Smale diffeo-
morphism of S?. The three key tools for doing that are the results obtained
by Franks [6] on the Lefschetz zeta function for C'! maps having only hyper-
bolic periodic points, by Narasimhan [11] for orientation-preserving Morse—
Smale diffeomorphisms of S?, and by Batterson, Handel and Narasimhan [2]
for orientation-reversing ones.

Of our main results are stated in the following two theorems:

THEOREM 1. Let f be an orientation-preserving Morse—Smale diffeomor-
phism of S%. Then Per(f) is a finite set containing 1. Conversely, any finite
set of positive integers containing 1 is realizable as the set of periods for some
orientation-preserving Morse-Smale diffeomorphism on S?.

THEOREM 2. Let f be an orientation-reversing Morse—Smale diffeomor-
phism of S%. Then Per(f) is either {1}, or SU{2}, where S is a finite set of
positive integers with at most one element odd. Conversely, {1} and any set
of the form S U {2} with S as above are each realizable as the set of periods
of some orientation-reversing Morse-Smale diffeomorphism of S?.

The paper is structured as follows. In Section 2 we provide all the defi-
nitions and basic tools and results necessary for this work. In Section 3 we
prove our two theorems.

2. Preliminary definitions and basic results. We begin by recalling
several definitions. Let Diff(M) be the space of C! diffeomorphisms of a
compact manifold M. The set Diff(M) is a topological space endowed with
the topology of the supremum norm for the map and its differential. All the
diffeomorphisms in this paper will be C! diffeomorphisms.

We denote by f™ the mth iterate of f € Diff(M). A point x € M is a
nonwandering point of f provided that for any neighborhood U of x there
exists a nonzero integer m such that f™(U)NU # (). The set of nonwandering
points of f is denoted by £2(f).

Suppose that « € M. If f(z) = = and the derivative of f at z, denoted by
D f,, has spectrum disjoint from the unit circle, then z is called a hyperbolic
fixed point. If all the eigenvalues of D f, lie inside the unit circle, then x is
called a sink. When all the eigenvalues have modulus greater than one, x is
called a source. Otherwise x is called a saddle.

Suppose that y € M. If fP(y) =y, then y is a periodic point of f of period
p if moreover f7(y) # y for all 0 < j < p. This y is a hyperbolic periodic
point if y is a hyperbolic fixed point of fP. The set {y, f(v),..., P~ (y)} is
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called the periodic orbit of the periodic point y. By Per(f) we denote the set
of periods of all periodic points of f.

Assume p is a metric on M, and z is a hyperbolic fixed point of f. The
stable manifold of x is

We(x) = {y € M: o(z, f™(y)) — 0 as m — oo},
and the unstable manifold of p is
Whz)={yeM: oz, fT™(y)) — 0 as m — oco}.

For a hyperbolic periodic point x of period p, the stable and unstable man-
ifolds are defined to be the stable and unstable manifolds of  under fP.
A diffeomorphism f : Ml — M is Morse—Smale if

(i) £2(f) is finite,
(i) all periodic points are hyperbolic,
(iii) for each z,y € 2(f) if the manifolds W*(x) and W"(y) intersect

then they intersect transversally.

The first condition implies that 2(f) is the set of all periodic points of f.

Two diffeomorphisms f, g € Diff(M) are topologically equivalent if there
exists a homeomorphism h : Ml — M such that hof = goh. A diffeomorphism
f is structurally stable provided that there exists a neighborhood U of f in
Diff(M) such that each g € U is topologically equivalent to f.

The class of Morse-Smale diffeomorphisms is structurally stable inside
the class of all diffeomorphisms (see [12]), so to understand the dynamics of
this class of maps is a relevant problem.

2.1. Lefschetz zeta function. We will study the set of periods of Morse—
Smale diffeomorphisms of S? using the Lefschetz fixed point theory. The key
1920 work of Lefschetz was to relate the homology class of a given map with
the earlier work of Brouwer on indices of self-maps of compact manifolds.
These two notions provide equivalent definitions for the Lefschetz numbers,
and from their comparison, one obtains information about the existence of
fixed points.

Given a continuous map f : M — M on a compact n-dimensional mani-
fold, its Lefschetz number L(f) is defined as

n
L(f) =) (=1)F trace(fur),
k=0
where for : Hp(M,Q) — Hp(M, Q) is the homomorphism induced by f on
the kth rational homology group of M. For & = 0, ..., n, H(M, Q) is a finite-
dimensional vector space over Q, and f,; is a linear map given by a matrix
with integer entries. Thus, one of the most useful results for proving the
existence of fixed points, or more generally of periodic points for a continuous
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self-map f of a compact manifold, is the Lefschetz fixed point theorem and
its improvements (see for instance (|1, 4, 7-10]):

THEOREM 3. Let f : M — M be a continuous map on a compact man-
ifold, and let L(f) be its Lefschetz number. If L(f) # O then f has a fized
point.

For a proof of Theorem 3 see [4].

Our aim is to describe the set of periods of f. To this end, it is useful
to have information on the whole sequence {L(f™)}°_, of the Lefschetz
numbers of all the iterates of f. Thus we define the Lefschetz zeta function

of f as Zp(t) = exp(i #t"ﬁ

m=1
This function generates the sequence of all Lefschetz numbers, and it may
be computed independently through [6]

n
(1) Z5(t) = [[ det(lu, — tf) V",
k=0
where n = dim M, n, = dim H(M, Q), I, is the nj X nj identity matrix,
and we set det(I,, —tfu) =1if ny =0.

2.2. Results of Franks and Batterson et al. If v is a hyperbolic periodic
orbit of period p, then for each x € 7 let E} denote the subspace of the
tangent space T, M generated by the eigenvectors of D f} corresponding to
eigenvalues whose moduli are greater than one. Let Ef be the subspace of
T,.M generated by the remaining eigenvectors. Define the orientation type A
of v to be +1 if DfF : EY — EY preserves orientation, and —1 if it reverses
orientation. Note that A is well defined. The index u of v is the dimension
of EY for some x € ~y. Finally, we define the triple (p,u, A) associated to 7.

For a diffeomorphism having all its periodic orbits hyperbolic, its periodic
data X' is defined to be the collection of all triples (p,u, A), where the same
triple can occur more than once provided it corresponds to different periodic
orbits. Franks [5] proved the following result.

THEOREM 4. Let f be a C' map on a compact manifold having finitely
many periodic orbits all of which are hyperbolic, and let X' be the period data
of f. Then the Lefschetz zeta function of f satisfies

z= [[ a-amEu
(p,u,A)ex

Using this notion of periodic data Narasimhan [11] studied the Morse—
Smale diffeomorphisms homotopic to the identity on compact connected sur-
faces. Her result can be stated as follows.
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THEOREM 5. Let M be a compact, connected 2-manifold. There exists a

Morse—Smale diffeomorphism f of Ml homotopic to the identity with periodic
data {(pi, wi, Ai)}1 if and only if

(a) u; =0 and uj =2 for some i and j,
(b) Z4(t) = (1 — )M where x(M) is the Buler characteristic of M.

In particular, taking into account that all orientation-preserving Morse—
Smale diffeomorphisms on S? are homotopic the identity and that x(S?) = 2,
we have the following corollary.

COROLLARY 6. There exists an orientation-preserving Morse—Smale dif-
feomorphism f on S* with periodic data {(p;,u;, A;) Y1y if and only if

(a) u; =0 and uj = 2 for some i and j,

(b) Z¢(t) = (1— )2

For the existence of orientation-reversing Morse-Smale diffeomorphisms
there are some extra requirements, as can be seen from the following result
of Batterson, Handel and Narasimhan [2].

THEOREM 7. There exists an orientation-reversing Morse—Smale diffeo-
morphism f on S? with periodic data {(p;,wi, A;)}" if and only if

(2
(a) u; =0 and u; =2 for some i and j,
(b) Ai =41 ifu; =0 and A; = (—1)pi if u; = 2,
() Zp(t) = (1 =)~ =TI, (1 — Qi)™
(d) if p; and p; are odd, then p; = pj,
(e) if pi > 2 for some i, then the data contains one of the following
triples: (2,0,+1), (2,2,+1) or (2,1,—1).

e

3. Proofs of Theorems 1 and 2. It is well known that the homol-
ogy groups of the sphere with rational coefficients are Hy(S?, Q) = Q,
Hi(S%,Q) = 0 and H3(S?,Q) = Q. Let f be a continuous self-map of S2.
Then the induced homomorphisms on homology are f.o = 1, f,1 = 0 and
f«2 = d where d is the degree of the map f. From (1) we have

Zp(t) = [det(l1 — tfuo) det(l1 —tfu2)]t = [(1—t)(1 —dt)] .
Clearly d = 1 for orientation-preserving diffeomorphisms, and d = —1
for reversing ones. Thus,
() = { (1—t)=2 if f is orientation-preserving,
A (1 —1t2)~1 if f is orientation-reversing.
Proof of Theorem 1. Let f be an orientation-preserving Morse-Smale dif-
feomorphism of S?. Clearly, since a Morse-Smale diffeomorphism has finitely

many periodic orbits, Per(f) is a finite set of positive integers. Moreover, f
always has fixed points. Indeed, by the previous paragraph, since f preserves
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orientation we know that Z;(t) = (1 — t)~2. Therefore, Theorem 4 implies
that 1 € Per(f). So the first part of Theorem 1 is proved.

Now, we prove the converse, i.e. for a given finite set S of positive integers
containing 1 we shall find an orientation-preserving Morse—Smale diffeomor-
phism f such that Per(f) = S.

By Corollary 6 there exists an orientation-preserving Morse—Smale dif-
feomorphism f of S? having a sink and a source corresponding to the triples
(1,0,41) and (1,2,+1) respectively, and (p,1,—1) and (p,0,—1) for every
p € 5, so its Lefschetz zeta function is of the form

147 1
z0 =11 1-t@-t)1+tr) Q-2

peS

Clearly this orientation-preserving Morse-Smale diffeomorphism f of S? sat-
isfies Per(f) = S. Thus the proof of Theorem 1 is complete. =

Proof of Theorem 2. Let f be an orientation—reversing Morse—Smale dif-
feomorphism of S?. Then f? is an orientation-preserving Morse-Smale diffeo-
morphism. Hence, by Theorem 1, f2 has a fixed point and therefore Per(f)
contains 1 or 2.

Now by Theorem 7(d), Per(f) has at most one element odd, and state-
ment (e) of this same result says that if Per(f) # {1} then it contains 2.

Thus, Per(f) is either {1}, or the union of {2} and a finite set of positive
integers (maybe empty) with no more than one element odd. This completes
the proof of the first part of Theorem 2.

Now we prove the converse. First we want to find an orientation-reversing
Morse-Smale diffeomorphism f of S? such that Per(f) = {1}. Consider here
S? = {(z,y,2) € R? : 22 + y? + 22 = 1}. Let f1 be an orientation-preserving
diffeomorphism of S? for which the point (0,0,1) is a global hyperbolic at-
tractor in S? \ {(0,0, —1)} and (0,0, —1) is a hyperbolic repellor, and let fs
be the symmetry on S? with respect to the z = 0 plane. Then f = fyo fj is
an orientation-reversing Morse-Smale diffeomorphism of S? which has only
two periodic points, the fixed points (0,0, £1).

Now let S be any finite set of positive integers with at most one el-
ement odd. We want to find an orientation-reversing Morse—Smale diffeo-
morphism f of S? such that Per(f) = S U {2}. By Theorem 7 there ex-
ists an orientation-reversing Morse—Smale diffeomorphism f which has a
sink and a source corresponding to the triples (p1,0,+1) and (p2,2, (—1)P?)
with p; = pa = 2 respectively, and to the triples (2,1,1) and (p,1,—1) and
(p,0,—1) for every p € S, so its Lefschetz zeta function is of the form

- Q-+ 1
0 _pl;s (L= =) +tr) 1t
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Clearly this orientation-reversing Morse-Smale diffeomorphism f of S? sat-
isfies that Per(f) = S U {2}. So the proof of Theorem 2 is complete. m
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