VOL. 140

2015

NO. 1

RANGE OF A CONTRACTIVE STRONGLY POSITIVE PROJECTION IN A C*-ALGEBRA

ΒY

ANDRZEJ ŁUCZAK (Łódź)

Abstract. We generalize a result of Choi and Effros on the range of a contractive completely positive projection in a C^* -algebra to the case when this projection is only strongly positive using, moreover, an elementary argument instead of a 2 × 2-matrix technique.

Let \mathcal{A} be a C^* -algebra, and let $E: \mathcal{A} \to \mathcal{A}$ be a linear contractive projection. In [1] it was shown that if E is *completely positive*, then $E(\mathcal{A})$ is a C^* -algebra with the product

$$a * b = E(ab), \quad a, b \in E(\mathcal{A}).$$

The crucial point in the proof was the relation

E(ab) = E(aEb) for all $a \in E(\mathcal{A}), b \in \mathcal{A}$,

which yielded the associativity of the product. This relation was proven by using a 2×2 -matrix technique showing that the conclusion remains true if we only assume 2-positivity of E. In this note, we show by a simple elementary argument that the assumption on positivity of E can be further weakened to strong positivity (or in other words to E being a so-called Schwarz or $1\frac{1}{2}$ positive map), by which is meant that the following Kadison–Schwarz inequality holds:

 $E(a^*a) \ge Ea^*Ea$ for all $a \in \mathcal{A}$.

This seems to be of some interest since such maps appear frequently in ergodic theory of operator algebras (cf. [2, 3, 4]).

Let us explain this statement in more detail. Suppose that \mathcal{M} is a von Neumann algebra, and that $\mathfrak{T} = (T_t : t \in \mathbb{G})$ is an abelian semigroup of linear positive normal unital maps on \mathcal{M} , i.e. a *quantum dynamical semigroup*. Denote by Fix \mathfrak{T} the fixed-point space of the semigroup \mathfrak{T} , and by Fix \mathfrak{T}_* the fixed-point space of the semigroup \mathfrak{T}_* , i.e.

Fix
$$\mathfrak{T}_* = \{ \varphi \in \mathcal{M}_* : \varphi \circ T_t = \varphi \text{ for all } t \in \mathbb{G} \}.$$

²⁰¹⁰ Mathematics Subject Classification: Primary 46L05; Secondary 46L55.

Key words and phrases: strongly positive projection, C^* -algebra.

A. ŁUCZAK

Now, if the positive elements of Fix \mathfrak{T}_* form a faithful family, by which is meant that for any $0 \leq x \in \mathcal{M}$ the equality $\varphi(x) = 0$ for each $\varphi \in \operatorname{Fix} \mathfrak{T}_*$ yields x = 0, then the structure of Fix \mathfrak{T} depends on the degree of positivity of the T_t : if they are strongly positive, then Fix \mathfrak{T} is a von Neumann algebra, while if they are just positive, then Fix \mathfrak{T} is a JW*-algebra (cf. [6]). In both cases, there exists a linear normal unital projection E from \mathcal{M} onto Fix \mathfrak{T} , and, depending on the degree of positivity of the T_t , E is either a conditional expectation or a Jordan homomorphism (cf. [4, 6]). However, if we have Fix $\mathfrak{T}_* \neq \{0\}$ but the positive elements of Fix \mathfrak{T}_* do not form a faithful family, then there still exists a linear normal unital projection E from \mathcal{M} into Fix \mathfrak{T} , but now, again depending on the degree of positivity of the T_t , E is either strongly positive or simply positive (cf. [3, 5]). An important notion of mean ergodicity of the semigroup \mathfrak{T} amounts to the relation

$$E(\mathcal{M}) = \operatorname{Fix} \mathfrak{T},$$

thus the question of the range of the projection is the question of the structure of the fixed-point space of a mean ergodic quantum dynamical semigroup.

Our main result is the following.

PROPOSITION. Let \mathcal{A} be a C^* -algebra, and let $E : \mathcal{A} \to \mathcal{A}$ be a contractive strongly positive projection. Then

(1)
$$E((Ea)b) = E(EaEb) = E(aEb)$$
 for all $a, b \in \mathcal{A}$.

Proof. Take an arbitrary positive functional $\varphi \in \mathcal{A}^*$ and define a sesquilinear form $[\cdot, \cdot]_{\varphi}$ on \mathcal{A} by

$$[a,b]_{\varphi} = \varphi(E(ab^*) - E(EaEb^*)).$$

Then

$$[a,a]_{\varphi} = \varphi(E(aa^*) - E(EaEa^*)) = \varphi(E(E(aa^*) - EaEa^*)) \ge 0$$

since $E^2=E$ and E is strongly positive. Consequently, from the Schwarz inequality we obtain

$$\begin{aligned} |\varphi(E((Ea)b) - E(EaEb))|^2 &= |[Ea, b^*]_{\varphi}|^2 \le [Ea, Ea]_{\varphi}[b, b^*]_{\varphi} \\ &= \varphi(E(EaEa^*) - E(EaEa^*))[b, b^*]_{\varphi} = 0, \end{aligned}$$

and since φ was arbitrary, we get

$$E((Ea)b) - E(EaEb) = 0.$$

The second equality in (1) is obtained by taking adjoints.

As a corollary we obtain

COROLLARY. For arbitrary $a \in E(\mathcal{A})$ and $b \in \mathcal{A}$, we have $E(ab) = E(aEb), \quad E(ba) = E((Eb)a).$

Now we have the following generalization of a result in [1].

THEOREM. Let \mathcal{A} and E be as before. Define on $E(\mathcal{A})$ the product * by the formula

$$a * b = E(ab), \quad a, b \in E(\mathcal{A}).$$

Then $(E(\mathcal{A}), *)$ is a C^* -algebra.

Proof. The proof goes exactly as in [1]. Since E is a projection, we deduce that $E(\mathcal{A})$ is norm-closed. For any $a, b \in E(\mathcal{A})$, the contractivity of E yields

$$||a * b|| = ||E(ab)|| \le ||ab|| \le ||a|| ||b||.$$

For any $a \in E(\mathcal{A})$, on account of the Kadison–Schwarz inequality, and the equality Ea = a, we have

$$||a^* * a|| = ||E(a^*a)|| \ge ||Ea^*Ea|| = ||a^*a|| = ||a||^2,$$

which shows that the C^* -condition for the norm holds.

As for the associativity of the product, take arbitrary $a, b, c \in E(\mathcal{A})$. Then the corollary yields

$$a * (b * c) = a * E(bc) = E(aE(bc)) = E(a(bc)) = E(abc)$$

and

$$(a * b) * c = E(ab) * c = E(E(ab)c) = E((ab)c) = E(abc),$$

showing the claim. \blacksquare

REFERENCES

- M.-D. Choi and E. G. Effros, *Injectivity and operator spaces*, J. Funct. Anal. 24 (1977), 156–209.
- [2] U. Groh, Positive semigroups on C*- and W*-algebras, in: One-Parameter Semigroups of Positive Operators, R. Nagel (ed.), Lecture Notes in Math. 1184, Springer, Berlin, 1986, 369–425.
- [3] K. Klimczak and A. Łuczak, Ergodic properties of Markov semigroups in von Neumann algebras, preprint.
- B. Kümmerer and R. Nagel, Mean ergodic semigroups on W^{*}-algebras, Acta Sci. Math. (Szeged) 41 (1979), 151–159.
- [5] A. Łuczak, Invariant states and ergodic dynamical systems on W^{*}-algebras, Math. Proc. Cambridge Philos. Soc. 111 (1992), 181–192.
- [6] K. E. Thomsen, Invariant states for positive operator semigroups, Studia Math. 81 (1985), 285–291.

Andrzej Łuczak Faculty of Mathematics and Computer Science Łódź University S. Banacha 22 90-238 Łódź, Poland E-mail: anluczak@math.uni.lodz.pl

> Received 25 November 2014; revised 5 December 2014

(6450)