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ON MODULES AND RINGS
WITH THE RESTRICTED MINIMUM CONDITION

BY

M. TAMER KOŞAN (Gebze) and JAN ŽEMLIČKA (Praha)

Abstract. A module M satisfies the restricted minimum condition if M/N is artinian
for every essential submodule N of M . A ring R is called a right RM-ring whenever RR

satisfies the restricted minimum condition as a right module. We give several structural
necessary conditions for particular classes of RM-rings. Furthermore, a commutative ring
R is proved to be an RM-ring if and only if R/Soc(R) is noetherian and every singular
module is semiartinian.

1. Introduction. Given a module M over a ring R, recall that N is an
essential submodule of M if there is no non-zero submodule K of M such
that K ∩N = 0. We say that M satisfies the restricted minimum condition
(RMC) if for every essential submodule N of M , the factor module M/N
is artinian. It is easy to see that the class of modules satisfying RMC is
closed under taking submodules, factors and finite direct sums. A ring R is
called a right RM-ring if RR satisfies RMC as a right module. An integral
domain R satisfying the restricted minimum condition is called an RM-
domain, i.e. R/I is artinian for all non-zero ideals I of R (see [4]). Note that
a noetherian domain has Krull dimension 1 if and only if it is an RM-domain
[5, Theorem 1].

The purpose of the present paper is to continue on studies [3], [4], [5], [10]
and [14], in which the basic structure theory of RM-rings and RM-domains
was introduced by Albrecht and Breaz [1], which describes some properties
of classes of torsion modules over RM-domains, and widely studied for cor-
responding classes of abelian groups. As the method of [1] appears to be
fruitful, this paper focuses on the study of the structure of modules satis-
fying RMC, in particular singular ones. For a module M with the essential
socle, we show that M satisfies RMC if and only if M/Soc(M) is artinian.
It is also proved, among other results, that for a module M over a right
RM-ring R, if M is singular, then M is semiartinian. These tools allow us to
obtain ring-theoretical results for both non-commutative and commutative
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rings. Namely, if R is a right RM-ring and Soc(R) = 0, we prove that R is a
non-singular ring of finite Goldie dimension. As a consequence, in Section 2
we obtain some characterizations of various classes of right RM-rings via
some well-known and important rings (semiartinian, (von Neumann) regu-
lar, semilocal, max, perfect) plus some (socle finiteness) conditions: In the
case when R is a semilocal right RM-ring and Soc(R) = 0, we show that R
is noetherian if and only if J(R) is finitely generated if and only if the socle
length of E(R/J(R)) is at most ω. If R is a right max right RM-ring, we
prove that R/Soc(R) is right noetherian.

In Section 3, we focus on commutative rings. It is shown that such a ring
R satisfies RMC if and only if R/Soc(R) is noetherian and every singular
module is semiartinian.

Throughout this paper, rings are associative with unity and modules are
unital right R-modules, where R denotes such a ring and M denotes such a
module. We write J(R), J(M),Soc(R), Soc(M) for the respective Jacobson
radicals and socles. We also write N EM to indicate that N is an essential
submodule of M , and E(M) for the injective hull of M .

2. The structure of general right RM-rings. Firstly, we prove the
following lemma which is quite useful for the study of modules and rings
with the right restricted minimum condition, and then recall a useful folklore
observation (see [11, Lemma 3.6]).

Lemma 2.1. Let K and N be submodules of M such that K E N . If M
satisfies RMC, then N/K is artinian.

Proof. If we choose a submodule A for which N∩A = 0 and N⊕A EM ,
then K ⊕ A E M . Hence M/(K ⊕ A) and (N ⊕ A)/(K ⊕ A) ∼= N/K are
artinian modules.

A non-zero moduleM is called uniform if the intersection of any two non-
zero submodules of M is non-zero, or equivalently, every non-zero submodule
of M is essential in M .

A module M is said to have Goldie dimension (or uniform dimension) n,
denoted Gdim(M) = n, if E(M) is a direct sum of n submodules, equiva-
lently if M has an essential submodule which is a direct sum of n uniform
submodules.

Lemma 2.2. If a module M satisfies RMC, then M/Soc(M) has finite
Goldie dimension.

Proof. Set S0 := Soc(M), and fix a submodule S1 of the module M such
that S0 ⊆ S1 and S1/S0 = Soc(M/S0). By Zorn’s Lemma, we may choose a
maximal set of elements mi ∈M such that S1∩(

⊕
i∈I miR) = 0. It is easy to

see that S1⊕(
⊕

i∈I miR) EM . Since
⊕

i∈I miR∩S0 = 0, every module miR
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has zero socle. Hence miR is not simple, and any maximal submodule of miR
is essential in miR. For every i ∈ I, let Ni be a fixed maximal submodule in
miR. As

⊕
i∈I Ni E

⊕
i∈I miR, the module L = S0 ⊕

⊕
i∈I Ni is essential

in M . Since M satisfies RMC, we see that M/L is an artinian module con-
taining an isomorphic copy of (S1/S0)⊕(

⊕
i∈I miR/Ni), which implies that I

is finite and S1/S0 is a finitely generated semisimple module. By [12, Propo-
sition 6.5], we conclude that the uniform dimension of M/Soc(M) is finite.

Following [7, Section 7.2], the class Mα of modules M of Krull dimen-
sion α, written Kdim(M) = α, is defined as follows. The classM−1 consists
of the module M = 0. If the class Mβ of modules of Krull dimension β has
been defined for every β < α, thenMα is defined as the class of all modules
M such that

(i) M /∈
⋃
β<αMβ,

(ii) for every decreasing chain M0 ⊇ M1 ⊇ · · · of submodules of M ,
there exists n such that Mi/Mi+1 ∈

⋃
β<αMβ for all i ≥ n.

We also note that:

• Kdim(MR) = −1 if and only if MR = 0.
• Kdim(MR) = 0 if and only if MR is a non-zero artinian module.
• Every module with Krull dimension has finite Goldie dimension (see

[7, Proposition 7.13]).

Proposition 2.3. If a module M satisfies RMC, then Kdim(M/Soc(M))
is at most one.

Proof. Let N0 ⊇ N1 ⊇ · · · be a descending chain of submodules of
M/Soc(M). As M/ Soc(M) has a finite Goldie dimension by Lemma 2.2,
there exists n such that for each i ≥ n either Ni = 0 or Ni+1 E Ni. Since
Ni/Ni+1 is artinian by Lemma 2.1, we conclude that M/Soc(M) has Krull
dimension at most 1.

A module M is called semiartinian if every non-zero factor of M contains
a non-zero socle. A ring R is called right semiartinian if RR is a right
semiartinian module. Note that every non-zero right module over a right
semiartinian ring is semiartinian (see [9]).

Let M be a semiartinian module. By [8] or [13], every semiartinian mod-
ule contains an increasing chain of submodules (Sα | α ≥ 0) (called the socle
chain) satisfying

S0 = 0,

Sα+1/Sα = Soc(M/Sα) for each ordinal α,

Sα =
⋃
β<α

Sβ if α is a limit ordinal.
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Furthermore, the first ordinal σ such that Sσ = M is said to be the socle
length of M .

Since every semiartinian ring contains the essential socle, we obtain the
following easy observation.

Lemma 2.4. Let R be a right semiartinian ring. Then R is a right RM-
ring if and only if R/Soc(R) is artinian.

Obviously, the class of right RM-rings is closed under taking factors and
finite products. But, in general, this is not true of taking extensions.

Example 2.5. Let R be a right semiartinian ring of socle length 3 and
R/Soc(R) non-artinian. Hence R is not a right RM-ring by Lemma 2.4. Since
R0/Soc(R0) is semisimple, we infer that R0 = R/Soc(R) is a right RM-ring
by Lemma 2.4. Clearly Soc(R) satisfies RMC as well. Hence the short exact
sequence

0→ Soc(R)→ R→ R/Soc(R)→ 0

shows that the class of all modules satisfying RMC is not closed under
extensions.

In particular, using constructions of [6], we can fix a field F and take
as R1 the F -subalgebra of the F -algebra Fω of all countable sequences
over F generated by the ideal of ultimately zero sequences F (ω), where
ω denotes the first infinite ordinal. Note that this F -subalgebra contains
exactly ultimately constant sequences. Now R2 is defined as an F -subalgebra

of a natural F -algebra Rω1 generated by R
(ω)
1 . It is easy to see that R2 is a

right semiartinian ring of socle length 3 and R2/Soc(R2) is non-artinian.

Let us recall the following well-known observation.

Lemma 2.6. Let M be an artinian R-module. If J(N) 6= N for every
non-zero submodule N of M , then M is noetherian.

Proof. Assume that M is not noetherian. Then it contains a semiartinian
submodule of infinite socle length. As M is artinian, there is a minimal sub-
module N of infinite socle length. Thus N contains no maximal submodule,
i.e. J(N) = N .

Now we are able to clarify the structure of RM-rings, which is similar
(and in some sense dual) to the structure of semiartinian rings.

Theorem 2.7. Let R be a right RM-ring, S(R) the greatest right semi-
artinian ideal of R, and set A := R/Soc(R) and S(A) := S(R)/Soc(R).
Then:

(i)
⋂
n<ω J(A)n is nilpotent,

(ii) S(A) ∩ J(A) is nilpotent,
(iii) S(A)/(S(A) ∩ J(A)) is noetherian.
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Proof. (i) Since the Krull dimension of A is 0 or 1 by Proposition 2.3,
we deduce that

⋂
n J(A)n is a nilpotent by [7, Theorem 7.26].

(ii) Set K := S(A) ∩
⋂
n J(A)n and I := S(A) ∩ J(A). Note that K is

nilpotent by (i). Since S(A) is artinian by Lemma 2.1, so is I. Moreover,
In ⊆ J(A)n, and so

⋂
n I

n ⊆ K. Since I artinian, there exists n for which
In ⊆ K, which finishes the proof.

(iii) Note that S(A), and so M = S(A)/(S(A) ∩ J(A)) is artinian and
J(M) = 0. Hence J(N) = 0 for each submodule N of M . The rest follows
from Lemma 2.6.

Corollary 2.8. If Soc(R) = 0 and J(R)2 = J(R) for a ring R, then
R is not a right RM-ring.

A ring R is regular if for every x ∈ R there exists y ∈ R such that
x = xyx.

Proposition 2.9. The following conditions are equivalent for a regular
ring R:

(i) R is a right RM-ring,
(ii) R/Soc(R) is artinian,
(iii) R is semiartinian of socle length 2.

Proof. (i)⇒(ii). By Lemma 2.2, R/Soc(R) is of finite Goldie dimension.
Since R/Soc(R) is a regular ring which cannot contain an infinite set of
orthogonal set idempotents, we conclude that R/Soc(R) is artinian.

(ii)⇒(iii). This is obvious because an artinian regular ring is semisimple.
(iii)⇒(i). This follows from Lemma 2.4.

Recall that the singular submodule Z(M) of a module M is defined by

Z(M) = {m ∈M : mI = 0 for some essential right ideal I of R}.
The module M is called singular if M = Z(M), and non-singular if

Z(M) = 0. Clearly, every regular ring is non-singular (for more properties
cf. [15]).

Lemma 2.10. Let R be a right RM-ring. Then Z(M) is semiartinian for
each right R-module M .

Proof. Let m ∈ Z(M). Clearly, r(m) is an essential right ideal of R,
where r(m) = {a ∈ A | ma = 0}. Hence mR ∼= R/r(m) is artinian and so
semiartinian.

Theorem 2.11. Let R be a right RM-ring and M a right R-module.

(i) If M is singular, then M is semiartinian.
(ii) E(M)/M is semiartinian.

(iii) If M is semiartinian, then E(M) is semiartinian. In particular,
E(S) is semiartinian for every simple module S.
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Proof. Assume that M is singular. By Lemma 2.10, Z(M) = M is semi-
artinian, hence (i) holds. Since E(M)/M is a singular module by [12, Ex-
ample 7.6(3)] and the class of semiartinian modules is closed under taking
essential extensions, (ii) and (iii) hold.

Since for a ring R with no simple submodule we obtain Z(R) = 0 by
Lemma 2.10, we can formulate the following observation which is a conse-
quence of Lemma 2.2.

Corollary 2.12. If Soc(R) = 0 for a right RM-ring R, then R is a
non-singular ring of finite Goldie dimension.

Recall that a ring R is called semilocal if R/J(R) is semisimple artinian.

Lemma 2.13. If R is a semilocal ring, then J(R) + Soc(R) E R.

Proof. Assume that J(R) + Soc(R) is not essential in R. Then there
exists a non-zero right ideal I ⊆ R such that I ∩ (J(R) + Soc(R)) = 0.
Since Soc(I) = Soc(R) ∩ I = 0 and R/J(R) contains an ideal which is
isomorphic to I, we find that Soc(R/J(R)) 6= R/J(R). Hence R is not
semilocal, a contradiction.

The following example shows that the converse of Lemma 2.13 is not
true.

Example 2.14. Suppose that R is a local commutative domain with
maximal ideal J . It is easy to see that Jω is the Jacobson radical of the ring
Rω and it is essential in Rω. However Rω is not semilocal.

Recall that J(R/J(R)) = {0 + J(R)} for an arbitrary ring R.

Proposition 2.15. Assume that R is a right RM-ring.

(i) If Soc(R) = 0, then J(R) E R if and only if R is semilocal.
(ii) If R is a semilocal ring, then J(R)/Soc(J(R)) is finitely generated

as a two-sided ideal.

Proof. (i) Since J(R) E RR and RR satisfies right RMC, we see that
R/J(R) is an artinian ring. On the other hand, J(R/J(R)) = {0 + J(R)}
implies that R/J(R) is semisimple, and hence R is semilocal. The converse
follows from Lemma 2.13.

(ii) We note that there exists a finitely generated right ideal F ⊆ J(R)
such that F + (Soc(R) ∩ J(R)) E J(R), since J(R)/(Soc(R) ∩ J(R)) has a
finite Goldie dimension by Lemma 2.2. Thus RF+Soc(R) is a two-sided ideal
which is essential in R as a right ideal, by Lemma 2.13. By the hypothesis,
R/(RF+Soc(R)) is a right artinian ring. Since J(R)+Soc(R)/(RF+Soc(R))
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is finitely generated as a right ideal and

(J(R) + Soc(R))/(RF + Soc(R)) ∼= J(R)/(J(R) ∩ (RF + Soc(R)))

= J(R)/(RF + (J(R) ∩ Soc(R)))

= J(R)/(RF + Soc(J(R))),

we conclude that the ideal J(R)/Soc(J(R)) is finitely generated.

Recall that every artinian module is semiartinian, and ω denotes the first
infinite ordinal.

Lemma 2.16. The following are equivalent for an artinian R-module M :

(i) The socle length of M is greater than ω.
(ii) M contains a cyclic submodule with infinitely generated Jacobson

radical.
(iii) M contains a cyclic submodule which is not noetherian.

Proof. (i)⇒(ii). Let M be an artinian module of non-limit infinite socle
length, and fix x ∈ M such that xR has socle length ω + 1. Denote by Sα
the αth member of the socle sequence of xR. Since xR is artinian, J(xR)
is the intersection of finitely many maximal submodules, which implies that
xR/J(xR) is semisimple. Because xR/Sω is semisimple as well, we have
J(xR) ⊆ Sω. Hence the socle length of J(xR) is at most ω. Assume that
J(xR) is finitely generated. Then the socle length of J(xR) is non-limit, and
hence finite. This implies that xR has a finite socle length, a contradiction,
i.e. J(xR) is infinitely generated.

(ii)⇒(iii). This is clear.
(iii)⇒(i). As a cyclic non-noetherian artinian module is of infinite non-

limit socle length, the length has to be greater than ω.

The next result characterizes semilocal right RM-rings further.

Theorem 2.17. The following conditions are equivalent for a semilocal
right RM-ring R with Soc(R) = 0:

(i) R is right noetherian.
(ii) J(R) is finitely generated as a right ideal.

(iii) The socle length of E(R/J(R)) is at most ω.

Proof. (i)⇒(ii). This is obvious.
(ii)⇒(iii). Note that every cyclic submodule of E(R/J(R)) is artinian by

Theorem 2.11. Suppose that the socle length of E(R/J(R)) is greater than ω.
Hence E(R/J(R)) contains an artinian submodule of socle length greater
than ω. By Lemma 2.16, there exists a cyclic module xR with infinitely
generated Jacobson radical. Fix right ideals I1 and I2 such that xR ∼= R/I1,
I1 ⊆ I2 and I2/I1 = J(R/I1). It is easy to see that I2 is infinitely generated
and J(R) ⊆ I2. Since I2/J(R) is a right ideal of the semisimple ring R/J(R),
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it follows that I2/J(R) is finitely generated, and hence J(R) is an infinitely
generated right ideal.

(iii)⇒(i). Let I be a right ideal. We show that I is finitely generated.
By Lemma 2.2, there exist finitely generated right ideals F and G such that
F E I, I ∩ G = 0 and F + G E R. First we note that R/(F + G) is an
artinian module with a submodule isomorphic to I/F . It is also easy to see
that R/(F+G) is isomorphic to a submodule of

⊕
i≤nE(Si) for some simple

modules S1, . . . , Sn. Since each E(Si) is isomorphic to some submodule of
E(R/J(R)), the socle length of

⊕
i≤nE(Si) and so of R/(F + G) is at

most ω. As R/(F +G) is a cyclic module, it is an artinian module of finite
socle length, which implies that R/(F + G) is also a noetherian module.
Therefore I/F and so I are finitely generated modules.

Recall that a ring R is called right max if every non-zero right module
has a maximal proper submodule.

Theorem 2.18. If R is a right max right RM-ring, then R/Soc(R) is
right noetherian.

Proof. Let I be a right ideal of R/Soc(R). It is enough to show that I
is finitely generated. If we apply Lemma 2.2 to I, we see that there exists a
finitely generated right ideal F such that F E I and I/F is artinian. Since
R is a right max ring, every non-zero submodule of I/F contains a maximal
submodule, and so I/F is noetherian. By Lemma 2.6, it is finitely generated.
Thus I is finitely generated as well.

As right perfect rings are right max, we get

Corollary 2.19. If R is a right perfect right RM-ring, then R/Soc(R)
is right noetherian.

The following example shows that a perfect right RM-ring need not be
a (right) noetherian ring.

Example 2.20. Let F be a commutative field and V be a vector space
over F . Consider the trivial extension R = F × V . Then R is a local ring,
hence it is perfect. The proper ideals of R are the 0 × W , where W is
an F -subspace of V . Hence the only essential ideals of R are R and the
maximal ideal 0× V . Then RR satisfies the right RMC. We note that if V
is infinite-dimensional, then R is not noetherian.

Since every left perfect ring is right artinian, the following observation
follows from Lemma 2.4.

Corollary 2.21. If R is a left perfect right RM-ring, then R/Soc(R)
is right artinian.
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3. Characterizations of commutative RM-rings. We recall the ter-
minology that we need in this section. Let P be a maximal ideal of a do-
main R. For every R-module M , the symbol M[P ] denotes the sum of all
finite length submodules U of M such that all composition factors of U are
isomorphic to R/P .

A module M is self-small if the functor Hom(M,−) commutes with all
direct powers of M . Recall that M is not self-small if and only if there exists
a chain M1 ⊆ M2 ⊆ · · · ⊆ M of submodules such that

⋃
nMn = M and

Hom(M/Mn,M) 6= 0 for each n.

Let Max(M) denote the set of all maximal submodules of M .

First, let us formulate some results of [1] in the following observation.

Theorem 3.1 ([1, Theorem 6, Lemma 3(2), Theorem 9]). The following
conditions are equivalent for a commutative domain R:

(i) R is an RM-domain,
(ii) M =

⊕
P∈Max(R)M[P ] for all torsion modules M ,

(iii) R is noetherian and every non-zero (cyclic) torsion R-module has
an essential socle,

(iv) R is noetherian and every self-small torsion module is finitely gen-
erated.

The following is, maybe, well-known.

Lemma 3.2. Every cyclic artinian module over a commutative ring is
noetherian.

The following example shows that the assumption of commutativity in
Lemma 3.2 is not superfluous.

Example 3.3. Let F be a field and I = N∪{ω} be a countable set
(I consists of all natural numbers plus a further index ω). The ring R is
the ring of non-commutative polynomials with coefficients in F and in the
non-commutative indeterminates xi, i ∈ I. The cyclic module will be a
vector space V over F of countable dimension, with basis vi, i ∈ I, over the
field F .

We must say how R acts on V . For every n ∈ N, set xnvi = vn if i ≥ n
and i ∈ N, xnvi = 0 if i < n and i ∈ N, and xnvω = vn. Moreover, set xωvi
= 0 for every i ∈ N, and xωvω = vω. Thus we obtain a left R-module RV .
Now RV is cyclic generated by vω (because xnvω = vn).

The R-submodules of RV are

Rv0 ⊂ Rv1 ⊂ · · · ⊂
⋃
i∈N

Rvi ⊂ Rvω = V.

Thus the lattice of R-submodules of RV is isomorphic to N∪{ω}, that is,
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is order-isomorphic to the cardinal ω + 1. Thus the cyclic R-module RR is
artinian but not noetherian.

The following observation generalizes [1, Lemma 3(2)].

Theorem 3.4. Let R be a commutative ring. Then R is an RM-ring if
and only if R/Soc(R) is noetherian and every singular module is semiar-
tinian.

Proof. (:⇒) LetR be an RM-ring, and let A be the greatest semiartinian
ideal in R. Then R/A has zero socle and Soc(R) E A. By Lemma 2.1,
A/Soc(R) is artinian, and so is noetherian by Lemma 3.2. It remains to
show that R/A is noetherian. Without loss of generality, we may suppose
that Soc(R) = 0. Let I be an ideal of R. We show that it is finitely generated.
Repeating the argument for (iii)⇒(i) in the proof of Theorem 2.17, we can
find finitely generated ideals F and G such that F E I, I ∩ G = 0 and
F + G E R. Hence R/(F + G) is artinian and it has a submodule which is
isomorphic to I/F . Since R/(F + G) is noetherian by Lemma 3.2, I/F as
well as I are finitely generated. The rest follows from Lemma 2.10.

(⇐:) Suppose R/Soc(R) is noetherian and every singular module is
semiartinian. Fix an ideal I E R. By Lemma 2.10, R/I is singular and
so semiartinian. Moreover, R/I is noetherian and semiartinian, and hence
it is artinian, which finishes the proof.

In light of Theorem 3.4, we ask the following.

Question 3.5. Is R/Soc(R) noetherian for each non-commutative right
RM-ring R?

Recall (Theorem 3.1) that R is an RM-domain if and only if

M =
⊕

P∈Max(R)

M[P ]

for all torsion modules M .

Lemma 3.6. If M is a singular module over a commutative RM-ring R,
then M =

⊕
P∈Max(R)M[P ].

Proof. Assume thatM 6=
⊕

P∈Max(R)M[P ] and fixm∈M\
⊕

P∈Max(R)M[P ].
Since M is singular, mR is artinian and

mR ∼= R/r(m) ∼=
∏

r(m)⊆I

AI ,

where each AI is a local commutative artinian ring with maximal ideal I.
As AI ⊆ M[I] and there are only finitely many I ∈ Max(R), we get a
contradiction.

We finish this paper with the following observation.
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Theorem 3.7. The following conditions are equivalent for a commuta-
tive ring R:

(i) R is an RM-ring,
(ii) M =

⊕
P∈Max(R)M[P ] for all singular modules M ,

(iii) R/Soc(R) is noetherian and every self-small singular module is
finitely generated.

Proof. (i)⇒(ii). This follows from Lemma 3.6.

(ii)⇒(i). We follow the proof of [1, Theorem 6]. Let I be an essen-
tial ideal of R. Then R/I is a cyclic singular module, and hence R/I ∼=⊕

P∈Max(R)A[P ] where each A[P ] is cyclic and only finitely many A[P ] are

non-zero. Since every cyclic module A[P ] is a submodule of a sum of finite-
length modules, it is artinian. Thus R/I is artinian and R is an RM-ring.

(i)⇒(iii). By Theorem 3.4 and Lemma 2.16, R/Soc(R) is noetherian
and every singular module is semiartinian of socle length less than or equal
to ω. Let M be a self-small singular module. Then M =

⊕
P∈Max(R)M[P ]

by Lemma 3.6, and hence M[P ] 6= 0 for only finitely many [P ]. Since
Hom(M[P ],M[Q]) = 0 for all P 6= Q, we may suppose that M = M[P ]

for a single maximal ideal P by [16, Proposition 1.6]. Let Mi denote the ith
member of the socle sequence of M . It is easy to see that Mi = {m ∈ M |
mP i = 0}. Assume that the socle length of M is infinite, i.e. Mi 6= Mi+1 and
M =

⋃
i<ωMi. Then for each i < ω, there exist mi ∈Mi+1 \Mi and pi ∈ P i

such that 0 6= mipi ∈ Soc(M). Then multiplication by pi is a non-zero en-
domorphism on M for which Mi ⊆ ker pi, a contradiction because M is
self-small. We have proved that there exists n such that Mn = M and so M
has a natural structure of a self-small module over the commutative artinian
ring R/Pn. Hence M is finitely generated by [2, Proposition 2.9].

(iii)⇒(i). We follow the proof of [1, Theorem 9]. If I is an essential ideal
of R, then Soc(R) ⊆ I, hence R/I is noetherian. Moreover, every self-small
module over R/I is singular as an R-module, and so it is finitely generated.
Now, the conclusion follows immediately from [2, Proposition 3.17].

Remark 3.8. Note that Theorem 3.1 is a direct consequence of The-
orems 3.4 and 3.7 since singular modules over commutative domains are
exactly torsion modules.
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