A NOTE ON p-ADIC VALUATIONS OF SCHENKER SUMS

BY
PIOTR MISKA (Kraków)

Abstract

A prime number p is called a Schenker prime if there exists $n \in \mathbb{N}_{+}$such that $p \nmid n$ and $p \mid a_{n}$, where $a_{n}=\sum_{j=0}^{n}(n!/ j!) n^{j}$ is a so-called Schenker sum. T. Amdeberhan, D. Callan and V. Moll formulated two conjectures concerning p-adic valuations of a_{n} when p is a Schenker prime. In particular, they conjectured that for each $k \in \mathbb{N}_{+}$there exists a unique positive integer $n_{k}<5^{k}$ such that $v_{5}\left(a_{m \cdot 5^{k}+n_{k}}\right) \geq k$ for each nonnegative integer m. We prove that for every $k \in \mathbb{N}_{+}$the inequality $v_{5}\left(a_{n}\right) \geq k$ has exactly one solution modulo 5^{k}. This confirms the above conjecture. Moreover, we show that if $37 \nmid n$ then $v_{37}\left(a_{n}\right) \leq 1$, which disproves the other conjecture of the above mentioned authors.

1. Introduction. Questions concerning the behavior of p-adic valuations of elements of integer sequences are interesting subjects of research in number theory. The knowledge of all p-adic valuations of a given number is equivalent to its factorization. Papers [1]-3], [6, [5] present interesting results concerning the behavior of p-adic valuations in some integer sequences.

Fix a prime number p. Every nonzero rational number x can be written in the form $x=(a / b) p^{t}$, where $a \in \mathbb{Z}, b \in \mathbb{N}_{+}, \operatorname{gcd}(a, b)=1, p \nmid a b$ and $t \in \mathbb{Z}$. Such a representation of x is unique, so the number t is well defined. We call it the p-adic valuation of x and denote it by $v_{p}(x)$. By convention, $v_{p}(0)=\infty$. In particular, if $x \in \mathbb{Q} \backslash\{0\}$ then $|x|=\prod_{p \text { prime }} p^{v_{p}(x)}$, where $v_{p}(x) \neq 0$ for finitely many prime numbers p. We denote by $s_{d}(n)$ the sum of digits of a positive integer n in base d, i.e. if $n=\sum_{i=0}^{m} c_{i} d^{i}$ is an expansion of n in base d, then $s_{d}(n)=\sum_{i=0}^{m} c_{i}$.

In a recent paper T. Amdeberhan, D. Callan and V. Moll [1] introduced the sequence of Schenker sums, defined by

$$
a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} n^{j}, \quad n \in \mathbb{N}_{+} .
$$

They obtained an exact expression for the 2 -adic valuation of a Schenker sum:

$$
v_{2}\left(a_{n}\right)= \begin{cases}1 & \text { when } 2 \nmid n \\ n-s_{2}(n) & \text { when } 2 \mid n\end{cases}
$$

2010 Mathematics Subject Classification: 11B50, 11B83.
Key words and phrases: p-adic valuation, prime, Schenker sum.

Moreover, they proved two results concerning the p-adic valuations of elements of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}_{+}}$when p is an odd prime number:

Proposition 1 ([1, Proposition 3.1]). Let p be an odd prime number dividing a positive integer n. Then

$$
v_{p}\left(a_{n}\right)=\frac{n-s_{p}(n)}{p-1}=v_{p}(n!)
$$

Proposition 2 ([1, Proposition 3.2]). Let p be an odd prime number and $n=p m+r$, where $0<r<p$. Then $p \mid a_{n}$ if and only if $p \mid a_{r}$.

These propositions allow us to compute the p-adic valuation of a_{n} when $p \mid n$ or $p \nmid a_{n \bmod p}$. This gives a complete description of the p-adic valuations of a_{n} for some prime numbers ($3,7,11,17$, for example). However, the case when $p \nmid n$ and $p \mid a_{n}$ for some positive integer n is much more difficult. The first prime p such that $p \nmid n$ and $p \mid a_{n}$ for some $n \in \mathbb{N}_{+}$is $p=5$. We have $5 \mid a_{5 m+2}$ for every $m \in \mathbb{N}$. Observe that if $n \not \equiv 0,2(\bmod 5)$, then $5 \nmid a_{n}$. From numerical experiments, the authors of [1] formulated a conjecture, an equivalent version of which is as follows:

Conjecture 1 ([1, Conjecture 4.6]). Assume that there exists a unique positive integer n_{k} less than 5^{k} such that $5^{k} \mid a_{m \cdot 5^{k}+n_{k}}, m \in \mathbb{N}$. Then there exists a unique $n_{k+1} \in\left\{n_{k}, 5^{k}+n_{k}, 2 \cdot 5^{k}+n_{k}, 3 \cdot 5^{k}+n_{k}, 4 \cdot 5^{k}+n_{k}\right\}$ such that $5^{k+1} \mid a_{m \cdot 5^{k+1}+n_{k+1}}, m \in \mathbb{N}$. In other words, for every $k \in \mathbb{N}$ the inequality $v_{5}\left(a_{n}\right) \geq k$ has a unique solution $n\left(\bmod 5^{k}\right)$ with $5 \nmid n$.

5 is not the only prime number p such that $p \nmid n$ and $p \mid a_{n}$ for some $n \in \mathbb{N}_{+}$. The prime numbers which satisfy this condition are called Schenker primes.

The first question which comes to mind is: what is the cardinality of the set of Schenker primes? We will prove the following proposition using a modification of Euclid's proof of the infinitude of the set of prime numbers:

Proposition 3. There are infinitely many Schenker primes.
Proof. Assume that there are only finitely many Schenker primes, and let p_{1}, \ldots, p_{s} be all the odd Schenker primes in ascending order. Since $a_{1}=$ 2, Proposition 2 implies that $p_{1}, \ldots, p_{s} \nmid a_{p_{1} \ldots p_{s}+1}$. Set $t:=p_{1} \ldots p_{s}+1$, obviously an even number. By Proposition 1 we have

$$
2 t!\leq t!\sum_{j=0}^{t} \frac{t^{j}}{j!}=a_{t}=\prod_{p \text { prime }, p \mid t} p^{v_{p}(t!)} \leq t!
$$

a contradiction.
The main result of this paper is the following theorem:

Theorem 1. Let p be a prime number, let $n_{k} \in \mathbb{N}$ be such that $p \nmid n_{k}$, $p^{k} \mid a_{n_{k}}$ and set

$$
q_{n_{k}, p}:=a_{n_{k}+p}-a_{n_{k}}\left(n_{k}+p\right)^{n_{k}+2} n_{k}^{p-n_{k}-2} .
$$

Then:

- if $q_{n_{k}, p} \not \equiv 0\left(\bmod p^{2}\right)$, then there exists a unique n_{k+1} modulo p^{k+1} for which $p^{k+1} \mid a_{n_{k+1}}$ and $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$;
- if $q_{n_{k}, p} \equiv 0\left(\bmod p^{2}\right)$ and $p^{k+1} \mid a_{n_{k}}$, then $p^{k+1} \mid a_{n_{k+1}}$ for any n_{k+1} satisfying $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$;
- if $q_{n_{k}, p} \equiv 0\left(\bmod p^{2}\right)$ and $p^{k+1} \nmid a_{n_{k}}$, then $p^{k+1} \nmid a_{n_{k+1}}$ for any n_{k+1} satisfying $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$.
Moreover, if $p \nmid n_{1}, p \mid a_{n_{1}}$ and $q_{n_{1}, p} \not \equiv 0\left(\bmod p^{2}\right)$, then for any $k \in \mathbb{N}_{+}$ the inequality $v_{p}\left(a_{n}\right) \geq k$ has a unique solution n_{k} modulo p^{k} satisfying the congruence $n_{k} \equiv n_{1}(\bmod p)$.

The proof of this theorem is given in Section 2.
The authors of [1] stated another, more general conjecture concerning the p-adic valuations of the numbers a_{n} when p is an odd Schenker prime. An equivalent version of this conjecture is as follows:

Conjecture 2 ([1, Conjecture 4.12]). Let p be an odd Schenker prime. Then for every k there exists a unique solution modulo p^{k} of the inequality $v_{p}\left(a_{n}\right) \geq k$ which is not congruent to 0 modulo p.

Using Theorem 1 we will show that for $p=37$ Conjecture 2 is not satisfied.

Convention. We assume that $x \equiv y\left(\bmod p^{k}\right)$ means $v_{p}(x-y) \geq k$ for p a prime number and k an integer. This convention extends the relation of equivalence modulo p^{k} to all rational numbers x, y and integers k. Moreover, we set by convention $\prod_{i=0}^{-1}=1$.
2. Proof of the main theorem. Theorem 1 resembles a well known fact concerning the p-adic valuation of a value of a polynomial with integer coefficients (see [4, p. 44]):

Theorem 2 (Hensel's lemma). Let f be a polynomial with integer coefficients, p be a prime number and k be a positive integer. Assume that $f\left(n_{0}\right) \equiv 0\left(\bmod p^{k}\right)$ for some integer n_{0}. Then the number of solutions n of the congruence $f(n) \equiv 0\left(\bmod p^{k+1}\right)$, satisfying the condition $n \equiv n_{0}$ $\left(\bmod p^{k}\right)$, is equal to:

- 1 when $f^{\prime}\left(n_{0}\right) \not \equiv 0(\bmod p)$;
- 0 when $f^{\prime}\left(n_{0}\right) \equiv 0(\bmod p)$ and $f\left(n_{0}\right) \not \equiv 0\left(\bmod p^{k+1}\right)$;
- p when $f^{\prime}\left(n_{0}\right) \equiv 0(\bmod p)$ and $f\left(n_{0}\right) \equiv 0\left(\bmod p^{k+1}\right)$.

Similarity of these theorems is not accidental. Namely, we will show that checking the p-adic valuation of values of some polynomials is sufficient for computation of the p-adic valuation of a Schenker sum. Firstly, note that for any coprime positive integers d, n the divisibility of a_{n} by d is equivalent to the divisibility of $a_{n \bmod p}$ by d :

$$
\begin{align*}
a_{n} & =\sum_{j=0}^{n} \frac{n!}{j!} n^{j}=\sum_{j=0}^{n} n^{n-j} \prod_{i=0}^{j-1}(n-i) \tag{2.1}\\
& \stackrel{(*)}{=} \sum_{j=0}^{d-1} n^{n-j} \prod_{i=0}^{j-1}(n-i)=n^{n-d+2} \sum_{j=0}^{d-1} n^{d-j-2} \prod_{i=0}^{j-1}(n-i)(\bmod d),
\end{align*}
$$

where the equivalence $(*)$ follows from the fact that the product of at least d consecutive integers contains an integer divisible by d, hence it is equal to $0 \bmod d$. Thus for every $d \in \mathbb{N}_{+}$we define the polynomial

$$
f_{d}(X):=\sum_{j=0}^{d-1} X^{d-j-2} \prod_{i=0}^{j-1}(X-i) .
$$

With this notation the formula 2.1 can be rewritten in the following way:

$$
\begin{equation*}
a_{n} \equiv n^{n-d+2} f_{d}(n)(\bmod d) . \tag{2.2}
\end{equation*}
$$

Let $r=n(\bmod d)$. If d, n are coprime, then

$$
\begin{aligned}
& a_{n} \equiv n^{n-d+2} f_{d}(n) \equiv 0(\bmod d) \Leftrightarrow f_{d}(n) \equiv 0(\bmod d) \\
& \quad \Leftrightarrow f_{d}(r) \equiv 0(\bmod d) \Leftrightarrow a_{r} \equiv r^{r-d+2} f_{d}(r) \equiv 0(\bmod d)
\end{aligned}
$$

If $d=p^{k}$ for some prime number p and positive integer k, then 2.2 takes the form

$$
\begin{equation*}
a_{n} \equiv n^{n-p^{k}+2} f_{p^{k}}(n)\left(\bmod p^{k}\right) . \tag{2.3}
\end{equation*}
$$

We thus see that if $p \nmid n$, then $v_{p}\left(a_{n}\right) \geq k$ if and only if $v_{p}\left(f_{p^{k}}(n)\right) \geq k$. Moreover, for any $k_{1}, k_{2} \in \mathbb{N}$ satisfying $k_{1} \leq k_{2}$,

$$
n^{n-p^{k_{1}}+2} f_{p^{k_{1}}}(n) \equiv n^{n-p^{k_{2}}+2} f_{p^{k_{2}}}(n)\left(\bmod p^{k_{1}}\right) .
$$

Hence, if $p \nmid n$ and $k_{1} \leq k_{2}$, then

$$
p^{k_{1}}\left|f_{p^{k_{2}}}(n) \Leftrightarrow p^{k_{1}}\right| f_{p^{k_{1}}}(n) .
$$

If we assume now that $k>1$, then by Fermat's little theorem (in the form $\left.n^{p^{k}} \equiv n(\bmod p)\right)$ and the fact that the product of at least p consecutive
integers is divisible by p, we obtain

$$
\begin{aligned}
f_{p^{k}}^{\prime}(n) & =\sum_{j=0}^{p^{k}-1}\left[\left(p^{k}-j-2\right) n^{p^{k}-j-3} \prod_{i=0}^{j-1}(n-i)+n^{p^{k}-j-2} \sum_{h=0}^{j-1} \prod_{i=0, i \neq h}^{j-1}(n-i)\right] \\
& \equiv \sum_{j=0}^{2 p-1}\left[(-j-2) n^{-j-2} \prod_{i=0}^{j-1}(n-i)+n^{-j-1} \sum_{h=0}^{j-1} \prod_{i=0}^{j-1}(n-i)\right](\bmod p) .
\end{aligned}
$$

The formula above implies

$$
\begin{equation*}
f_{p^{k_{1}}}^{\prime}(n) \equiv f_{p^{k_{2}}}^{\prime}(n)(\bmod p) \tag{2.4}
\end{equation*}
$$

for $k_{1}, k_{2}>1$ and $p \nmid n$. Recall that if $f \in \mathbb{Z}[X]$, then for any $x_{0} \in \mathbb{Z}$ there exists a $g \in \mathbb{Z}[X]$ such that

$$
f(X)=f\left(x_{0}\right)+\left(X-x_{0}\right) f^{\prime}\left(x_{0}\right)+\left(X-x_{0}\right)^{2} g(X)
$$

Using (2.3) and the equality above for $f=f_{p^{2}}, x_{0}=n$ and $X=n+p$, we obtain

$$
\begin{equation*}
\frac{a_{n+p}}{(n+p)^{n+p-p^{2}+2}}-\frac{a_{n}}{n^{n-p^{2}+2}} \equiv f_{p^{2}}(n+p)-f_{p^{2}}(n) \equiv p f_{p^{2}}^{\prime}(n)\left(\bmod p^{2}\right) \tag{2.5}
\end{equation*}
$$

If $p \nmid x$, then by Euler's theorem $x^{p^{2}-p} \equiv 1\left(\bmod p^{2}\right)$ we can simplify 2.5 to get

$$
\frac{a_{n+p}}{(n+p)^{n+2}}-\frac{a_{n}}{n^{n-p+2}} \equiv p f_{p^{2}}^{\prime}(n)\left(\bmod p^{2}\right)
$$

which leads to

$$
\frac{1}{p}\left(\frac{a_{n+p}}{(n+p)^{n+2}}-\frac{a_{n}}{n^{n-p+2}}\right) \equiv f_{p^{2}}^{\prime}(n)(\bmod p)
$$

Our discussion shows that

$$
\begin{align*}
f_{p^{2}}^{\prime}(n) \not \equiv 0(\bmod p) & \Leftrightarrow \frac{1}{p}\left(\frac{a_{n+p}}{(n+p)^{n+2}}-\frac{a_{n}}{n^{n-p+2}}\right) \not \equiv 0(\bmod p) \tag{2.6}\\
& \Leftrightarrow \frac{a_{n+p}}{(n+p)^{n+2}}-\frac{a_{n}}{n^{n-p+2}} \not \equiv 0\left(\bmod p^{2}\right) \\
& \Leftrightarrow a_{n+p}-\frac{a_{n}(n+p)^{n+2}}{n^{n-p+2}} \not \equiv 0\left(\bmod p^{2}\right) \\
& \Leftrightarrow a_{n+p}-a_{n}(n+p)^{n+2} n^{p-n-2} \not \equiv 0\left(\bmod p^{2}\right)
\end{align*}
$$

Assume now that $p^{k} \mid a_{n_{k}}$ for some $n_{k} \in \mathbb{N}$ not divisible by p and

$$
a_{n_{k}+p}-a_{n_{k}}\left(n_{k}+p\right)^{n_{k}+2} n_{k}^{p-n_{k}-2} \not \equiv 0\left(\bmod p^{2}\right)
$$

Then $p \nmid f_{p^{2}}^{\prime}\left(n_{k}\right)$, and by 2.5 , $p \nmid f_{p^{k+1}}^{\prime}\left(n_{k}\right)$. Using now Theorem 2 for $f=f_{p^{k+1}}$, we conclude that there exists a unique $n_{k+1} \in \mathbb{Z}$ modulo p^{k+1} satisfying $p^{k+1} \mid a_{n_{k+1}}$ and $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$.

By simple induction on k we will show that if $p \nmid n_{1}$ and $p \mid a_{n_{1}}$ together with

$$
a_{n_{1}+p}-a_{n_{1}}\left(n_{1}+p\right)^{n_{1}+2} n_{1}^{p-n_{1}-2} \not \equiv 0\left(\bmod p^{2}\right),
$$

then there exists a unique n_{k} modulo p^{k} such that $p^{k} \mid a_{n_{k}}, n_{k} \equiv n_{1}(\bmod p)$ and

$$
\frac{1}{p}\left(\frac{a_{n_{k}+p}}{\left(n_{k}+p\right)^{n_{k}+2}}-\frac{a_{n_{k}}}{n_{k}^{n_{k}-p+2}}\right) \equiv \frac{1}{p}\left(\frac{a_{n_{1}+p}}{\left(n_{1}+p\right)^{n_{1}+2}}-\frac{a_{n_{1}}}{n_{1}^{n_{1}-p+2}}\right)(\bmod p)
$$

Certainly this statement is true for $k=1$. Now, if we assume that there exists a unique n_{k} modulo p^{k} satisfying the conditions in the statement, then there exists a unique n_{k+1} modulo p^{k+1} such that $p^{k+1} \mid a_{n_{k+1}}, n_{k+1} \equiv n_{k}$ $\left(\bmod p^{k}\right)$. Using 2.6 we conclude that

$$
\begin{aligned}
& \frac{1}{p}\left(\frac{a_{n_{k+1}+p}}{\left(n_{k+1}+p\right)^{n_{k+1}+2}}-\frac{a_{n_{k+1}}}{n_{k+1}^{n_{k+1}-p+2}}\right) \equiv f_{p^{k+1}}^{\prime}\left(n_{k+1}\right) \equiv f_{p^{k+1}}^{\prime}\left(n_{k}\right) \\
& \quad \equiv \frac{1}{p}\left(\frac{a_{n_{k}+p}}{\left(n_{k}+p\right)^{n_{k}+2}}-\frac{a_{n_{k}}}{n_{k}^{n_{k}-p+2}}\right) \equiv \frac{1}{p}\left(\frac{a_{n_{1}+p}}{\left(n_{1}+p\right)^{n_{1}+2}}-\frac{a_{n_{1}}}{n_{1}^{n_{1}-p+2}}\right)(\bmod p) .
\end{aligned}
$$

Summing up, we see that the first case in the statement of Theorem 1 is proved. We prove the rest of the statement now.

Let $p \nmid n_{k}$ and $p^{k} \mid a_{n_{k}}$ and

$$
a_{n_{k}+p}-a_{n_{k}}\left(n_{k}+p\right)^{n_{k}+2} n_{k}^{p-n_{k}-2} \equiv 0\left(\bmod p^{2}\right)
$$

Since the last condition above is equivalent to divisibility of $f_{p^{k}}^{\prime}\left(n_{k}\right)$ by p, Theorem 2 allows us to conclude that:

- if $p^{k+1} \mid a_{n_{k}}$, then $p^{k+1} \mid a_{n}$ for any $n \equiv n_{k}\left(\bmod p^{k}\right)$;
- if $p^{k+1} \nmid a_{n_{k}}$, then $p^{k+1} \nmid a_{n}$ for any $n \equiv n_{k}\left(\bmod p^{k}\right)$.

We have obtained a useful criterion for the behavior of the p-adic valuation of a_{n}. In particular, the condition

$$
a_{n_{1}+p}-a_{n_{1}}\left(n_{1}+p\right)^{n_{1}+2} n_{1}^{p-n_{1}-2} \not \equiv 0\left(\bmod p^{2}\right)
$$

is not only sufficient, but also necessary for existence of a unique solution modulo p^{k} of the inequality $v_{p}\left(a_{n}\right) \geq k$ such that $n \equiv n_{1}(\bmod p)$.
3. Solution of conjectures. First of all note that Theorem 1 implies that $v_{2}\left(a_{n}\right)=1$ for every odd positive integer n. Indeed,

$$
q_{1,2}=a_{3}-a_{1} \cdot 3^{1+2} \cdot 1^{2-1-2}=78-2 \cdot 27=24 \equiv 0(\bmod 4)
$$

and $a_{1}=2$, and thus if $2 \nmid n$, then $v_{2}\left(a_{n}\right)=1$. This gives an alternative proof of Amdeberhan, Callan and Moll's result.

Theorem 1 allows us to prove that Conjecture 1 is true by verifying the condition $a_{7}-a_{2} \cdot 7^{2+2} \cdot 2^{5-2-2} \not \equiv 0\left(\bmod 5^{2}\right)$: indeed, $a_{7}-a_{2} \cdot 7^{2+2} \cdot 2^{5-2-2}=3309110-10 \cdot 2401 \cdot 2=3261090 \equiv 15 \not \equiv 0(\bmod 25)$.

Let us take the next Schenker prime $p=13$. If $13 \nmid n$, then $13 \mid a_{n}$ if and only if $n \equiv 3(\bmod 13)$. Using Theorem 1 for $p=13$ and $n_{1}=3$:

$$
\begin{aligned}
a_{16}-a_{3} \cdot 16^{3+2} \cdot 3^{13-3-2} & =105224992014096760832-78 \cdot 1048576 \cdot 6561 \\
& =117-78 \cdot 100 \cdot 139=-1084083 \equiv 52(\bmod 169),
\end{aligned}
$$

we conclude that for every positive natural k there exists a unique solution modulo 13^{k} of the inequality $v_{13}\left(a_{n}\right) \geq k$ which is not divisible by p, and we know that it is congruent to 3 modulo 13. This implies that if $p=13$, then Conjecture 2 is true.

Conjecture 2 states that for every odd Schenker prime p, there exists a unique $n_{1} \in \mathbb{N}_{+}$less than p such that $p \mid a_{n_{1}}$ and for this n_{1} we have

$$
a_{n_{1}+p}-a_{n_{1}}\left(n_{1}+p\right)^{n_{1}+2} n_{1}^{p-n_{1}-2} \not \equiv 0\left(\bmod p^{2}\right) .
$$

However, it is easy to see that Conjecture 2 is not true in general. Indeed, let $p=37$. If $37 \nmid n$, then $37 \mid a_{n}$ if and only if $n \equiv 25(\bmod 37)$. However, $37^{2} \mid a_{62}-a_{25} \cdot 62^{27} \cdot 25^{10}$. Moreover, $a_{25} \equiv 851=23 \cdot 37\left(\bmod 37^{2}\right)$, thus $v_{37}\left(a_{n}\right)=1$ for any $n \equiv 25(\bmod 37)$. Hence the 37 -adic valuation of Schenker sums is bounded by one on the set of positive integers not divisible by 37 . We can describe it by a simple formula:

$$
v_{37}\left(a_{n}\right)= \begin{cases}\frac{n-s_{37}(n)}{36} & \text { when } n \equiv 0(\bmod 37), \\ 1 & \text { when } n \equiv 25(\bmod 37), \\ 0 & \text { when } n \not \equiv 0,25(\bmod 37) .\end{cases}
$$

Our result shows that Conjecture 2 is false for $p=37$. Moreover, there exist prime numbers p for which the number of solutions modulo p of the

Table 1

$\lambda(p)$	p
1	$5,13,23,31,37,43,47,53,59,61,71,79,101,103,107,109,127,137,157,163$,
	$173,229,241,251,257,263,317,337,349,353,359,397,421,431,487,499,503$,
	$521,547,571,577,587,617,619,641,653,661,727,733,757,797,811,821,829$,
	$881,883,937,947,967,977,991,1013,1031,1039,1091,1097,1123,1163,1181$,
	1213
2	$41,149,181,191,199,211,271,283,293,311,367,383,401,409,419,439,461$,
	$523,541,563,569,607,613,647,673,691,709,761,787,827,929,941,983,997$,
	$1021,1051,1061,1087,1117,1151,1153,1223$
3	$179,197,223,277,509,601,683,743,887,1201$
4	-
5	593

congruence $a_{n} \equiv 0(\bmod p)$, where $p \nmid n$, is greater than 1 . Denote this number by $\lambda(p)$ (note that p is a Schenker prime if and only if $\lambda(p)>0$). By using Mathematica [7], we find that there are 126 Schenker primes among the 200 first prime numbers. In Table 1 we present the solutions of the equation $\lambda(p)=k$ for $k \leq 5$.
4. Questions. Although Conjecture 2 is not true, we do not know if 2 and 37 are the only primes p such that $p \mid a_{n}$ and

$$
q_{n, p}=a_{n+p}-a_{n}(n+p)^{n+2} n^{p-n-2} \equiv 0\left(\bmod p^{2}\right)
$$

for some $n \in \mathbb{N}_{+}$not divisible by p. Numerical computations show that they are unique such prime numbers among all primes less than 30000 . The results above suggest the following questions:

Question 1. Is there any Schenker prime greater than 37 for which there exists $n \in \mathbb{N}_{+}$such that $p \nmid n, p \mid a_{n}$ and $q_{n, p} \equiv 0\left(\bmod p^{2}\right)$?

Question 2. Are there infinitely many Schenker primes p for which there exists $n \in \mathbb{N}_{+}$such that $p \nmid n, p \mid a_{n}$ and $q_{n, p} \equiv 0\left(\bmod p^{2}\right)$?

In the light of the results presented in the table some natural questions arise:

Question 3. Are there infinitely many Schenker primes p for which $\lambda(p)>1$?

Question 4. Let m be a positive integer. Is there any Schenker prime p such that $\lambda(p) \geq m$?

In Section 1 we gave a short proof of the infinitude of the set of Schenker primes. It is natural to ask:

Question 5. Are there infinitely many primes which are not Schenker primes?

Acknowledgements. I wish to thank my MSc thesis advisor Maciej Ulas for many valuable remarks concerning the presentation of the results. I would also like to thank Maciej Gawron for his help with the computations, and Tomasz Pełka for his help with editing the paper.

REFERENCES

[1] T. Amdeberhan, D. Callan and V. Moll, Valuations and combinatorics of truncated exponential sums, Integers 13 (2013), A21.
[2] T. Amdeberhan, D. Manna and V. Moll, The 2-adic valuation of Stirling numbers, Experiment. Math. 17 (2008), 69-82.
[3] A. Berribeztia, L. Medina, A. Moll, V. Moll and L. Noble, The p-adic valuation of Stirling numbers, J. Algebra and Number Theory Academia 1 (2010), 1-30.
[4] W. Narkiewicz, Number Theory, 3rd ed., PWN, Warszawa, 2003 (in Polish).
[5] A. Straub, V. Moll and T. Amdeberhan, The p-adic valuation of k-central binomial coefficients, Acta Arith. 140 (2009), 31-42.
[6] X. Sun and V. Moll, The p-adic valuations of sequences counting alternating sign matrices. J. Integer Sequences 12 (2009), art. 09.3.8.
[7] S. Wolfram, The Mathematica Book, 3rd ed., Wolfram Media/Cambridge Univ. Press, Cambridge, 2003.

Piotr Miska
Institute of Mathematics
Faculty of Mathematics and Computer Science
Jagiellonian University in Cracow
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: piotr.miska@uj.edu.pl

