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Abstract. We study the scattering theory for the defocusing energy-critical Klein—
Gordon equation with a cubic convolution us; — Au 4+ u + (Jz|™* * |u|*)u = 0 in spatial
dimension d > 5. We utilize the strategy of Ibrahim et al. (2011) derived from concentra-
tion compactness ideas to show that the proof of the global well-posedness and scattering
can be reduced to disproving the existence of a soliton-like solution. Employing the tech-
nique of Pausader (2010), we consider a virial-type identity in the direction orthogonal to
the momentum vector to exclude such a solution.

1. Introduction. This paper is devoted to the Cauchy problem for the
defocusing energy-critical Klein—Gordon—Hartree equation

(1) {il—Au—l—u—i—f(u):O, (t,z) ER xR?, d > 5,

u(0,z) = up(z), u(0,2)=uy,
where f(u) = (V(z) * [u|?)u with V(z) = |z|~*. Here u is a real-valued
function defined in R%!, the dot denotes the time derivative, A is the
Laplacian in R%, V(z) is called the potential, and * denotes the spatial
convolution in R
Formally, the solution u of conserves the energy,

R
1 u(t, z)[u(t, y)|?
+ - drd
Rd“ . =yt
xR
= E(ug,u1),

and the momentum,

P(u)(t) = | w(t,»)Vu(t, ) de = P(u)(0).
Rd
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For the equation with nonlinearity f(u) = wp(|z|™7 * |u|?)u,
p = £1, using the ideas of Strauss [30], [31] and Pecher [29], Mochizuki [24]
showed that if d > 3 and 2 < < min(d, 4), then global well-posedness and
scattering results with small data hold in the energy space H'(R?) x L2(R?).
For general initial data, we refer to [23] where we develop a complete scatter-
ing theory in the energy space for with a subcritical nonlinearity (i.e.
2 < v < min(d, 4)) for both the defocusing (1 = 1) and focusing (u = —1)
cases in spatial dimension d > 3. In this paper, we will focus on the energy-
critical case, i.e. v = 4 and d > 5. We refer also to Miao—Zhang |21] where the
low regularity for the cubic convolution defocusing Klein—-Gordon—-Hartree
equation is discussed.

Before stating our main results, we recall the scattering theory for the
classical Klein—-Gordon equation, i.e. (1.1]) with nonlinearity f(u) = u|ul[P~1u.
For p =1 and

1 3<d<9
4 474 y ==
= _—ld = d
1+d<p<1+d_27 Yd { d > 10,

d+1° ~ ~

Brenner [5] established scattering results in the energy space in dimension
d > 10. Thereafter, Ginibre and Velo [7] exploited the Birman-Solomyak
space {™(L%, I, B) of |3] and delicate estimates to improve the results in [5],
which covered all subcritical cases. Finally, K. Nakanishi [25] obtained scat-
tering results for the energy-critical case by the strategy of induction on
energy [6] and a new Morawetz-type estimate. And recently, S. Ibrahim,
N. Masmoudi, and K. Nakanishi |10L[11] utilized the concentration compact-
ness ideas to give the scattering threshold for the focusing (i.e. u = —1)
nonlinear Klein—Gordon equation. We remark that their method also works
for the defocusing case. We will utilize their argument to study the scatter-
ing theory for the defocusing energy-critical Klein-Gordon-Hartree equa-
tion.

On the other hand, the scattering theory for the Hartree equation

it = —Au+ (2|77 * |u*)u

has also been studied by many authors (see [9,[15-19]). For the energy-
subcritical case, i.e. v < 4, Ginibre and Velo [9] obtained the asymp-
totic completeness in the energy space H'(R?) by deriving the associated
Morawetz inequality and a useful Birman—Solomyak-type estimate. Nakan-
ishi [26] improved the results by using a new Morawetz estimate. For the
energy-critical case (7 =4 and d > 5), Miao, Xu, and Zhao [16] took advan-
tage of a new kind of a localized Morawetz estimate to rule out the possibility
of energy concentration at the origin and established scattering results in
the energy space for radial data. We also refer to [17-19] for general data
and also for the mass-critical case.
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Compared with the classical Klein—-Gordon equation with the local non-
linearity f(u) = |u[P~1u, the nonlinearity f(u) = (V () * |u|?)u is nonlocal,
which brings many difficulties. The main difficulty is the absence of Lorentz
invariance which could be used to control the momentum efficiently. We will
overcome this difficulty by considering a virial-type identity in the direction
orthogonal to the momentum vector, following the technique of [28].

Now we introduce the definition of a strong solution for (|L.1).

DEFINITION 1.1 (Solution). A function u : I x R? — R on a nonempty
time interval 0 € I is a strong solution to if for any compact J C I,
(u,uy) € CY(J; HY(RY) x L2(R9)) and

2(d+1)

— 1/2
weW(J), W(J)=L"" (J: By, (RY),

d—1

and for each t € I, (u(t),u(t)) satisfies the following Duhamel formula:
G NN C) A SN U
(i) =0 (i) G (saton)

K(t),K(t sin(tw
Vo(t) = ..() .() , K(t)= (tw)

K(t),K(t) w
The interval I is called the lifespan of u. Moreover, if the solution u cannot

be extended to any strictly larger interval, then w is a mazimal-lifespan
solution. We say that u is a global solution if I = R.

REMARK 1.2. From Remark below, we find that the solution u lies
in the space W(I) locally in time. Also, the finiteness of the norm on the
maximal lifespan implies that the solution is global and scatters in both
time directions, by a standard argument. In view of this, we define

where

. w=(1-24)Y2

(1.2) S1(u) = llullsrcry = llullwyn

to be the scattering size of u.

Our main result is the following global well-posedness and scattering
result in the energy space.

THEOREM 1.3. Assume that d > 5, and (ug,u1) € H'(R?) x L?(RY).
Then there exists a unique global solution u(t) of (1.1 which scatters in the
sense that there exist solutions vy of the free Klein—-Gordon equation

—Av+v=0
with (v4(0),9+(0)) € H' x L? such that
(0),8)) — (o (8), (D gz — 0 s £ = 0o,
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Let us outline the proof of Theorem [I.3} we define
A(E) = sup{lullsrey | E(u,u) < E}

where the supremum is taken over all strong solutions u of (|1.1)) on any
interval I with energy not greater than F, and set

Enax = Sup{E | A(E) < OO}

The small data scattering (Theorem below) tells us that Epax > 0. Our
goal next is to prove that Ei,.x = 0o. We show that if F.x < oo, then there
exists a nonlinear solution of with energy exactly Fn.x. Moreover,
this solution has some strong compactness properties. This is completed in
Section 4 where we utilize the profile decomposition established in [10], and
a strategy introduced by Kenig and Merle [13]. We consider a virial-type
identity in the direction orthogonal to the momentum vector following the
technique of [28] to obtain a contradiction. We refer to Section 5 for more
details.

The paper is organized as follows. In Section 2, we deal with the local
theory for equation . In Section 3, we give the linear and nonlinear pro-
file decomposition and show some properties of the profile. In Section 4, we
show that nonscattering entails the existence of a critical solution. Finally,

in Section 5, we preclude the critical solution, which completes the proof of
Theorem

2. Preliminaries

2.1. Notation. First, we give some notation which will be used through-
out this paper. We always assume the spatial dimension d > 5 and let
2* = 2d/(d—2). For any 1 < r < oo, we denote by || - ||, the norm in
L" = L"(R%), and by 7’ the conjugate exponent defined by 1/r 4+ 1/ = 1.
For any s € R, we denote by H*(R?) the usual Sobolev space. Let ¢ € S(RY)
be such that supp ¢ C {€11/2<f| <2} and oy 12(2_3{) =1 for £ #0.

Define ¢ by ¢o = 1 — 351 $(277€). Thus suppeyo C {¢ | [¢] < 2} and

Yo = 1 for |{] < 1. We denote by A; and Py the convolution operators whose

symbols are respectively $(§/2j) and @Zg(é). For s € R and 1 <7 < o0, the
inhomogeneous Besov space Bﬁz(Rd) is defined by

Bl5(RY) = {u € S'RY) | [Poull? + |21 Ajullzr

2
l?gN < OO}

For details on Besov spaces, we refer to [2]. For any interval I C R and
any Banach space X we denote by C(I; X) the space of strongly continuous
functions from I to X, and by L?(I; X) the space of strongly measurable
functions from I to X with |lu(-); X|| € L4(I). Given d, we define, for 2 <
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Sometimes we abbreviate (r), §(r;) to 0, J; respectively. We denote by (-, -)
the scalar product in L2. We let LY denote the weak LP space.

2.2. Strichartz estimate. In this section, we consider the Cauchy
problem for equation ((1.1)),

it — Au+u+ f(u) =0,
21) {u(O) =up, u(0)=u.

The integral equation for the Cauchy problem (2.1)) can be written as

u(t) = K (t)uo + K (tuy — | K (t — 8)f(u(s)) ds,

or

where

Let U(t) = . Then

U(t)+U(-t)

K(t) = 5 ;

Now we recall the following dispersive estimate for the operator U (t) = e¥.
LEMMA 2.1 ( [5l[7]). Let 2 <r <00 and 0 <0 < 1. Then
A —(d+14+0)(1/2—1/r)/2 > (d+1+0)(1/2—1/7)/25
e £l < p@)[If15
7,2 2
where

plt) = Cmin{[¢| IO G @HOAZZ/IY - a) = maxfa, 0}

Combining the above lemma, the abstract duality and an interpolation
argument (see [8,(12]) yields the following Strichartz estimates.

LeMMA 2.2 ( [B720]). Let 0<6; <1, p; €R, 2 < gi,r; < 00, i =1,2.
Assume that (0;,d,q;,r;) # (0,3,2,00) satisfy the following admissibility
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conditions:
2 1 1
Oggmln{(d1+ﬁi)(2>,1}, 1=1,2,
qi Q
1 1 1
prt(d+01)( 5 o Rt
1 1 1
L (d+0 <_)__1_
p2 + ( 2) 3 - I

Then, for f € H*, we have
10Ol sy < Ol s,
[ fHqu(I;Bfl < CHfHLq2 1B 2y’

| KR * f”qu LB ,) = CHfHL‘Zz LB p2)

where the subscript R stands for “retarded”, and
t

K f =\K(t—s)f(u(s)ds, Kgxf=\K(t—s)f(u(s))ds.
R 0

In addition to the W-norm defined in , we also need the following
space:
Adt) 1/2
[W] (I) L - (I B2(d+1)

d+3

(RY)).

2

Now we give a nonlinear estimate which will be applied to show small
data scattering.

LEMMA 2.3. We have

22) NOVE) * ol + V)  wo))ullprs- o
20d-3) 4
< Cllllw) HUHLOQ LEH1) HUH[W] (I)
d—3 d=3 _2

142
+CHUH[Wfl(]1H Hdoo IHI Hv”doo IHl HUH[W] )

In particular,
4 2(d— 3)

IOV C) * ul®)ullp- ) < CHUII[W]([ el 5 7y

Proof. We only need to estimate [[(V'(-) * [u|*)v|jy1«(1), since estimating
(V' (-) * (uv))ul|jwy=(r) is similar. From the Sobolev embedding W*?(R%) —
B;Q(Rd), p < 2, and BZ’Z(Rd) — W*4(R%), ¢ > 2, the fractional Leibniz
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rule [14], and the Holder and Young inequalities, we have

IV )0l g

SIVIzzloll o, gzl e H IV Izl o, g Il e ol os ey,

where the exponents satisfy

d_ = 26(r) + 24(s),
p
2 2
- +-=1
¢k
Since V(z) = |z|™* € Ld/4, if we take the admissible pair ¢ = r = Q(ddjll)

and §(s) =1+ 1/k (then 6(r) =d/(d+ 1), k=d+ 1), then

(2.3) (V= IUP)vHLq/(,;B;/zQ) S lollwyan el g, oy
+ ”U”[W}(I)HUHL’“(I;LS)HUHL’“(I;LS)'

The Holder inequality and the Sobolev embedding theorem yield

d—3 2 d—3 2

@4 olprgnn < N 1ol sy S T Nl

— 2
Ltd 1 Ld 2d—1

Plugging (2.4)) into (2.3)), we get
1V Jul?)o

2(d—3)
H[W](I) HUHLZZJ}J% HUH[W}(I)

L (1;8Y/%) S v

+d d—3 d—3 di

1 —1

+ HUH[W] (I [Jull} ooH1||”HLooH1 ‘U”[W}(I)' "
Now, we can state the local well-posedness for with large initial

data and small data scattering in the energy space H 1 x L2.

THEOREM 2.4 (Small data scattering). Assume that d > 5 and (ug,u;)
is in H'(R?) x L2(R?). There exists a small constant § = §(F) such that if
| (wo, u1)|| w2 < E and I is an interval such that

1K (t)uo + K (8|l r) <6,
then there exists a unique strong solution u to (L.1)) in I x R%, with u in
C(I; HY) N CY(I; L?) and
ullw iy < 2C0.

Let (T—(ug, u1), T+ (ug, u1)) be the maximal time interval on which u is well-

defined.

REMARK 2.5. (1) There exists 6 such that if ||(ug,u1)||g1xz2 < 9, the
conclusion of Theorem [2.4] applies to any interval /. Indeed, by Strichartz
estimates, || K (t)up + K (t Jutllwry < C6 and the claim follows.
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(2) Given (ug,u1) € H' x L?, there exists (0 €) I such that the hypoth-
esis of Theorem [2.4] is satisfied on I. This is clear because, by Strichartz
estimates, || K (t)uo + K (t)u1llww) < oo.

We conclude this subsection by recalling the following standard finite
blow-up criterion.

LEMMA 2.6 (Standard finite blow-up criterion). If T4 (ug,u1) < oo, then

lwllw (0.7 (uou))) = 00

A corresponding result holds for T—(ug,u1).

The proof is similar to the one of |13, Lemma 2.11].

2.3. Perturbation lemma. In this part, we give a perturbation result
for solutions of (1.1)) with a global space-time estimate. First we recall some
notation of [10].

With any real-valued function u(t,x), we associate the complex-valued
function (¢, z) by

i = (V)u—iu, u=Re(V) ld
Then the free and nonlinear Klein—-Gordon equations can be given by
{(D +Du=0<« (i0; + (V))u = 0,
O+ Du=—f(u) & (0 + (V)7 = —f({(V) "' Req),
and the energy can be written as

- N
B(t) = B(u,) = V(1] + [Vul? + [uf?) da
Rd

PLogp el

RIxR4
LEMMA 2.7. Let I be a time interval, to € I, and @,w € C(I; L?(R%))
satisfy
(10 + (V)i = — f(u) + eq(u),
(10 + (V)W = — f(w) + eq(w).

for some functions eq(u), eq(w). Assume that for some constants M, FE > 0,
we have

lwllsray <M, |tllpeer2rxray + [0l e 2 (1xmey < E.
Let tyg € I, and let (u(ty), ui(to)) be close to (w(to),wi(to)) in the sense that

[ (u(to) — w(to), ue(to) — we(to)) | gixre < E
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Let 5y = V(=) (@ — @) (to) and assume also that we have the smallness
condition

(2.5) ollszr + I(ea(w), ea(w)) sy <€,
where 0 < € < €1 = €1(M, E) is a small constant and
ST*(I) = [W]*(I) + Ly (I; L3 (R)).
Then
|u —wllgpy < C(M, E)e
and

lullsr(y < C(M, E,E').

Proof. Since |wl||gpy < M, there exists a partition of I to the right
of to:

to <t1 <---<tn, I; = (tj,tj+1), IN(tg,00) = (to,tn),
such that N < C(L,¢) and for any 7 =0,1,...,N — 1, we have
(2.6) lwllsr,) <6 < 1.

The estimate to the left of ¢y is analogous; we omit it.
Let

V() = u(t) —w(t), Fj(t) =VD5E), 0<j<N -1
Then ~ satisfies the following difference equation:
(@0 + (V)T = (V * |[w])y + 2]V * (yw)] + 2[V * (yw)]y

+ (Vs [yP)w + (V * [y[*)y + eq(u) — eq(w),
F(t5) = 7;(t5),

which implies that

t
() = F5(t) =i | SV s jwlP)y + 2V + (yw)]w +2[V * (yw)]y

+ (Vo [y )w + (V * [91%)y + eq(u) — eq(w)) ds,
Vie1(t) = 35 (0) =i § IV fwfP)y + 2V + (yw)]w +2[V + (yw)]y

+ (Vo [y P)w + (V x [7]2)y + eq(u) — eq(w)) ds.
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By Lemmas [2.2 and 2.3} we have

2.7) v =vllstay) + v+ = villsre)
SNV Jwl*)y+2[V s (yw)]w+2[V s (yw)]y+ (Vv [P w+(V* Y3V w1y
+ [[(ea(w), eq(w))ll s+ (1,
2(d-3)
S H’YH[W](Ij)Hw| LZO_(II,.Hl)HwH[W](IJ

)
3
1

d 3 d— =
2(,1 3) 4

+mewwmnﬂqufpuﬂmmu)
+ H +d 1 d . 3_3 %
’YH H’Y” oo ( H%)” w|| 2 (I;;H1) Hw”[w}(jj)
144 2(d— 3
+ IVl d 5y + [(ea(w), ea(w))l sz (1)
Therefore, assuming that

(28) ||7||ST(IJ-) < 0 < 17 v] = 07 17 .- 'aN - 1a

by (2.6 and (2.7) we have

||7||ST + ||’7]+1HST tj+1,t1\7 CH’YJ'HST(tj,tN) +e€
for some absolute Constant C > 0. By ([2.5) and iteration on j, we obtain

[YllsTn) < (2C)N€ <4/2,
if we choose €1 sufficiently small. Hence the assumption is justified by
continuity in ¢ and induction on j. Then repeating the estimate once
again, we can get the ST-norm estimate on ~, which implies the Strichartz
estimates on u. =

3. Profile decomposition. In this section, we first recall the linear
profile decomposition of the sequence of H'-bounded solutions of which
was established in [10]. Then we utilize it to give the orthogonal analysis of
the nonlinear energy and the nonlinear profile decomposition which will be
used to construct the critical element and obtain its compactness properties.

3.1. Linear profile decomp031t10n First, we give some notation as
introduced in [10] For any triple (th, 2l b)) € RxR9x (0, 00) with arbitrary
n and j, let 77, Tﬁ, and <V)n respectively denote the scaled time shift, the
unitary operator, and the self-adjoint operator in L?(R?), defined by

. th . - _d/2 z— ‘ ,
= Tt = (TS (= y-a ki
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We denote the set of Fourier multipliers by
MC:{M:F’lﬂJf iieCRY, 3 lim iz )ER}.
|z|—00

Now we can state the linear profile decomposition:

LEMMA 3.1 (Linear profile decomposition, [10]). Let %, (t) = ¢“V)t%,(0)
be a sequence of free Klein—Gordon solutions with uniformly bounded L2
norm. Then after replacing it with some subsequence, there exist K € {0,1,

., 00} and, for each integer j € [0,K), ¢/ € L*(R?) and {(th, xh, hh) }nen
C R x R? x (0,1] satisfying the following. Define v, and &F for each j <
k<K by

k—1
kit x),
7=0
. . iy A=
B(t,2) = T ) = T ),
Then
(3:-1) dim T 3] g pmosz ey = O
and for any p € MC, anyl < j <k < K, and any t € R,
(3.2) Tim (1) 72 = 0= lim (ud, uisy) 7,
(ML | It%—tﬁlﬂﬂfn—l“n!
(3.3) nlgr()l()( ¥} + AL + W = 00.

Moreover, each sequence {h%}neN either tends to 0 or is identically 1 for
all n.

REMARK 3.2. We call {f}%}neN a free concentrating wave for each j, and
W the remainder. From (3.2), we have the following asymptotic orthogo-
nality:

(3.4) i (Jada(0)]2 - er )2 — [ (B)]32) =0, VueMC.

Next we begin the orthogonal analysis of the nonlinear energy. It follows
from Mikhlin’s theorem that for 1 < p < oo,

(3.5) IV = {V)alellp S Bal{V /hn) "0 llp,
(3.6) VI~ = (V) elly S 1KY/ ha) 2V el
uniformly for 0 < h,, < 1.

LEMMA 3.3. Let 4, be a sequence of free Klein—Gordon solutions satis-
fying ©,(0) € L2. Let v, = Z? 517% + &* be the linear profile decomposition
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given by Lemma . If Timy, 00 E(#,(0)) < 0o, then #,(0) € L2 for large n,
and

k—1
(3.7) lim_Tim | E(5,(0) — > E@(0) - E@h(0))] =0.
k— K n—00 =0
Moreover, for all j < k,
(3.8) 0< lim E(@(0) < lim E(#,(0)) < Tim E(7,(0)),

n—oo
where the last inequality becomes an equality only if K = 1 and &} — 0
in L{L2.

Proof. First, we claim that
(d—2)/d, ,2/d . 2d
(3.9) lll e S Nl >l 27 = 2=
d—2

In fact, on the one hand, by the Holder and Bernstein equalities, we have

d2 d 2/d d— 2d 2/d
IP<tull 2 S 1P<xull s | Perul75 < Ilull 2 u/

Lo ~ 1— d/2
On the other hand, from sharp interpolation [1], we know that

d2 d 2/d d 2d 2/d
1Porull e S IPs1ull )| Pyl 2 a2 S [t /1 s

which gives the claim.

Thus, by (3.9)) and ( , we obtain

lim lim [jw® HL2* < lim hm ||lw
k— K n—o0 k—Kn—

where wf = Re <V> 1k, This implies that if there exists i € {1,2,3,4}
such that u; = wF, then by the Holder and the Hardy—Littlewood— Sobolev
inequalities, we get

nH BL d/2 -

4
lim Tim [[(V () * (uiug))(ugug)| 1 < ]}LH}”}LH;OHHWHLE* =0

k—K n—oo X
=1

This together with (3.4]) reduces our task to proving
F(3ui(0)) = > Fi(0)] =0
<k i<k

where F(u) = [|(V(2) * [uf?) ul*|| ;-
Moreover, using the decay of V) in § — L2 uniform with respect to
n and the Sobolev embedding H'(R?) ¢ L?>"(R%), we have

lodll e < (V)T e TRGT (@)] 2 >0 asn— 0.

lim lim
k—K n—oo

Thus, we can discard those j where 7'7]; = —t% / hfLL — 00.
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Hence, up to a subsequence, we may assume that 7 — 7 € R for all J.

et Y’ = Re e V)i = Li(]Rd).
We have
310)  |[F(3vh®) = > F@h0))]

j<k j<k

< |F(>uno) - F(3o(w) T )|
i<k i<k
+| Y Fi0) = Y FU9) T T

j<k j<k
+ ‘F( 1TW) A 1Tgw)‘.
<k i<k
V)in t in H', we have
v (0) — (V)19 -0 in HY(R?) as n — oo.

This together with the nonlinear estimate

4
(3.11) V() % (9192))9394ll 1 S H 195/ 2+
j=1

By the continuity of the operator e**(

shows that as n — oo,
F(Yuh) - F(X (W) med )| — o,
i<k <k
> Fh) = Y P9 )| - 0
i<k I<k
Now we consider the last term on the right hand side of (3.10)). Let
- VIT i i = 0,
(V)i if B, =1
Then ¢/ € L2" and
F(3 )T ) = S F(V) T )|

i<k J<k
S [P i) - F(S- mmid)|
j<k j<k

+ | S FUO) T T = ST R T

i<k i<k

+ ‘F(Z M) -3 F(h%ngj)’.
i<k

j<k
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By (3.5)), one has
(V) VT — B TI|0e = (V)" T37 = WA TRV 7| o i B =0,
T () T — WYY e if B =1
_ {II((W%)‘W — V|| e i B — 0,
0 if hl =1
—0 asn— oo.

Combining this with , we find that as n — oo,
F(Y (v T - F(Z Wi )| = 0,
<k '
‘ N F((V) I TI) ZF (hd T9 ) ‘ 0.

<k i<k

Thus it suffices to show that as n — oo,
(3.12) ‘F(Z h{LT,{@Z)j) -3 F(thTgJ;j)‘ =0

<k i<k
Now we define @Z;j for any R > 1 by

) (@) @) [I{O = xppep) @ =2 [ 1 <1<k, BLR < B},

where (b3, %l) (WL 2l —ab)/hd, and yg(z) = x(x/R) with X € C’OO(Rd)
satisfying x(z) =1 for |z| <1 and x(z) = 0 for || > 2. Then 1/) — xR

in L2 as n — oo, since either %' — 0 or |#%'] — oo by (.3 . Moreover,
2
XRI/}J 1/}3 in L7 as R — oo.

Hence we may replace ¢ by zﬁfl r in (3.12)). Since {supp; , KT ,]Lzﬁfl Y
are mutually disjoint for large n, it follows that for large n,

a2 LA
S W 5| = S I A

i<k i<k
Then
P WTi ) - S PGATI )
j<k i<k
<3|V« T WP P,
J#l
~ :L“jl
= 3 (> # [ 5l*) %,R( i )
j#1 han L (RY)

—0 asn— oo,



KLEIN-GORDON-HARTREE EQUATION 45

by Lebesgue S dommated convergence theorem, since either hE' = 0 or
|27, ] — oo by (3.3). This concludes the proof of Lemma

3.2. Nonlinear profile decomposition. Having established the linear
profile decomposition of a sequence of initial data in the last subsection, we
now show the nonlinear profile decomposition of a sequence of solutions of
(1.1) with the same initial data in the energy space H'(R?) x L?(R%) by
following the argument in [10].

First we construct a nonlinear profile corresponding to a free concentrat-
ing wave. Let ¥, be a free concentrating wave for a sequence (t,, T,, hy,) in
R x R? x (0,1],

{ (10 + (V))U, =0,
Taltn) = Tu(x), &€ LARY),

Then by Lemma we have a sequence of free concentrating waves U%(t, x)
with @, (t)) = Ti@?, ¢ € L2(RY) for j = 0,1,...,k — 1, such that

k—1 k—1
v) =Y T(tz)+ak V=) i (1) + G (L, z)
7=0 7=0
i (VY.
=Y Tle " o+ S (t, ).
j=0

Now for any concentrating wave ’D’%, we undo the group action 7; 7 to look
for the linear profile V7. Let

B (t,x) = TIVI((t — 1)/ ).
Then _
‘_/;{ (t,z) = eit(v)zij.
Now let @, be the nonlinear solution with the same initial data @,(0),
(101 + (V) = —f(Re(V) '),
@ (0) = Th(0) = TAVA (),

where Tﬁ = —tZL / h%. In order to look for the nonlinear profile Ugo associated

with the free concentrating wave 17%, we also need to undo the group action.
Define

@ (t,w) = TAUI((t — ) /h),);
then Uj satisfies the rescaled equation

{ (30, + (V)h) 0 = = F(Re (Vi) 103),
Ui (m) = V](Tn)
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~ Up to a subsequence, we may assume that there exist hl, € {0,1} and
T2 € [—00, 0] for every j, such that as n — oo,

hi — hi, and T — 7L,
Then the limit equations are given by

S oV i0; + (V)be) U = —f(Uk),
Vo]o:et(V)Joo(’D], (]t < > —)’j ; f( )
U( %) = Vao(Ts0),
where

Ul == Re ((V),) UL =

o0 o0

Re (V)" 1UL, if hl, =1,
Re |V|~10L if hl, = 0.
We remark that by using the standard iteration with the Strichartz es-

timate, we can obtain the unique existence of a local solution U, around
t = Tgo in all cases, including bl = 0 and 72 = +oo (the latter corre-
sponding to the existence of the wave operators). We define U, on the
maximal existence interval to be the nonlinear profile associated with the

free concentrating wave (vn, . ad bl ).

The nonlinear concentrating wave u{n) associated with 7, is defined by

B (t:2) = RO (¢ = 6/

It is easy to see that u(n) solves (1.1)) when Bl = 1. If bl = 0, then u{n)

solves

(att ~ A+ 1) (n) = (10, + (V) = (V) = V)T, = F(VIHT)ul,),
The existence time interval of u{n) may be finite and even go to 0, but at
least we have

(3.13) [[@}(0) - u( Oz = 1TV (7)) = TIUL (7)) 2
< |V = VL) 2
+ |V (7)) — ﬁgo(fg)HL% —0 asn— oo.

Let u,, be a sequence of (local) solutions of (1.1)) around ¢ = 0, and let v,
be the sequence of the free solutions with the same initial data. We consider
the linear profile decomposition of {7,} given by Lemma

- i - ; ; - ;
R SR LT

DEFINITION 3.4 (Nonlinear profile decomposition). Let {# }nen be the
free concentrating waves, and {Ufn)}neN be the sequence of the nonlinear
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concentrating waves associated with {#, }nen. Then we define the nonlinear
profile decomposition of w, by

k—1 " tj
—»<k - it _mn
(3.14) E u(n = E 1! Oo( ") )

Jj=

We will show that 11’(<n’§ + ¥ is a good approximation for i, provided
that each nonlinear profile has finite global Strichartz norm.

Next we introduce some Strichartz norms. Let ST'(I) and ST*(I) be the
function spaces on I x R¢ defined as above,

2(d+1)

ST(I) = [W](I) = L, " (I; Bi{fﬂ) (R),

ST(I) = [W]"(I) + L (I; L2<Rd>>.
The Strichartz norm for the nonlinear profile Ugo depends on the scaling h‘z,o:
, ST(I) if o =1,
STL(I) :== 1/2 d R
{Lq(l Bl (¢=20y it ple = 0.

The following two lemmas derive from Lemma [3.1] and the perturbation
lemma. The first lemma concerns orthogonality in the Strichartz norms.

LEMMA 3.5. Assume that in the nonlinear profile decomposition (3.14)),
we have

102 sz gy + N0 e r2qmy < 00, Vi <.

Then, for any finite interval I and j < k, we have

(3.15) T o, sz angonSTj .
(3.16) hm ||U HST([ hmZHu HST(R

where the implicit constants do not depend on the interval I or j. Moreover,

(3.17) lim |[£(uGh) =D AV ),

n—o0

where f(u) = (V(x) * [ul?*)u.

Pmof One can refer to [10] for the proof of (3.15) and (3.16). Now we
turn to . By the definition of u( ) and Uoo, we know that
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. L (=t
u{n)(az,t) = Re (V) lufn)(t,x) = Re(V) MU, (h%)
— iz Vg <t‘.ﬂ1).

Let u<<n]§ (tw) =30, uzm (x,t), where

ul, (x,1) = <<VV>£O ul,y = WU <t ;f).
Then
[0 = 32 1602t |y = [0 = S0 e
(3.18) < [If(u <’“)—f(u Dllsn)
(319 L LCR DG

6d(d+1)

First, we estimate (3.18]). Let [G]({) = L; 3(d+1) (I; L3 —34%). Tt follows
from (2.2]) and the Holder inequality that (¢ =2(d+1)/(d — 1))

BT < £u35) — S5 sy + 1) = O 1

3__2_
< g — bl o gk >||LOOH;OST&(,)>

2w e <||< ey

. . 2 _ 2
(X \|<V/hzl>—2vgo||smn)d1<||<u@’3,u@’;>||mlmsm,)>3
j<k,hi =0
M2 VR UL e (g uph) llen)
j<k, hl,=0
—0 asn — oo,

where we utilize . in the second last inequality and the fact that
Ui, e LXH! N STL (I ) [G](I)
Next we estimate . For R > 1, we define

U p(t,x) = XR(t,m)Ugo(t, o) [J{ = X )t = 8! e — ) | ! < R7'Y,
<k

where (b 5! 23y = (bl t] —th 2l — al))/hd, and yg(t, z) = x(t/R, z/R)

with xy € C®(R4*!) satisfying x(t, x) =1for [(t,z)| <1 and x(¢,z) =0 for

|(t,z)| > 2. Then, noting that either k%' — 0 or |t§'] + |25

9
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we obtain UgR — xrUL in STL(R) and [G](R) as n — co. Furthermore,
XRUj — UL in the same spaces
Therefore, we may replace u’ (n) by

ul g = WU (6 =) /h,).

By the support property of u{n% r We have, for large n,
i) i
(Z u(n),R) = Z [y, rl"™
j<k i<k

Thus, we obtain

<k
Hﬂu( Zf HST*(I)
i<k
<Y V() + ‘UZ@,R‘Q)UZ(n),RHST*(I)
=
1 A t—t%’l CL’—.T‘,j{l
= S VO« 10, ) (i )
oy by b ST*(1I)

—0 asn — oo,

by Lebesgue S dominated convergence theorem, since either hj’ — 0 or
|t¥Ll| + |ad; | — oo by (3.3). This concludes the proof of Lemma

After these preliminaries, we now show that z_[(<n'§ + @k is a good approxi-

mation for u, provided that each nonlinear profile has finite global Strichartz
norm.

LEMMA 3.6. Let u, be a sequence of local solutions of (L.1) around
t = 0 satisfying lim, o0 E(Up, Uy,) < 00. Assume that in the nonlinear profile
decomposition (3.14), for any j we have

(3.20) 1024 gy + 10l o L2y < 0.

Then, for large n, uy, is bounded in the Strichartz and the emergy norms,
that 1is,

n@o(nunHST(R) + [|tnll Leo L2 (R xRA)) < 00

Proof. We only need to verify the conditions of Lemma [2.7] For this
purpose, we use the fact that

(i@t+<v>)(_)(<lg+w ) =—f(u (n)"‘W )"‘GQ( U ) 7]2)»
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ea(uihwh) = SOUV) — (V) + Fuih) = 3 f(ud

i<k j<k
Pk k) - (),
and uj@ = (<V>f;o)_1<v>ujn) is as before.

( 4
First, by the definition of the nonlinear concentrating wave uzn) and

(3.13)), we have
(@55 (0) + @ (0)) = @n(0)] 2 < le Oz =0

as m — 00.
Next, by the linear profile decomposition in Lemma we get

(3.21) 1 (0) |72 = 115.(0) 172 > Z\ 0)[I72 + on(1)

x>
|
—

12, ()22 + o (1),

T
o

Thus, using the small data scattering (Lemma , we find that except for
a finite set J C N, the energy of u{n) with j € J is smaller than the iteration
threshold. Hence

el sy S 1, (O)llzz, 5 & J.

This together with (3.15)), (3.16), (3.20]), and (3.21)) shows that for any finite

interval I,

Sl}ip hm ||U ”ST S Z g n)HST ®) T Z ||U(n HST

JjeJ JjéJ
ST HSTJ )T Iim ||, (0 )72 < oo
jeJ

Combining this with the Strichartz estimate for w¥, we get

sup T [[ugh + whllsr) < co.

By Lemmas [3.1] and [3.5] we have
1F (uh +wn) = Fuii) s = 0,

16~ X 0 . 0

M
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as n — 0o. On the other hand, the linear part in eq(u} (n) wk) vanishes when
hl. =1, and is controlled when hl, = 0 by

17 = IV D@, 2y rszzy S V) ) e i)
=~ |11 H<V/hj>*1l7j lzge(m;L2)
< ‘I’(HP (hd) 1/2 ||L°° (R;L2) + (hj )1/2H >(hd)1/2 go”Lfo(]R;Lg)) —0

as n — oo. Thus, ||eq(us (n), W)l s7+(ry = 0 as n — oo,

Therefore, for k sufficiently close to K and n large enough, the true so-
lution u, and the approx1mate solution u( ) —i—w satisfy all the assumptions

of the perturbation Lemma Hence we obtain the desired result. m

4. Concentration compactness. By the profile decomposition in the
previous section and perturbation theory, we show in this section that if
the scattering result does not hold, then there must exist a minimal energy
solution with some good compactness properties. This is the object of the
following proposition.

PROPOSITION 4.1. Suppose that Enax < 00. Then there exists a global

solution u. of (1.1) satisfying
E(uc) = Fmax, Huc”ST(R) =0
Moreover, there exists ¢ : Rt — R? such that K = {(ue, 1) (t,z — c(t)) |
t € R} is precompact in H'(R?) x L2(R%). Moreover, one can assume that
cis C1 and
e(t)] Sue 1

uniformly in t.

Proof. The proof of [10] can be adopted verbatim, but we give a sketch
for completeness. By the definition of Fyax, we can choose a sequence {uy, }
such that

(4.1) E(up,tn) = Emax  and  |ug|lsr(r,) — 00 asn — oo.

Now we consider the linear and nonlinear profile decompositions of u,,, using

Lemma [3.1]

k—1
Vi (0) =Y +ak, @ = VT (@),
j=0
uh =D @, @ (tx) = TIUL((t - th) /1)),
j=0

14,(0) — ﬁ{n)(O)HL% —0 asmn— oo.
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Lemma precludes that all the nonlinear profiles U, have finite global
Strichartz norm. On the other hand, every solution of with energy
less than F,x has global finite Strichartz norm by the definition of Eiax.
Hence by , we deduce that there is only one profile, i.e. K =1, and so
for large n,

E(i),)) = Bmax,  10%]ls7o,m) = 00, Jim. &4l Loz = 0.

If h9 — 0, then U2, = Re|V| U solves the H'-critical wave-Hartree
equation
O — Au+ (Jz| ™ * |u)?)u =
and satisfies
2(d+1)
d—1 "~
But Miao—Zhang—Zheng [22] have proven that there is no such solution.

Hence h2 = 1, and so there exist a sequence (t,,, x,) € RxR? and ¢ € L?(R?)
such that along some subsequence,

(4.2) @0 (0,2) — e Vp(z — @) |2 >0 n— oo

E(Ugo(Tgo)) = Fmax < 00, H = 090, q=

”L(I R: Bl/2)

Now we show that U2, = (V)~1UL is a global solution. Assume not; then
we can choose a sequence t,, € R which approaches the maximal existence
time. Since ﬁgo(t +t,) satisfies , applying the above argument to it, we
infer by that there are 1) € L? and another sequence (¢, 2/) € R x R?
such that

(4.3) 0% (tn) = eV p(a = 2) || 12 = 0
as n — 0o. Let ¢ := (V)¢). For any & > 0, there exist § > 0 such that, with
I =1[-4,0],
V)~ — ) lsray <
which together with (4.3) shows that for sufficiently large n,
(V) e VT, () sy < &

If € is small enough, this implies that the solution U0 exists on [t, — 9, tn,+0]
for large n by small data theory (Lemma [2.4]). This contradicts the choice
of t,,. Thus U 0 is a global solutlon and 1t is just the desired critical ele-
ment u.. Moreover, since is symmetric in £, we may assume that

HucHST(o,oo) = 00
We call such a u a forward critical element.

One can refer to [23] for the choice of ¢(t). This concludes the proof of
Proposition .
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As a consequence of the above proposition and the Hardy-Littlewood—
Sobolev inequality, we have

COROLLARY 4.2. Let u be a forward critical element, and denote
Ju(t, 2)*u(t, y)|?

Bre= | (ufP+|VuP?+[af*)do+ || gt
le—c|>R lz—c|>R Y
y€eR?

Then for any n > 0, there exists R(n) > 0 such that
Erm)ery < nE(u, @)  for anyt > 0.
The next corollary concludes this section.

COROLLARY 4.3. Let u be a nonlinear strong solution of (L.1|) such that
the set K defined in Proposition is precompact in H' x L?, and E(u, )
# 0. Then there exists a constant B = (1) > 0 such that, for all time t > 0,
we have

" w2 — | 2 2
) W’u(ijﬂ u(s, y)|” dzdyds > B,
t RixRd Y

where x5 denotes the second component of x € R%. In particular,

t |22 — 32|

27— Y2
) W e et )Pl )P dedy ds 2 .
ORdxRd

Proof. One can refer to 23] for the detailed proof. m

5. Extinction of the critical element. In this section, we utilize the
technique in [2§] to prove that the critical solution constructed in Section 4
does not exist, thus ensuring that E,., = oo. This implies Theorem

PROPOSITION 5.1. Assume that d > 5. Then Epya.x = 0.

Proof. We use a virial-type estimate in a direction orthogonal to the
momentum vector. Up to relabeling the coordinates, we might assume that
Mom(u) is parallel to the first coordinate. Thus

S u(t, x)0ju(t,z)de =0, Vj>2.
R4

Let ¢r(x) = ¢(x/R), where ¢(z) is a nonnegative smooth radial function
such that supp ¢ C B(0,2) and ¢ =1 in B(0,1). We define the virial action

I(t) = S 200R(2)02u(t, T)us(t, x) de,
Rd
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where z = z — ¢(t) and z9 denotes the second component of z € R?. Inte-
grating by parts we get, by (L.1)),

oI (t) = S I (220R(2))Dou(t, z)uy(t, ) dz + & S 200 R(2)02(us(z,t))? dx
R R4

+ S 200r(2)ou(t, z) (Au —u— (V(-) * |u]2)u) dx
Rd
=3 | (el + [l + |Vul® + (V) * [u)ul?) do — | |0pul® da
R4 Rd

+ 22 S utOgudx — 2 S 22¢R(z)|u|2<$26 * |u|2> dx

+ S O1(u) dz,
l2|>R

where
1]z
On() = | 26 = (1= 0o [? 1?1V + (V) )]
— (1) - Vo) 5 daut — (H)(1 — bp(=))dauty — (Vo - Vu) 20z
is supported on the set |z| > R and satisfies

) { ol(umx\g [ (ul? + 1Val? + f?) da.
|2>R >R

Moreover, we define the equirepartition of energy action

J(t) = | ¢r(2)ult, z)u(t, ) dz.

Rd
Then
0.7 (1) = | (Juel® = |uf* = |Vul* = (V) * [u)|u) dz + | Os(u) da,
Rd |z|>R
where

O2(u) = (1 = ¢r(2)) [luel® — |uf* = [Vul* = (V () * [ul*) [uf’]
/ ulg _ ¥ .
FE) Vor) e~ LV6n - Vu
has the same properties as O (u).
Considering A(t) = I(t) + 3 J(t), we get

(5.1) |A(t)] S RE(u,u) for all time ¢,
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and
QA(t) = — | |0pul’ da
Rd
—2 || wu—dmurmwngjﬁmwwmmmm%mw
R4 xR4
— | (01(w) + 305(u)) da.
l2|>R

And so by symmetrization, 9;A(t) can be rewritten as

To — 2
~0.(0) = § oo+ §] 2Z I o) Plute )P o dy
R4 R4 xR4
+L+ | (01(w) + Os(w)) da,
|z|>R
where
L= | [(z2—ct)prl@ —c®) — (g2 — c2(t))pr(y — c(t) — (x2 — 12)]
RdxRd
ﬁjﬁwwm%&mﬁw@.

We will show that I constitutes only a small fraction of E(u,u;). First,
by Corollary [£.2] we know that if R is sufficiently large depending on u
and 7, then

ER ety (usur) <nE(u, u).

Let x denote a smooth cutoff to the region |x — ¢(t)| > R/2 such that
Vx is bounded by R~! and supported where |z — ¢(t)| ~ R. In the region
where |z — ¢(t)| ~ |y — ¢(t)|, we have

[z —c(®)] ~y —c®) 2 R,

since otherwise I, vanishes. Moreover, noting that

(22 = ca(t))p(x — c(t) — (y2 — c2(t)) oy — (V)| S |z — 9],

we use the Hardy—Littlewood—Sobolev inequality and the Sobolev embed-
ding theorem to control the contribution to Io from this regime by

ut,x2 u(t, 2
I Ixu(t, )| [xu(t, y)|

T drdy S ||V (xu)lly S n*.

R x R4

In the region where |z — ¢(t)| < |y — ¢(t)|, we use the fact that
[z —ct)| <y —c(t)| ~ |z -yl and [y—c(t)[Z R
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to estimate the contribution from this regime by

1
)\ it )l dedy S 1907 IVulz < 0
RdxR4

The last line follows from the same computation as in the first case. Finally,
since the remaining region |y — c¢(t)| < |z — ¢(t)| can be estimated in the

same way, we conclude that
IQ S n.

Choosing n sufficiently small depending on w, and R sufficiently large
depending on u and 7, we obtain

2
;I‘ —
62 -od = || F2EU e Plutt )P dody - nE ()
R4 xR4

If Frax < oo, then integrating from 0 to T" > 0 and using Corollary
[4.3] we find that there exists o = a(1,u) > 0 such that

T 2
| 1) W\u(axmu(s,y)rwx dyds > oT
0 RIxRE 4

for all T'> 1. Thus —A(t) 2 T for large T, which contradicts (5.1)). Hence
Eax = 00, which concludes the proof of Proposition "
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