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ON MODULES AND RINGS
WITH THE RESTRICTED MINIMUM CONDITION

BY

M. TAMER KOSAN (Gebze) and JAN ZEMLICKA (Praha)

Abstract. A module M satisfies the restricted minimum condition if M /N is artinian
for every essential submodule N of M. A ring R is called a right RM-ring whenever Rgr
satisfies the restricted minimum condition as a right module. We give several structural
necessary conditions for particular classes of RM-rings. Furthermore, a commutative ring
R is proved to be an RM-ring if and only if R/Soc(R) is noetherian and every singular
module is semiartinian.

1. Introduction. Given a module M over a ring R, recall that N is an
essential submodule of M if there is no non-zero submodule K of M such
that K "N = 0. We say that M satisfies the restricted minimum condition
(RMC) if for every essential submodule N of M, the factor module M /N
is artinian. It is easy to see that the class of modules satisfying RMC is
closed under taking submodules, factors and finite direct sums. A ring R is
called a right RM-ring if Rp satisfies RMC as a right module. An integral
domain R satisfying the restricted minimum condition is called an RM-
domain, i.e. R/I is artinian for all non-zero ideals I of R (see [4]). Note that
a noetherian domain has Krull dimension 1 if and only if it is an RM-domain
[0, Theorem 1].

The purpose of the present paper is to continue on studies [3], [4], [5], [10]
and [14], in which the basic structure theory of RM-rings and RM-domains
was introduced by Albrecht and Breaz [I], which describes some properties
of classes of torsion modules over RM-domains, and widely studied for cor-
responding classes of abelian groups. As the method of [I] appears to be
fruitful, this paper focuses on the study of the structure of modules satis-
fying RMC, in particular singular ones. For a module M with the essential
socle, we show that M satisfies RMC if and only if M/Soc(M) is artinian.
It is also proved, among other results, that for a module M over a right
RM-ring R, if M is singular, then M is semiartinian. These tools allow us to
obtain ring-theoretical results for both non-commutative and commutative
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rings. Namely, if R is a right RM-ring and Soc(R) = 0, we prove that R is a
non-singular ring of finite Goldie dimension. As a consequence, in Section 2
we obtain some characterizations of various classes of right RM-rings via
some well-known and important rings (semiartinian, (von Neumann) regu-
lar, semilocal, max, perfect) plus some (socle finiteness) conditions: In the
case when R is a semilocal right RM-ring and Soc(R) = 0, we show that R
is noetherian if and only if J(R) is finitely generated if and only if the socle
length of E(R/J(R)) is at most w. If R is a right max right RM-ring, we
prove that R/Soc(R) is right noetherian.

In Section 3, we focus on commutative rings. It is shown that such a ring
R satisfies RMC if and only if R/Soc(R) is noetherian and every singular
module is semiartinian.

Throughout this paper, rings are associative with unity and modules are
unital right R-modules, where R denotes such a ring and M denotes such a
module. We write J(R), J(M),Soc(R),Soc(M) for the respective Jacobson
radicals and socles. We also write N < M to indicate that N is an essential
submodule of M, and E(M) for the injective hull of M.

2. The structure of general right RM-rings. Firstly, we prove the
following lemma which is quite useful for the study of modules and rings
with the right restricted minimum condition, and then recall a useful folklore
observation (see [I1, Lemma 3.6]).

LEMMA 2.1. Let K and N be submodules of M such that K I N. If M
satisfies RMC, then N/K is artinian.

Proof. 1If we choose a submodule A for which NNA=0and NoA I M,
then K ® A < M. Hence M/(K & A) and (N & A)/(K & A) = N/K are

artinian modules. m

A non-zero module M is called uniform if the intersection of any two non-
zero submodules of M is non-zero, or equivalently, every non-zero submodule
of M is essential in M.

A module M is said to have Goldie dimension (or uniform dimension) n,
denoted Gdim(M) = n, if E(M) is a direct sum of n submodules, equiva-
lently if M has an essential submodule which is a direct sum of n uniform
submodules.

LEMMA 2.2. If a module M satisfies RMC, then M /Soc(M) has finite
Goldie dimension.

Proof. Set Sy := Soc(M), and fix a submodule S; of the module M such
that Sop C S7 and S1/Sy = Soc(M/Sp). By Zorn’s Lemma, we may choose a
maximal set of elements m; € M such that S1N(P,c; miR) = 0. It is easy to
see that S1®(P;c; miR) I M. Since P,y miRNSy = 0, every module m; R
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has zero socle. Hence m; R is not simple, and any maximal submodule of m; R
is essential in m; R. For every i € I, let IV; be a fixed maximal submodule in
miR. As @,c; Ni < @,c;miR, the module L = Sy @ @,;c; Vs is essential
in M. Since M satisfies RMC, we see that M /L is an artinian module con-
taining an isomorphic copy of (S1/S0)® (B, miR/N;), which implies that I
is finite and S1/Sp is a finitely generated semisimple module. By [12], Propo-
sition 6.5], we conclude that the uniform dimension of M/Soc(M) is finite. m

Following [7, Section 7.2], the class M, of modules M of Krull dimen-
sion «, written Kdim(M) = «, is defined as follows. The class M_; consists
of the module M = 0. If the class Mg of modules of Krull dimension 3 has
been defined for every 8 < «, then M, is defined as the class of all modules
M such that

(i) M ¢ Uscq Ms,
(ii) for every decreasing chain My O M; O --- of submodules of M,
there exists n such that M;/M;y1 € Uz, Mp for all i > n.

We also note that:

e Kdim(Mp) = —1 if and only if Mp = 0.

o Kdim(Mpg) = 0 if and only if Mg is a non-zero artinian module.

e Every module with Krull dimension has finite Goldie dimension (see
[T, Proposition 7.13]).

PROPOSITION 2.3. If a module M satisfies RMC, then Kdim(M/Soc(M))
15 at most one.

Proof. Let Ng 2 Ny O --- be a descending chain of submodules of
M/Soc(M). As M/Soc(M) has a finite Goldie dimension by Lemma
there exists n such that for each i > n either N; = 0 or N;;.1 < N;. Since
N;/N;11 is artinian by Lemma we conclude that M/Soc(M) has Krull
dimension at most 1. m

A module M is called semiartinian if every non-zero factor of M contains
a non-zero socle. A ring R is called right semiartinian if Rp is a right
semiartinian module. Note that every non-zero right module over a right
semiartinian ring is semiartinian (see [9]).

Let M be a semiartinian module. By [8] or [13], every semiartinian mod-
ule contains an increasing chain of submodules (S, | & > 0) (called the socle
chain) satisfying

Sy =0,
Sa+1/Sa = Soc(M/S,)  for each ordinal «,

So = U Sp  if avis a limit ordinal.
B<a
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Furthermore, the first ordinal o such that S, = M is said to be the socle
length of M.

Since every semiartinian ring contains the essential socle, we obtain the
following easy observation.

LEMMA 2.4. Let R be a right semiartinian ring. Then R is a right RM-
ring if and only if R/Soc(R) is artinian.

Obviously, the class of right RM-rings is closed under taking factors and
finite products. But, in general, this is not true of taking extensions.

ExaMPLE 2.5. Let R be a right semiartinian ring of socle length 3 and
R/Soc(R) non-artinian. Hence R is not a right RM-ring by Lemma[2.4] Since
Ry/Soc(Ryp) is semisimple, we infer that Ry = R/Soc(R) is a right RM-ring
by Lemma[2.4] Clearly Soc(R) satisfies RMC as well. Hence the short exact
sequence

0 — Soc(R) — R — R/Soc(R) — 0

shows that the class of all modules satisfying RMC is not closed under
extensions.

In particular, using constructions of [6], we can fix a field F' and take
as Rj; the F-subalgebra of the F-algebra F“ of all countable sequences
over F generated by the ideal of ultimately zero sequences F*), where
w denotes the first infinite ordinal. Note that this F-subalgebra contains
exactly ultimately constant sequences. Now Ry is defined as an F-subalgebra
of a natural F-algebra R} generated by ng). It is easy to see that Rs is a
right semiartinian ring of socle length 3 and Ra/Soc(R2) is non-artinian.

Let us recall the following well-known observation.

LEMMA 2.6. Let M be an artinian R-module. If J(N) # N for every
non-zero submodule N of M, then M is noetherian.

Proof. Assume that M is not noetherian. Then it contains a semiartinian
submodule of infinite socle length. As M is artinian, there is a minimal sub-
module N of infinite socle length. Thus N contains no maximal submodule,
ie. JIN)=N. n

Now we are able to clarify the structure of RM-rings, which is similar
(and in some sense dual) to the structure of semiartinian rings.

THEOREM 2.7. Let R be a right RM-ring, S(R) the greatest right semi-
artinian ideal of R, and set A := R/Soc(R) and S(A) := S(R)/Soc(R).
Then:

(i) Npew J(A)" is nilpotent,
(ii) S(A) N J(A) is nilpotent,
(iii) S(A)/(S(A)NJ(A)) is noetherian.
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Proof. (i) Since the Krull dimension of A is 0 or 1 by Proposition
we deduce that (), J(A)" is a nilpotent by [7, Theorem 7.26].

(ii) Set K := S(A) N[, J(A)" and I := S(A) N J(A). Note that K is
nilpotent by (i). Since S(A) is artinian by Lemma so is I. Moreover,
I" C J(A)", and so (), I™ € K. Since I artinian, there exists n for which
I C K, which finishes the proof.

(iii) Note that S(A), and so M = S(A)/(S(A) N J(A)) is artinian and
J(M) = 0. Hence J(N) = 0 for each submodule N of M. The rest follows
from Lemma 2.6 =

COROLLARY 2.8. If Soc(R) = 0 and J(R)* = J(R) for a ring R, then
R is not a right RM-ring.

A ring R is regular if for every x € R there exists y € R such that
T = xYm.

PROPOSITION 2.9. The following conditions are equivalent for a reqular
ring R:

(i) R is a right RM-ring,

(ii) R/Soc(R) is artinian,

(iii) R is semiartinian of socle length 2.

Proof. (i)=»(ii). By Lemma 2.2 R/Soc(R) is of finite Goldie dimension.
Since R/Soc(R) is a regular ring which cannot contain an infinite set of
orthogonal set idempotents, we conclude that R/Soc(R) is artinian.

(ii)=-(iii). This is obvious because an artinian regular ring is semisimple.

(iii)=-(i). This follows from Lemma ]

Recall that the singular submodule Z(M) of a module M is defined by

Z(M)={m € M : mI =0 for some essential right ideal I of R}.

The module M is called singular if M = Z(M), and non-singular if
Z(M) = 0. Clearly, every regular ring is non-singular (for more properties
cf. [19]).

LEMMA 2.10. Let R be a right RM-ring. Then Z(M) is semiartinian for
each right R-module M.

Proof. Let m € Z(M). Clearly, r(m) is an essential right ideal of R,
where r7(m) = {a € A | ma = 0}. Hence mR = R/r(m) is artinian and so
semiartinian. m

THEOREM 2.11. Let R be a right RM-ring and M a right R-module.

(i) If M is singular, then M is semiartinian.
(ii) E(M)/M is semiartinian.
(iii) If M is semiartinian, then E(M) is semiartinian. In particular,
E(S) is semiartinian for every simple module S.
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Proof. Assume that M is singular. By Lemma Z(M) = M is semi-
artinian, hence (i) holds. Since E(M)/M is a singular module by [12, Ex-
ample 7.6(3)] and the class of semiartinian modules is closed under taking
essential extensions, (ii) and (iii) hold. =

Since for a ring R with no simple submodule we obtain Z(R) = 0 by
Lemma [2.10, we can formulate the following observation which is a conse-
quence of Lemma [2.2]

COROLLARY 2.12. If Soc(R) = 0 for a right RM-ring R, then R is a
non-singular ring of finite Goldie dimension.

Recall that a ring R is called semilocal if R/J(R) is semisimple artinian.
LEMMA 2.13. If R is a semilocal ring, then J(R) + Soc(R) <4 R.

Proof. Assume that J(R) + Soc(R) is not essential in R. Then there
exists a non-zero right ideal I C R such that I N (J(R) + Soc(R)) = 0.
Since Soc(I) = Soc(R) NI = 0 and R/J(R) contains an ideal which is
isomorphic to I, we find that Soc(R/J(R)) # R/J(R). Hence R is not

semilocal, a contradiction. m

The following example shows that the converse of Lemma [2.13]is not
true.

ExXaMPLE 2.14. Suppose that R is a local commutative domain with
maximal ideal J. It is easy to see that J“ is the Jacobson radical of the ring
R and it is essential in R*. However R“ is not semilocal.

Recall that J(R/J(R)) = {0+ J(R)} for an arbitrary ring R.
PROPOSITION 2.15. Assume that R is a right RM-ring.

(i) If Soc(R) =0, then J(R) < R if and only if R is semilocal.
(ii) If R is a semilocal ring, then J(R)/Soc(J(R)) is finitely generated
as a two-sided ideal.

Proof. (i) Since J(R) < Rpr and Rp satisfies right RMC, we see that
R/J(R) is an artinian ring. On the other hand, J(R/J(R)) = {0+ J(R)}
implies that R/J(R) is semisimple, and hence R is semilocal. The converse
follows from Lemma 2.13

(ii) We note that there exists a finitely generated right ideal F' C J(R)
such that F' 4 (Soc(R) N J(R)) < J(R), since J(R)/(Soc(R) N J(R)) has a
finite Goldie dimension by Lemma Thus RF+Soc(R) is a two-sided ideal
which is essential in R as a right ideal, by Lemma By the hypothesis,
R/(RF+Soc(R)) is aright artinian ring. Since J(R)+Soc(R)/(RF+Soc(R))
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is finitely generated as a right ideal and
(J(R) 4+ Soc(R))/(RF + Soc(R)) =2 J(R)/(J(R) N (RF + Soc(R)))

(R)/(RF + (J(R) NSoc(R)))

(R)/(RF + Soc(J(R))),

we conclude that the ideal J(R)/Soc(J(R)) is finitely generated. =

J
J

Recall that every artinian module is semiartinian, and w denotes the first
infinite ordinal.

LEMMA 2.16. The following are equivalent for an artinian R-module M :

(i) The socle length of M is greater than w.
(ii) M contains a cyclic submodule with infinitely generated Jacobson
radical.

(iii) M contains a cyclic submodule which is not noetherian.

Proof. (1)=-(ii). Let M be an artinian module of non-limit infinite socle
length, and fix x € M such that xR has socle length w + 1. Denote by S,
the ath member of the socle sequence of zR. Since xR is artinian, J(zR)
is the intersection of finitely many maximal submodules, which implies that
xR/J(xR) is semisimple. Because xR/S,, is semisimple as well, we have
J(xR) C S,. Hence the socle length of J(zR) is at most w. Assume that
J(xzR) is finitely generated. Then the socle length of J(zR) is non-limit, and
hence finite. This implies that xR has a finite socle length, a contradiction,
i.e. J(zR) is infinitely generated.

(ii)=-(iii). This is clear.

(iii)=-(i). As a cyclic non-noetherian artinian module is of infinite non-
limit socle length, the length has to be greater than w. =

The next result characterizes semilocal right RM-rings further.

THEOREM 2.17. The following conditions are equivalent for a semilocal
right RM-ring R with Soc(R) = 0:

(i) R is right noetherian.
(ii) J(R) is finitely generated as a right ideal.
(iii) The socle length of E(R/J(R)) is at most w.

Proof. (i)=-(ii). This is obvious.

(ii)=-(iii). Note that every cyclic submodule of E(R/J(R)) is artinian by
Theorem[2.11] Suppose that the socle length of E(R/J(R)) is greater than w.
Hence E(R/J(R)) contains an artinian submodule of socle length greater
than w. By Lemma there exists a cyclic module xR with infinitely
generated Jacobson radical. Fix right ideals I; and I3 such that xR = R/I;,
I C Iy and Iy/I; = J(R/I). It is easy to see that I5 is infinitely generated
and J(R) C I». Since Iz/J(R) is a right ideal of the semisimple ring R/J(R),
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it follows that I/ J(R) is finitely generated, and hence J(R) is an infinitely
generated right ideal.

(iii)=-(i). Let I be a right ideal. We show that I is finitely generated.
By Lemma [2.2] there exist finitely generated right ideals F' and G such that
FQI,ING =0and F+ G < R. First we note that R/(F + G) is an
artinian module with a submodule isomorphic to I/F. It is also easy to see
that R/(F+ @) is isomorphic to a submodule of @, ,, E(S;) for some simple
modules S, ...,S,. Since each E(S;) is isomorphic to some submodule of
E(R/J(R)), the socle length of @,,, E(S;) and so of R/(F + G) is at
most w. As R/(F + G) is a cyclic module, it is an artinian module of finite
socle length, which implies that R/(F + G) is also a noetherian module.
Therefore I/F and so I are finitely generated modules. m

Recall that a ring R is called right max if every non-zero right module
has a maximal proper submodule.

THEOREM 2.18. If R is a right max right RM-ring, then R/Soc(R) is
right noetherian.

Proof. Let I be a right ideal of R/Soc(R). It is enough to show that I
is finitely generated. If we apply Lemma to I, we see that there exists a
finitely generated right ideal F' such that F' < I and I/F is artinian. Since
R is a right max ring, every non-zero submodule of I/F contains a maximal
submodule, and so I/F is noetherian. By Lemma it is finitely generated.
Thus [ is finitely generated as well. =

As right perfect rings are right max, we get

COROLLARY 2.19. If R is a right perfect right RM-ring, then R/Soc(R)
s right noetherian.

The following example shows that a perfect right RM-ring need not be
a (right) noetherian ring.

ExXAMPLE 2.20. Let F be a commutative field and V' be a vector space
over F. Consider the trivial extension R = F' x V. Then R is a local ring,
hence it is perfect. The proper ideals of R are the 0 x W, where W is
an F-subspace of V. Hence the only essential ideals of R are R and the
maximal ideal 0 x V. Then Rp satisfies the right RMC. We note that if V'
is infinite-dimensional, then R is not noetherian.

Since every left perfect ring is right artinian, the following observation
follows from Lemma 2.4l

COROLLARY 2.21. If R is a left perfect right RM-ring, then R/Soc(R)
1s right artinian.
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3. Characterizations of commutative RM-rings. We recall the ter-
minology that we need in this section. Let P be a maximal ideal of a do-
main R. For every R-module M, the symbol M[p; denotes the sum of all
finite length submodules U of M such that all composition factors of U are
isomorphic to R/P.

A module M is self-small if the functor Hom(M, —) commutes with all
direct powers of M. Recall that M is not self-small if and only if there exists
a chain M; C My C --- C M of submodules such that Un M, = M and
Hom(M /M,,, M) # 0 for each n.

Let Max (M) denote the set of all maximal submodules of M.

First, let us formulate some results of [I] in the following observation.

THEOREM 3.1 ([I, Theorem 6, Lemma 3(2), Theorem 9]). The following
conditions are equivalent for a commutative domain R:

(i) R is an RM-domain,
(i) M = B pentax(r) M(p) for all torsion modules M,
(iii) R is noetherian and every non-zero (cyclic) torsion R-module has
an essential socle,
(iv) R is noetherian and every self-small torsion module is finitely gen-
erated.

The following is, maybe, well-known.

LEMMA 3.2. Fvery cyclic artinian module over a commutative ring is
noetherian.

The following example shows that the assumption of commutativity in
Lemma [3.2] is not superfluous.

EXAMPLE 3.3. Let F' be a field and I = NU{w} be a countable set
(I consists of all natural numbers plus a further index w). The ring R is
the ring of non-commutative polynomials with coefficients in F' and in the
non-commutative indeterminates x;, ¢ € I. The cyclic module will be a
vector space V over F' of countable dimension, with basis v;, ¢ € I, over the
field F.

We must say how R acts on V. For every n € N, set x,v; = v, if i > n
and i € N, x,v;, =0if i <n and ¢ € N, and x,v, = v,. Moreover, set z,v;
= 0 for every ¢ € N, and x,v, = v,. Thus we obtain a left R-module gV
Now gV is cyclic generated by v, (because x,v, = vy,).

The R-submodules of gV are

Rvg C Rvy C-+- C | JRv; C Ry, = V.
€N
Thus the lattice of R-submodules of gV is isomorphic to NU{w}, that is,
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is order-isomorphic to the cardinal w + 1. Thus the cyclic R-module pR is
artinian but not noetherian.

The following observation generalizes [I, Lemma 3(2)].

THEOREM 3.4. Let R be a commutative ring. Then R is an RM-ring if
and only if R/Soc(R) is noetherian and every singular module is semiar-
tinian.

Proof. (:=) Let R be an RM-ring, and let A be the greatest semiartinian
ideal in R. Then R/A has zero socle and Soc(R) < A. By Lemma
A/Soc(R) is artinian, and so is noetherian by Lemma It remains to
show that R/A is noetherian. Without loss of generality, we may suppose
that Soc(R) = 0. Let I be an ideal of R. We show that it is finitely generated.
Repeating the argument for (iii)=-(i) in the proof of Theorem we can
find finitely generated ideals F' and G such that FF < I, I NG = 0 and
F + G < R. Hence R/(F + G) is artinian and it has a submodule which is
isomorphic to I/F. Since R/(F + G) is noetherian by Lemma I/F as
well as I are finitely generated. The rest follows from Lemma [2.10]

(«<:) Suppose R/Soc(R) is noetherian and every singular module is
semiartinian. Fix an ideal I < R. By Lemma R/I is singular and
so semiartinian. Moreover, R/I is noetherian and semiartinian, and hence
it is artinian, which finishes the proof. =

In light of Theorem [3.4] we ask the following.

QUESTION 3.5. Is R/Soc(R) noetherian for each non-commutative right
RM-ring R?

Recall (Theorem that R is an RM-domain if and only if
M= B Mp
PeMax(R)
for all torsion modules M.

LEMMA 3.6. If M is a singular module over a commutative RM-ring R,
then M — @PEMaX(R) M[P] .

Proof. Assume that M # @peniax(r) M(p) and fixm € M\@penpax(r) M(p)-
Since M is singular, mR is artinian and

mR = R/r(m) = H Ap,
(m)CI

where each Aj is a local commutative artinian ring with maximal ideal I.
As A; C Mj;) and there are only finitely many I € Max(R), we get a
contradiction. m

We finish this paper with the following observation.
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THEOREM 3.7. The following conditions are equivalent for a commuta-
tive ring R:

(i) R is an RM-ring,
(i) M = ®P6Max (r) Mip) for all singular modules M,
(iii) R/Soc(R) is noetherzan and every self-small singular module is
finitely generated.

Proof. (i)=-(ii). This follows from Lemma

(ii)=-(i). We follow the proof of [I, Theorem 6]. Let I be an essen-
tial ideal of R. Then R/I is a cyclic singular module, and hence R/I =
b PeMax(R) Aip) where each A[p) is cyclic and only finitely many A(p) are
non-zero. Since every cyclic module Ap) is a submodule of a sum of finite-
length modules, it is artinian. Thus R/I is artinian and R is an RM-ring.

(i)=(iii). By Theorem [3.4 and Lemma [2.16 R/Soc(R) is noetherian
and every singular module is semiartinian of socle length less than or equal
to w. Let M be a self-small singular module. Then M = @PeMax(R) Mip
by Lemma and hence Mp) # 0 for only finitely many [P]. Since
Hom(Mp), Mjq)) = 0 for all P # @, we may suppose that M = Mpy
for a single maximal ideal P by [16, Proposition 1.6]. Let M; denote the ith
member of the socle sequence of M. It is easy to see that M; = {m € M |
mP? = 0}. Assume that the socle length of M is infinite, i.e. M; # M;,1 and
M = U, .., M;. Then for each i < w, there exist m; € M; 1\ M; and p; € Pl
such that 0 # m;p; € Soc(M). Then multiplication by p; is a non-zero en-
domorphism on M for which M; C kerp;, a contradiction because M is
self-small. We have proved that there exists n such that M,, = M and so M
has a natural structure of a self-small module over the commutative artinian
ring R/P™. Hence M is finitely generated by [2, Proposition 2.9].

(iii)=(i). We follow the proof of [I, Theorem 9]. If I is an essential ideal
of R, then Soc(R) C I, hence R/I is noetherian. Moreover, every self-small
module over R/I is singular as an R-module, and so it is finitely generated.
Now, the conclusion follows immediately from [2, Proposition 3.17]. =

REMARK 3.8. Note that Theorem is a direct consequence of The-
orems and since singular modules over commutative domains are
exactly torsion modules.
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