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MARKOV PARTITIONS FOR FIBRE EXPANDING SYSTEMS

BY

MANFRED DENKER and HAJO HOLZMANN (Göttingen)

Abstract. Fibre expanding systems have been introduced by Denker and Gordin.
Here we show the existence of a finite partition for such systems which is fibrewise a Markov
partition. Such partitions have direct applications to the Abramov–Rokhlin formula for
relative entropy and certain polynomial endomorphisms of C2.

1. Fibre expanding systems. Let Y be a compact metric space and
T : Y → Y be a continuous surjective map. Consider a fibred situation of a
dynamical system (Y, T ), where the map T is foliated over a continuous map
S : X → X on some compact metric space X, with a continuous surjective
factor map π : Y → X which semiconjugates T to S:

Y
T

−−−−→ Y

π

y
yπ

X
S

−−−−→ X

X is called the base space and S the base transformation. According to [6]
T is said to be fibre expanding if there exist a > 0 and λ ∈ (0, 1) such that
the following holds: If u, v′ ∈ Y , π(T (u)) = π(v′) and d(T (u), v′) < 2a, there
exists a unique v ∈ Y such that π(v) = π(u), T (v) = v′ and d(u, v) < 2a.
Furthermore,

d(u, v) ≤ λd(T (u), T (v)).

The situation was examined from a purely topological point of view by Roy
[17], who discussed the relations to expansiveness and openness of fibre maps.

When extending the thermodynamical formalism to the fibred situation,
the first question is to generalize the notion of Gibbs measures to the relative
case. A Gibbs measure is defined by the usual property that the Jacobian
(of the disintegration measures) under fibre maps has a prescribed fibrewise
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(Hölder) continuous version. Problems of this type in the relativized con-
text of fibred systems have been considered in the literature. In the work of
Ferrero and Schmitt ([8]) and later of Bogenschütz and Gundlach ([2], [4]),
this problem was considered when the base transformation S is an invertible
measure-preserving map of some probability space. The case of non-invertible
transformations and fibrewise expanding systems was considered in [6], while
a Gibbs family for certain fibrewise expansive systems appears in [18].

In the present situation the classical Frobenius–Perron theory or spectral
theory is not applicable, since the transfer operators act between different
function spaces (see [7]). However, the construction of equilibrium measures
has been accomplished in some cases (e.g. [12], [13], [11], [7]). The associated
pressure (in the relative setting) is defined in [16] and a variational formula is
proved. Bogenschütz in [2] and [4] and Kifer in [14] studied pressure functions
for random bundlemaps and their relative variational formulas.Anew relative
variational formula using the Abramov–Rohklin relative entropy formula has
been derived in [7], where the maximum of the sum of conditional entropy and
expectation over potentials is described by the integral of some generalized
eigenvalue function over the module of functions constant on fibres.

The existence of relative generators has been studied in the invertible
case by Kifer and Weiss (cf. [15]), and independently by Danilenko and
Park ([5]). In the non-invertible case the problem is more delicate (as in the
non-relativized case). Some results in this direction are contained in [20].

The theory has been developed without the use of Markov partitions.
This is because the existence of such a partition does not seem to be known.
In this note we prove that there is a partition which, restricted to each fibre,
is a generator and has the Markov property with respect to fibre maps.
When the base space is reduced to a one-point space, this partition will be
a Markov partition in the usual sense (cf. [19]). It should be noted that our
proof (when reduced to this particular case) gives a new and direct proof
for the existence of a Markov partition for expanding and open maps.

2. Markov partitions. Let (Y, T ) denote a fibred system which is fi-
brewise expanding over (X, S) as defined in Section 1. The fibres over X will
be denoted by Yx = π−1{x}. Furthermore, Tx : Yx → YS(x) denotes the map
T restricted to the fibre over x ∈ X. We shall prove the following theorem:

Theorem. There exists a finite partition γ of Y such that:

(A) Tx(G ∩ Yx) =
⋃

g∈γ : g∩T (G) 6=∅ g ∩ YS(x) for all G ∈ γ and x ∈ X.

(B) There is a constant C such that

sup
x∈X

sup
G∈γn

0

diam(G ∩ Yx) ≤ Cλn,

where γn
0 = γ ∨ T−1γ ∨ · · · ∨ T−n+1γ.
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Proof. Let a and λ be as in the definition of the fibrewise expanding
property. Choose δ so small that δ/(1 − λ) < a. Let U0 be a finite open
cover of Y by sets of diameter ≤ δ.

For U ∈ U0 define

U(U) = {V ∈ U0 : V ∩ T (U) 6= ∅}.

Recursively, we let

Ψ0(U) = U,

Ψn(U) =

{
y ∈ π−1(π(U)) :

T (y) ∈ Ψn−1(V ) for some V ∈ U(U)

and d(y, U) < a

}
.

We first claim that

(a) U ⊂ Ψn−1(U) ⊂ Ψn(U) ⊂ B(U, (λ + . . . + λn)δ),
(b) π(Ψn(U)) = π(U),
(c) Tx(Ψn(U) ∩ Yx) =

⋃
V ∈U(U) Ψn−1(V ) ∩ YS(x) for all x ∈ π(U).

Statement (a) is proved by induction over n; (b) and (c) follow from this.

For n = 1 we obtain:

(a) y ∈ U , T (y) ∈ V = Ψ0(V ) ∈ U(U) imply y ∈ Ψ1(U), hence U ⊂
Ψ1(U). If y ∈ Ψ1(U) ∩ Yx, there exist V ∈ U(U) and z ∈ U ∩ Yx such that
T (y), T (z) ∈ V ∩ YS(x). Therefore d(T (z), T (y)) < δ, and by the expanding
property, d(z, y) < λδ, i.e. y ∈ B(U, λδ).

(b) Let y ∈ Ψ1(U). Then π(y) ∈ π(U) by definition, so π(Ψ1(U)) ⊂ π(U).
The converse follows from U ⊂ Ψ1(U).

(c) Let x ∈ π(U) and y ∈ Ψ1(U) ∩ Yx. Then there exists V ∈ U(U) such
that Tx(y) = T (y) ∈ V . Therefore

Tx(Ψ1(U) ∩ Yx) ⊂
⋃

V ∈U(U)

V ∩ YS(x).

Conversely, if z ∈ V ∩ YS(x), where V ∈ U(U), then there exists y ∈ T (U)
with d(z, T (y)) < δ < 2a. By the expanding property there exists z′ ∈
B(y, 2a)∩Yx such that T (z′) = z and d(z′, y) < λδ < a, whence z′ ∈ Ψ1(U).

Assume that (a) holds for n − 1.

(a) From the induction hypothesis we have

U ⊂ Ψn−2(U) ⊂ Ψn−1(U) ⊂ B(U, (λ + · · · + λn−1)δ).

Let y ∈ Ψn−1(U). Then

(i) T (y) ∈ Ψn−2(V ) ⊂ Ψn−1(V ) for some V ∈ U(U),
(ii) y ∈ π−1(π(U)),
(iii) d(y, U) < a,

hence y ∈ Ψn(U) and U ⊂ Ψn−1(U) ⊂ Ψn(U).
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Let now y ∈ Ψn(U). Then there exists V ∈ U(U) such that T (y) ∈
Ψn−1(V ). Choose z ∈ V such that d(z, T (y)) = d(V, T (y)) and z′ ∈ U such
that T (z′) ∈ V . Then

d(T (y), T (z′)) ≤ d(T (y), z) + d(z, T (z′)) ≤ (λ + · · · + λn−1)δ + δ < 2a,

hence by the expanding property,

d(y, z′) ≤ λ(1 + λ + · · · + λn−1)δ = (λ + · · · + λn)δ.

(b) Let y ∈ Ψn(U). Then π(y) ∈ π(U) by definition, so π(Ψn(U)) ⊂ π(U).
The converse follows from U ⊂ Ψn(U) (using (a) as proved above).

(c) Let x ∈ π(U) and y ∈ Ψn(U) ∩ Yx. Then there exists V ∈ U(U) such
that Tx(y) = T (y) ∈ Ψn−1(V ). Therefore

Tx(Ψn(U) ∩ Yx) ⊂
⋃

V ∈U(U)

Ψn−1(V ) ∩ YS(x).

Conversely, if z ∈ Ψn−1(V )∩YS(x), where V ∈ U(U), then there exist z1 ∈ V

and T (y) = z2 ∈ T (U) with d(z, z1) ≤ (λ + · · · + λn−1)δ and d(z1, z2) <
δ < 2a. Therefore d(z, z2) < 2a and by the expanding property there exists
z′ ∈ B(y, 2a) ∩ Yx such that T (z′) = z and d(z′, y) < λδ < a, whence
z′ ∈ Ψn(U) ∩ Yx.

The theorem follows from (a)–(c) in a canonical way. Define

Ψ(U) = lim
n→∞

Ψn(U).

Then, with Λ = λ/(1 − λ), we have

(a) U ⊂ Ψ(U) ⊂ B(U, Λδ),
(b) π(Ψ(U)) = π(U),
(c) for x ∈ π(U),

Tx(Ψ(U) ∩ Yx) = lim
n→∞

Tx(Ψn(U) ∩ Yx)

= lim
n→∞

⋃

V ∈U(U)

Ψn−1(V ) ∩ YS(x)

=
⋃

V ∈U(U)

Ψ(V ) ∩ YS(x)

Now we construct the partition γ. Write U0 = {U1, . . . , Us} for some
s ≥ 1 and define the atoms of γ by

G =
⋂

j∈I(G)

Ψ(Uj) ∩
⋂

j 6∈I(G)

Ψ(Uj)
c,

where I(G) is any (non-empty) subset of {1, . . . , s}. If

H =
⋂

j∈I

Ψ(Uj)
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for some I ⊂ {1, . . . , s}, then by invertibility of Tx on sets of diameter < 2a,

Tx(H ∩ Yx) =
⋂

j∈I

Tx(Ψ(Uj)) ∩ YS(x) =
⋂

j∈I

⋃

V ∈U(Uj)

Ψ(V ) ∩ YS(x)

=
⋃

Vj∈U(Uj); j∈I

⋂

j∈I

Ψ(Vj) ∩ YS(x).

Hence Tx(H ∩ Yx) is a union of elements in γ ∩ YS(x). This proves (A) by
taking differences of appropriate sets.

It is left to show (B). Clearly, since diam(G) < δ for every G ∈ γ and
since γ has the Markov property, we have

diam
(n−1⋂

j=0

T−j(Gij ) ∩ Yx

)
= diam(T−n+1(Gin−1

) ∩ Yx) ≤ λn−1δ.

3. Conditional entropy. Let (Y, T ) be a dynamical system which is
fibred over the base (X, S). We fix a T -invariant measure µ on Y and denote
the conditional entropy of measurable partitions ξ and η by H(ξ | η). We
denote by ǫY (resp. ǫX) the partition of Y (resp. X) into points. Let {µx : x ∈
X} denote the disintegration of µ with respect to π−1ǫX and let ν = µ◦π−1.

The relative entropy h(T |S) of the endomorphism T with respect to its
factor S is defined by the expression

h(T |S) = sup{h(T |S, ξ) : ξ a measurable partition of Y

such that H(ξ |π−1ǫX) < ∞},

where

h(T |S, ξ) = lim
n→∞

H(T−nξ |T−(n+1)ξ− ∨ π−1ǫX)

is called the entropy of ξ relative to T |S, and where ξ− =
∨∞

n=0 T−nξ. It is
known ([7]) that

h(T |S, ξ) = lim
n→∞

1

n
H(ξ

(n)
0 |π−1ǫX ∨ T−nξ−)

and

(1) h(T |S, ξ) = lim
n→∞

1

n
H(ξ

(n)
0 |π−1ǫX).

Corollary. Let (Y, T ) be fibre expanding. For every T -invariant mea-

sure µ on Y with disintegration µx on Yx we have

hν(T |S) = lim
n→∞

1

n

\
X

Hµx
(γn−1

0 ∩ Yx) ν(dx),

where γ denotes the Markov partition of Section 2.
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Proof. Since

π−1(ǫX) ∨
∨

n≥0

T−nγ = ǫY ,

γ is a unilateral relative generator for T and π−1ǫX . By Proposition 3.9
in [7],

h(T |S, γ) = h(T |S) = lim
n→∞

H(T−nǫY |T−(n+1)ǫY ∨ π−1ǫX).

The corollary follows from (1).

From the corollary we immediately obtain the following version of the
Abramov–Rokhlin formula for the entropies h(T ) of the transformation T
with respect to the invariant measure µ and the entropy h(S) of S with
respect to the image measure ν:

h(T ) − h(S) = lim
n→∞

1

n

\
X

Hµx
(γn−1

0 ∩ Yx) ν(dx).

4. Polynomial endomorphisms of C2. Let T̂ denote a polynomial
mapping of C2. Such a mapping can be written in the form

T̂ (x, y) = (p(x, y), q(x, y)),

where p and q are polynomials in x, y ∈ C. It is called (d, d′)-regular , where
d ∈ Q and d′ ∈ N, if there are constants k1, k2 > 0 and r ≥ 0 such that for
every z ∈ C2, ‖z‖ ≥ r,

k1‖z‖
d ≤ ‖T̂ (z)‖ ≤ k2‖z‖

d′ .

In the case d = d′, T̂ is called strict. A special case are skew products when
p does not depend on y. Then π ◦ T̂ = p ◦ π where π : C2 → C denotes the
projection map onto the first factor.

A point z ∈ C2 is called weakly normal if there exists an open neighbour-
hood V of z and a family {Kx : x ∈ V } of at least one-dimensional complex

analytic sets Kx such that x ∈ Kx and the family {T̂n|Kx
: n ≥ 0} is normal

in x. The complement of the set of normal points is called the Julia set

of T̂ and is denoted by J(T̂ ). It is shown in [9] that, for regular polynomial

mappings, J(T̂ ) is compact and fully invariant. In particular, it follows that

a regular skew product restricted to J(T̂ ) is a fibred system, but not a skew

product in general. It is worth mentioning that Jx = π−1(x) ∩ J(T̂ ) is the

fibre over x, and (for certain maps T̂ at least) is the Julia set of T̂n
x in case

x is periodic with period n.
Let T̂ : C2 → C2 be a skew product and T = T̂ |

J(T̂ )
be its restriction to

the Julia set J = J(T̂ ). Denote by J∗
x the Julia set for the family of maps

qpn(x) ◦ qpn−1(x) ◦ · · · ◦ qx (n ≥ 0).
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Then J =
⋃

x∈J(p){x}×J∗
x if each qx for x ∈ J(p) is hyperbolic (see [10]). If,

in addition, p is a hyperbolic polynomial, then T is hyperbolic as well (on J)
(see [9] and Theorem 2.3.1 in [10]). In particular, these maps are fibrewise
expanding. Hence we infer from our Theorem that T has a fibrewise Markov
partition.

The same result can be proved for hyperbolic rational semigroups (see
e.g. [21] for a definition).
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