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MULTIPARAMETER ERGODIC CESARO-o AVERAGES

A. L. BERNARDIS (Santa Fe), R. CRESCIMBENI (Neuquén)
and C. FERRARI FREIRE (Neuquén)

Abstract. Let (X, F,v) be a o-finite measure space. Associated with k Lamperti
operators on LP(v), Th,...,Tk, i = (n1,...,nx) € N* and & = (au,..., 1) with 0 <
a; <1, we define the ergodic Cesaro-& averages

Raaf = —F—5 Aaj Z Z H Zj:zlj Tik .. lelf.

H] 155 4, =0 i1=0j=1

For these averages we prove the almost everywhere convergence on X and the convergence
in the L?(v) norm, when nq,...,n, — oo independently, for all f € LP(dv) with p > 1/
where o, = mini<;<k «;. In the limit case p = 1/a., we prove that the averages Rz s f
converge almost everywhere on X for all f in the Orlicz—Lorentz space A(1/ax, pm—1)
with @, (t) = t(1 4+ log’ t)™. To obtain the result in the limit case we need to study
inequalities for the composition of operators T; that are of restricted weak type (pi,p:)-
As another application of these inequalities we also study the strong Cesaro-a continuity
of functions.

1. Introduction. Let (X, F,v) be a o-finite measure space and T a
bounded linear operator on LP(v). The operator T is called a Lamperti
operator on LP(v) if it preserves disjointness of supports. It is known that
Lamperti operators include LP isometries, p # 2, positive L? isometries
and invertible linear operators T' such that both 7' and T~! are positive
(see e.g. [11, [12] and [13]). It follows from the results in [I1] that if T is
a Lamperti operator on LP(r), 1 < p < oo, power bounded, i.e., ||[T"|, <
K <ooforn=0,1,...and such that the adjoint 7™ of T separates supports,
then the ergodic averages

1 n
Rnf = > Thf

n+1k=0

converge almost everywhere and in the LP(v) norm for all f € LP(v). Un-
der different assumptions on 7', the same result was obtained in [14] (see
also [16]). In these articles the authors considered an invertible Lamperti
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operator 7' on LP(v), 1 < p < oo, such that its linear modulus |T'| is Cesaro
bounded, that is,
1 n
- Tk
n+1 Z d
k=0

The linear modulus |T'| of a Lamperti operator T on LP(v) is also a Lam-
perti operator and it satisfies |T'f| = |T'||f| (see [11] for more details). For
positive contractions (not necessarily invertible) this result was obtained by
Akcoglu [1]. For contractions in L!'(v) and in L®(v) the result is due to
Dunford and Schwartz [7].

The convergence of {R,, f} is the convergence in the Cesaro-1 sense of
the sequence {1 f}. In general, we say that the sequence {T"f} converges
i the Cesdaro-a sense, with 0 < a < 1, if the limits of the Cesaro-a aver-
ages

sup
n>0

< 0.
p

1 O otk
Ryof = ) AT
™ k=0
exist, where AY = (o +1)---(a+n)/n! if n # 0 and Af = 1. Convergence
in the Cesaro-a sense with 0 < a < 1 is stronger than convergence in the
Cesaro-1 sense. The following result for the averages R, .f was obtained
in [4].

THEOREM 1.1 ([4]). Let (X, F,v) be a o-finite measure space, 0 < a <1,
1/a < p < oo, and let T be an invertible Lamperti operator on LP(v) such

that
1 n
2 : k
k=0

where |T|of = (| T|(f)]Y* for f > 0. Then

sup
n>0

< 00,
po

(i) the ergodic Cesaro-a maximal operator Myf = sup,sq|Rnaf| is
bounded on LP(v), -
(ii) the set D ={g+ (h—Th):g,h € LP(v), g =Tg and h simple} is
a dense subset of LP(v),
(iii) the averages Ry, of converge almost everywhere and in the LP(v)
norm for all f € LP(v).

The above theorem was proved in [I5] under the additional assumption
that 7" and its inverse 7! are positive operators. For positive contractions
this result was obtained by Irmisch [9]. If T is not invertible but satisfies
the hypothesis of Kan [11] then T is controlled by a positive Lamperti con-
traction on LP(v) (see [I1], Corollary 4.1]) and, from Irmisch’s result, we can
obtain the following result whose proof will be outlined in Section 3.
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THEOREM 1.2. Let (X, F,v) be a o-finite measure space, 0 < a < 1,
1/a < p < oo, and let T be a power bounded Lamperti operator on LP(v)
such that T* separates supports. Then (i)—(iii) of Theorem [L.1] hold.

For the limit case p = 1/a and if T'f(z) = f(7x), where 7 is a measure
preserving transformation, Broise, Déniel and Derriennic [6] observed that it
is possible to obtain a weak type inequality with the Lebesgue space LY/ *(v)
replaced by the Lorentz space L(1/a,1)(v) (see the definition below). In
the setting of invertible Lamperti operators the corresponding result was
established in [3]:

THEOREM 1.3 ([3]). Let (X, F,v) be a o-finite measure space, 0 < o < 1,

and let T be an invertible Lamperti operator on LY*(v) such that

sup
n>0

o and sup ||[T"|eo < 00.
a9y s [T

Then

(i) the maximal operator M is of restricted weak type (1/a,1/a), that
is, M, maps the Lorentz space L(1/a,1)(v) into weak-L'/*(v),

(i) for all f in L(1/a,1)(v), the averages Ry, o f converge almost every-
where.

Now, given k linear operators 711, ..., Ty, we define the ergodic averages

Rﬁf($) Z Z Tzk Tzlf )

H]l ] ZkO 11=0

where 2 = (n1,...,n). If each Tj is a contraction of both L!'(v) and L*(v)
(such operators are called Dunford—Schwartz operators) then, for all f in
LP(v) with 1 < p < oo, the averages Ry f converge (when ni,...,ng — o
independently) almost everywhere and in the LP(v) norm (see [7]). The
limit case p = 1 was studied in [§]. In fact, N. Fava [§] proved that if each
T; is positive and is a contraction of both L'(v) and L>(v), then the av-
erages Ry f converge almost everywhere, as nq,...,n; — oo independently,
for every f in the Orlicz space L¥%-1(v) associated to the Young function
or(t) = t(1 4+ logt t)¥ (see the definition of Orlicz space below).

Given a = (ai,...,ar) with ai,...,ar € (0,1], we define the ergodic
Cesaro-a averages by

Rﬁ,&f(l') = nk,ako"'o n1,a1f( )

= Z Z HAn LT T ().

Hjl nJ’LkO 1= 0]1
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It is clear that Rz = Rpa when @ = (1,...,1). The main purpose of this
paper is to extend the results of [7] and [8] to the averages R5 o f associated
to Lamperti operators T; that satisfy the conditions in Theorems [I.1
In order to state them, we introduce some function spaces.

Given a Young function ¢ : [0,00) — [0, c0), that is, ¢ is a nondecreasing,
continuous and convex function such that ¢(0) =0, ¢(¢) > 0if ¢ > 0 and
lim 00 ¢(t) = o0, and given p > 1, the Orlicz—Lorentz space A(p, ) is
defined by

oo
Ap, ) = {f eF ¥, (cf)= S o(ef* ()P dt < oo for some ¢ > 0},

0
where f*(t) = inf{s : Af(s) < t} is the nonincreasing rearrangement func-
tion of f and A\f(s) = v({z € X : |f(x)| > s}) is its distribution function.
This space A(p,¢) is a Banach space with the Luxemburg norm defined
by

[fllpe = inf{c > 0: ¥, ,(f/c) < 1}.
The Orlicz space L¥ is A(1, ), and if p(t) = ¢ then the space A(p, ¢) is the
Lorentz space L(p,1).
Now we state our results.

THEOREM 1.4. Let (X,F,v) be a o-finite measure space and let a =
(a1,...,01) with 0 < aj <1 forall j =1,...,k, ax = minj<j<i o and
p>1/ay. For 1 < j <k, let Tj be a Lamperti operator on LP(v) with one
of the following properties:

(a) Tj is an invertible operator and
1 n
k
nil Z T
k=0

(b) T} is power bounded and TJ* separates supports.

Then:

sup
n>0

< 090,
o

(i) the ergodic Cesaro-ac mazimal operator Mg f(z) =sups~g |Ra,af ()|
is bounded on LP(v), where n = (n1,...,ng) > 0 means n; > 0 for
all 1 <5<k,

(ii) the ergodic Cesaro-a averages Rpaf converge almost everywhere

on X when n — oo (ny,...,nE — oo independently) and in the
LP(v) norm for all f € LP(v).

THEOREM 1.5. Let (X, F,v) be a o-finite measure space and let & =
(a1,...,04) with 0 < a5 < 1, j = 1,...,k. Let o, = minj<j<prj and
suppose that the minimum o, is reached at evactly m numbers ;. For
1 < j <k, let Tj be an invertible Lamperti operator on LY/ (v) such
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that

n

1
- ]T\k
n—l—lkzzo Ty 1

sup
n>0

<oo and supl|T}'e < 0.
nez

Assume also that the operators T} all commute with one another. Then:
(i) the operator Mg satisfies
v({x € X : Maf(z) > t})

T * ax—1 1/
< (Coma1/8) § mor () ()5 Hds)
0
where @m(t) = t(1 + log™ )™,
(ii) the averages Rypaf converge almost everywhere on X for all f in
the Orlicz—Lorentz space A(1/c, om—1) when n — oco.

Note that
(11) M&f(l') SMak O"'OMalf(:L‘)v

where the operators M, are the ergodic Cesaro-a; maximal operators asso-
ciated with the linear operators 7;. Under the hypothesis on the operators T;
given in Theorem @, we find that each maximal operator M,, is bounded
on L*°(v) and is of restricted weak type (p;,p;) with p; = 1/«;. In order
to prove Theorem the main tool is the study of the boundedness of
the composition of this type of operators, which will be accomplished in
Section 2. Section 3 is devoted to proving Theorems and Finally,
in Section 4, we study the strong Cesaro-a& continuity as a consequence of
the theorems in Section 2.

Throughout this paper we will denote by C' a nonnegative constant that
can be different at each occurrence.

2. Composition operators. Let (X, F,v) be a o-finite measure space.
In this section we shall deal with sublinear operators T;, 7 = 1,.. ., k, defined
on measurable functions so that all of them are of strong type (oo, c0) and
each of the operators T; is of restricted weak type (p;, p;) with 1 < p; < occ.
We say that an operator 1" is of strong type (00, 00) if there exists a constant
C > 0 such that for any measurable function f,

1T flloe < Cllfloo-

We say that T is of restricted weak type (p,p), 1 < p < 0o, if there exists a
constant C' > 0 such that

1T fllp.co < Cllflp1s
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where || - ||pq, 1 < p,g < 00, is the quasi-norm in the Lorentz space L(p, q)
defined for ¢ = oo by
1f lpoo = sup (s (£)"/7 = sup '/ (1)
>0 >0
and for 1 < p,q < oo by

« 1/q o s 1/q
I ) e I VOO T
0 0

It is well known that a sublinear operator T is of strong type (0o, c0)
and of restricted weak type (p,p) if and only if
c T b
(2.2) Ars(t) < (t S )\f(s)l/p ds> for all t > 0,
t/C

where C' is a positive constant independent of f and ¢ (see for example [5]
or [19, p. 91] for p = 1).
Now we state the main result of this section.

THEOREM 2.1. Let 1 < p; < --- < pp be real numbers such that either
they are all equal or there exists an integer £ with 0 < ¢ < k — 1 such that
1<pi < <ppyp 1 <pry=--=pg. Foreach i =1,...,k, let T; be a
sublinear operator of strong type (00, 00) and of restricted weak type (p;, ;).
Then T =Ty o --- o T} satisfies the inequality

v({e € X |Tf(@)] > 1)) < C(wul1/t) § pulf*(s)s/7 1 ds) ™
0

for all t >0, where @g(t) = t(1 4 log™ t)* with log™ u = max{0,logu}.
The above result generalizes the following result obtained in [5], where

all the operators T; are of strong type (0o, 00), and for a given p > 1, of
restricted weak type (p,p).

THEOREM 2.2 ([5]). LetT;, i =1,...,j, be sublinear operators such that
all of them are of strong type (00, 0), and for a given p > 1, of restricted
weak type (p,p). Then T =Ty o--- 0T} satisfies

(2.3) v({z : |Tf(2)| > t})
< <U—61)H§ § [)\f(s/cj)}l/p[log(s/t)]jfl ds)

for all t > 0, where the nonnegative constant C depends only on the boun-
dedness constants of the operators T;.

First of all we study a particular case of Theorem [2.1] when the parame-
ter py is greater than the other, i.e., £ = 0.
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THEOREM 2.3. Let 1 <p; < -+ < pg_1 < pg be real numbers. For each
i =1,...,k, let T; be a sublinear operator of strong type (00,00) and of
restricted weak type (pi,p;). Then T =Ty o---0Ty is of strong type (00, 0)
and of restricted weak type (pg, pk)-

Proof. It is easy to see that it is sufficient to prove the theorem for only
two operators. So consider two operators 77 and T, that satisfy inequality
(2.2) with p = p; and p = po respectively, and assume that p; < ps. Moreover
suppose that the constant in is the same in both cases. Then T' = Ty 0715
satisfies with p = ps. In fact, using Minkowski’s integral inequality and
by Theorem [2.2] we get

C o0 C o0 p2/p1 p1
Aoty (t) < [ S (S S Ap(u)t/pe du> ds]

t
t/C s/C
p1 . o0
< C(i) [ S )\f(u)ﬂpz( S (1/5)P2/P1 ds)pl/m du}m
t/C? t/C
Sl P2
< <f S )\f(s)l/m ds)
t/C

for some constant C. =

Proof of Theorem [2.1. We begin the proof by showing that if Sy is an
operator that satisfies with p = p1, and S5 is an operator that satisfies
for any 7 > 2 and p = p2 with 1 < p; < po, then S = 57 0 Sy satisfies
(2.3) with the same parameters j and po. In fact,

C o0 p1
AS108, (1) < <t S )‘ng(s)l/pl dS)

t/C

< [(tj ;Soc ((3—11)'8 OSO Ap(u/C7)1P flog (u/ )} d“) " ds} “

and, by using Minkowski’s integral inequality, we see that Ag,os,f(t) is
bounded by

(f)p [U—lU' ;SOC A (u/CTY P2 log(uC /)7~ (;goc s/ d8>p1/p2 du] P>

< é((g—ll)'t S #(u/C9) )2 {log(u/t))~ 1du)

Now, let S = Tjo0---0T)_y_1 and S =Ty, go---0T}. By interpolation (see
for example [I7, Theorem 3.15]) we see that Tj_y_1 is of strong type (p,p),
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and consequently of restricted weak type (p,p), for all p > pr_y_1. Let
€x—¢—1 > 0 be such that pr_p_1 + €x_¢—1 < pr_¢. From Theorem [2.3| we
see that S satisfies with p = pr_s—1 + €x_¢—1. On the other hand,
from Theorem the operator S satisfies with p = pr and j = ¢+ 1.
Applying the above results with S} = S and Sy = S we get

o Pk

s(0) < O A /GO ogufo) au)

< (g7 S A/ CE ey au)
0

o0

~ 1/t Pk

oD §x sty au)
0

where ¢y(t) = (1 + logt ¢)’. Since py(t) = t(1 + log™ t)*, it is easy to see

that ¢(t) < ¢}(t) < (€4 1)¢¢(t) for all t > 0. The theorem follows from the

equivalence

IA

T 8007 (5)) ds = | duls)s(5) 77 s,
0 0

whose proof follows the same ideas as the proof of the equivalence between

the quasi-norms in (2.1f). =

3. Proofs of Theorems and We start by proving The-
orem In order to show the density result we shall need to use the fol-
lowing properties of the Cesaro numbers AS, o > —1 (see [20]):

(C1) AG — AY_ | = (a/n)A%_, for all n > 1.

(C2) There exist positive constants Cq and Cy depending only on « such

that, for all n > 0,

01(71 + 1)a < Aﬁ < CQ(TZ + 1)04‘

Proof of Theorem . (i) Given an operator T satisfying the hypothesis
of the theorem, from [I1, Corollary 4.1] we find that there exists a positive
Lamperti contraction S on LP(v) such that

(3.1) |T"f| < KS"|f| foreach f e LP(v),n=0,1,....

Hence My 7(f) < KMy, s(]f]). Then, using Irmisch’s result for positive con-
tractions, we deduce that the operator M, = M, r is bounded on LP(v).
(ii) From [II] we get the norm convergence of the ergodic averages
Rof=Mn+1)7"1370, T*f. Then, by [7, Corollary VIIL5.2], the set D =
{9+ (h—Th):g,h € LP, g=Tg, h simple} is a dense subset of L?(v).
(iii) First, we note that R, og = g for all g such that g = T'g. It remains
to prove, for a simple function h, that Ry, o(h —Th)(z) converges for almost
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every x € X. As in [9] (see also [I5] or [4]), using the definition of the
numbers AY and property (Cl) we get

n A — )
Ryo(h—Th)(x) = "a (T°h(z) — T ' h(z))
i=0 n
Aa_l Aa 1 n 7 - g 7 +1
= e h(z) — Z Z As h(z)
A ) - ) + izn:(A — A% Y TiR(z)
A Ao Ag ntl-i
a Trin(z) 1-—ae~ A2
— _ n—1 T’L
a—i—nh(x) A% + A% ;n+1—i hz)

= Ay (z) + Bn(z) + Cp(2).
Clearly, lim,, o Ap(x) = 0 for a.e. z. Let

2) =Y |Bu(z)lP and Fy(x Z|c
n=0

Using property (C2) of the Cesaro numbers and ( -, we get

1
< n+1 p
)S(]Fl 2)|dv < Z +1 ot i L) s Y nZ( Ty <
and
e’} 1 n Aa—l ) P
< n— {2
}S{\Fz(x)\dez (n 1)o7 ;nJrl—z’Th(x) )

> AT y
S (i)

SlAl > W(Zm 1-ipe?)

=1

suhrp(i - ><Zko‘ ) < e,

Hence lim, ;o By (z) = limy, o Cp(z) = 0 for a.e. x. Finally, the Banach
principle (see e.g. [2, p. 237] and [12, Th. 7.2, p. 64]) implies almost every-
where convergence on the whole space, and Lebesgue’s dominated conver-
gence theorem implies norm convergence. m

Proof of Theorem- i) Let p > 1/av. Since each Lamperti operator T}
satisfies the hypothesis of Theorem [L.1] or Theorem [I.2] with o = o and
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p > 1/a, > 1/aj, each ergodic maximal operator M, is bounded on LP(v).
Thus the boundedness on LP(v) of Mg follows trivially from (1.1)).
(ii) First, we shall assume for each j = 1,...,k, either

(a') T} is positive with positive inverse and satisfies hypothesis (a) of
the theorem, or
(b") Tj is a positive Lamperti contraction on LP(v).

As usual, we first study the pointwise convergence of the averages Ry 4 in
a dense subset of LP(v). As in [I5] proof of Theorem 3.1] or by Irmisch’s
result we know that the sets
Dj={g+ (h—T;h):g,h € LP, g =Tg, h simple}

are dense subsets of LP(v) for all j = 1,...,k. As in [7] we shall prove the
convergence of the averages Ry af for all f € Dy, using induction on the
number of operators.

If & = 1, the result was proved in [15] if the operator satisfies (a') or
in [9] if it satisfies (b’). Now suppose that the result holds for k — 1
operators T5, ..., T}, where each T} satisfies (a') or (b'), i.e., for any f € Dy,
the limit Ry, o), © -+ © Ry, a,f(x) exists for almost every z € X when
N, ...,Ng — oo. For simplicity set n = (no,...,nk), & = (ag,...,q) and
Ria = Rnpap 0+ 0 Rngay- Let g € LP(v) be such that Thg = g. Then

Rﬁ,@g(x) = Rnk,ak ©--+0 Rng,aQ.g(x) = Rﬁ,&g(x)'

By the inductive hypothesis Ry ag(z) converges for almost every x € X as
n — oo. It remains to prove, for a simple function h, that Ry a(h — T1h)(x)
converges for almost every x € X. It is sufficient to study the convergence of
Ria(xa —Tixa)(xz) with A a measurable subset of X with 0 < v(A4) < oco.
From [I5, Proposition 3.2] or from Irmisch’s result, we know that

lim Ry 0 (xa—Tixa)(x) =0 ae.

nip—oo

Notice that the operators Rj 4 are positive and sup;~q |Ra,af| € LP(v) for
f € LP(v) with p > 1/a*, because

sup [Rpa(f)| £ May, 00 Moy (f).

n>0
Now, applying the inductive hypothesis and using a general reduction prin-
ciple of Sucheston (see [I8, Proposition 1.1]) we get

Ria(xa — Tixa)(@) = Raa(Bny e (xa — Tixa))(@) = 0
as n — oo. Then the Banach principle implies almost everywhere conver-
gence on the whole space LP(v).
Now, let T}, j = 1,...,k, be as in the hypothesis of the theorem. By
using Theorem [L.1ii) or [L.2{ii) and repeating the induction argument, we
only need to show that Ry a(xa —711x4)(x) converges for a.e. z. Notice that
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the operator R7 5 can be dominated by the corresponding one associated
to positive operators T2+ yenn ,T,:r , Where TjJr can be the linear modulus of
T; or the associated positive contraction S; (it is the linear modulus if Tj
satisfies (a) and a positive contraction if 7T} satisfies (b)); we denote this
operator by 7?,;;&. The operators Tj+, Jj = 2,...,k, satisfy hypothesis (a')
or (b’). Then, from the previous results we infer that R;{ &f converges a.e.
for every f € LP(v). Now, since

[Ria(xa — Tixa)l < Ry a1 Bnya0 (xa — Tixa)

and limp, o0 [ Ry a1 (X4 — Tixa)(z)| = 0 for a.e. , we obtain the desired
result by applying Sucheston’s principle again. Finally, the Banach principle
implies almost everywhere convergence on the whole space, and Lebesgue’s
dominated convergence theorem implies norm convergence. m

Proof of Theorem . (i) As mentioned in the Introduction, the main
tool to prove this theorem is Theorem [2.1] In fact, from the assumptions on
T); we see that each operator M, is of restricted weak type (1/a;,1/a;) and
bounded in L*°(v). Then, by Theorem and inequality , we obtain
the boundedness of M.

(ii) In the proof of Theorem [1.3| (see [3], p. 235]) the authors showed that
if a Lamperti operator satisfies the hypothesis of Theorem then it also
satisfies the hypothesis of Theorem Applying this fact we deduce that
by Theorem the averages Ry af converge for all f € LP with p > 1/c,.
Let D = LP(v) N A(1/a, om—1) with p > 1/a,. The set D is a dense
subset of A(1/cu, ¢@m—1) since the set of simple functions is. Thus we get
the convergence of Ry f for almost every z € X and all f € D, and (ii)
follows. In fact, let A¢(f) = {z : imsup;_, |Ra,af(z) — f(x)| >t} and let
g be a simple function. Then

[Ai ()] < A2 (f = 9)l <20z - Ma(f —g)(x) > t/4}]
S 2[‘Pm—1(4/t)w1/a*,apm_1(f - g)]l/a*'

The desired result follows since given f € A(1/au, m—1), for any €,¢t > 0,
we can choose a simple function g such that the last term above is less
than €. m

4. Application to strong Cesaro-a continuity. For a function f :
R™ — R we say that f is Cesaro-a continuous at x, for a > 0, if the Cesaro-«
averages

c(n, a)
|Q(a, e)[1 e 1)/n

P f(x) = | f@d(y,0Q(x, )" dy

Q(z,€)
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converge to f(z) as € — 0, where Q(z,€) = [[}[zi — €, z; + €]™, 0Q(x,€) is
the border of Q(x, €), d(y, 0Q(z, €)) = minj<j<p{zi+e—y;, yi—(z;—€)} is the
distance in the infinity norm from y to the border of Q(z, €), and the constant

¢(n,a) can be written in terms of the § function as ¢(n, «) = n%?; where

a,n)’
B(m,n) = S(l)(l —tymlnldt, mon > 0. Ifa =1,

1

1 _

| rwdy,
Q)

and Lebesgue’s differentiation theorem establishes that if f € L{ .(R") then
f is Cesaro-1 continuous at almost every zx.

If in we replace the cubes Q(z,€) by rectangles with sides parallel
to the axes, R(z,€) = [x1 —€1,21 + €1] X -+ X [y, — €n, Ty, + €4], the theorem
of Jensen, Marcinkiewicz and Zygmund shows that if f belongs to the Orlicz
space L?(R") with o(t) = t(1 +log™ ¢)"~!, then the averages

1
Plf(a) = — - J
@)= R R(i g)f(y) y
converge to f at x for almost every x as € — 0, that is, e — 0,...,¢, =0
independently. In this case we say that f is strongly Cesaro-1 continuous
at x. In general, for @ = (aq,...,ay), we say that f is strongly Cesaro-a
continuous at x if the averages
c(n, @) -
PEf(a) = o | f) ][ Ay, 0T (i, €)™ " dy
TTimy (4, )| R(d) Pl

converge to f at almost every x as € — 0, where I(x;,€;) = [x; — €, x; + €]
and ¢(n,a) = 2lal-» [Tj=1 oy with |af =377, ay.

We want to apply the results of Section 2 to the study of the convergence
of the averages P& f. We shall work with slightly more general averages. For
L € N, we consider the space R" factored into L blocks, R = R™ x. - . xR™L,
G ={jeN:1<j<m}and G, ={jeN:n+--4+n_1+1<
j<ng+---+mn;}fori=2, ..., L, then we denote by z the set of variables
(xj:jeGy)eRY i=1,...,L. Given & = (a1,...,or) with 0 < oy <1

and € = (e1,...,€er) with ¢ > 0, we define the averages
] (i, @) Lo
P?f(x) = L 17_,'_(0[__1)/”_ S S f(y)Hd(yZaan)al_l dyL"'dyl)
[[iZ: Q] ! ‘o1 o i=1
where Q; = Q(a%,¢;) are cubes in R™ and c(f,a) = HiL:1 c(ni, o) =

Hle % The purpose of this section is to prove the following result.
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THEOREM 4.1. Given a = (ai,...,ar), let o = minj<;<r oy and as-
sume that there are exactly m numbers «;, with 1 < m < L, such that
oy = ;. Then

hm PEf(z) = f(z

)
for almost every x € R", for all f € LP(R”) with p > 1/a, and for all
f € A1/ a, 1) where @i (t) = t(1 + log* t)*.

Proof. Given z € R", we denote #; = (z',..., 21 2™ ... zl). For

f:R* = R, let fz, : R" — R be given by fz,(z ) flzt, . o2t ah).
For 0 <~ <1 and ¢ > 0, we define the averages

P37 f(z) = P} (f3,)(=")

c(ng, i i i -1 3
- |Q(xf 5()|1J(31)/ni S | fz:(y")]d(y", 0Q(", )Y ldy .
’ Q(z,9)

Associated with these averages we define the maximal operators

M f(x) = M (f2.) (@) = sup Py (2],

where M, f(x) = sups~q Py | f|(z). '
From the results in [10], the operators M are bounded on LP(R") for all
p > 1/~ and are of restricted weak type (1/v,1/v). In fact, by Minkowski’s

integral inequality and the restricted weak type of M, we get

Hz eR": Mif(e) >t} = | | o g, >0 (27) do* d;

Rn—7; R™
c<w ) 1/~
< | (STt ime>aras)
R™»—"; 0
cT ~ v 1/
<(ST0T tts 1) > syan) as)
0 Rn—7;

( Sl{meR"- (:v)|>s}|7ds>1/7,

0

Notice that Mg, the maximal operator associated to the averages P2 f, sat-
isfies the pointwise inequality

(4.2) Ma f(z) = Sugpg\f\(x) < My, 00 My, f(),
e
where € > 0 means ¢; > 0 for all # = 1,..., L. Then it is clear that the

operator M is bounded on LP(R") for all p > 1/a,. On the other hand,
since it is possible to change the order of the operators M, in (4.2), from
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the above results for each operators Méz and Theorem [2.1| we get

e 1/
o Maf(2) > 1} < C(pm1(1/8) § 52 Lo (/7 (5)) ds) /
0
for all t > 0.

Finally, following the same arguments as in the proofs of Theorems [1.4
and using for example the set of continuous functions with compact sup-
port as a dense subset of LP(R"™), we obtain the convergence of the averages
P& f in the desired spaces. m
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