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Abstract. A positive integer n is called E-symmetric if there exists a positive integer
m such that |m−n| = (φ(m), φ(n)), and n is called E-asymmetric if it is not E-symmetric.
We show that there are infinitely many E-symmetric and E-asymmetric primes.

1. Introduction. Given any two distinct odd primes p and q, the well
known quadratic reciprocity asserts

(

p

q

)(

q

p

)

= (−1)(p−1)(q−1)/4.

Among the existing proofs, a most popular one that Gauss gave (cf., for
example, proof of Theorem 98 in [3]) counts the lattice points inside the
rectangle R(p, q) with sides parallel to the axes and two opposite vertices
at the origin and (p/2, q/2). In [1], P. Fletcher, W. Lindgren and C. Pomer-
ance studied the so-called symmetric primes. A prime number p is called
symmetric if it is one of the two members of a symmetric pair. Two distinct
odd primes p and q form a symmetric pair if the number of lattice points
in R(p, q) above the main diagonal is equal to the number of lattice points
below it. In [1], the authors characterized symmetric pairs by the condition
|p − q| = (p − 1, q − 1) and, from this, they showed that almost all primes
are not symmetric.

Generalizing the concept of symmetric pair, Fletcher calls (m, n) ∈ N2

an E-symmetric pair if |m − n| = (φ(m), φ(n)), and a positive integer E-

symmetric if it belongs to an E-symmetric pair, where φ(·) is the Euler
totient function. A positive integer is called E-asymmetric if it is not E-
symmetric.

At the 2002 Southeast Regional Meeting on Numbers, Peter Fletcher
asked: Are there infinitely many (a) E-asymmetric numbers, (b) E-asym-
metric primes, (c) E-symmetric primes?

It is clear that (p, p+2) gives an E-symmetric pair if p and p+2 are both
primes. Hence, there are infinitely many E-symmetric primes if we assume
the twin prime conjecture. In fact, it is fairly easy to show that there are
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many more E-symmetric primes than twin primes. More precisely, we prove
unconditionally

Theorem 1.1. There exists a constant c1 > 0 such that , for every suf-

ficiently large N , we have

#{E-symmetric primes p ≤ N} ≥ c1N

log N log log log N
.

With the same idea, we can also show that there are infinitely many
E-asymmetric primes.

Theorem 1.2. There exists a constant c2 > 0 such that , for every suf-

ficiently large N , we have

#{E-asymmetric primes p ≤ N} ≥ c2N

(log N)50
.(1.1)

We remark that, by making the argument tighter, it is easy to improve
the lower bound (1.1). We shall not do so, however, since the method we
use to prove the theorem does not seem to give the best bound that one can
expect.

Throughout the paper, p, q, l and r always stand for primes; as usual, for
given coprime integers k and a, we set π(x; k, a) = {p ≤ x : p ≡ a (modk)}
and

E(x; k, a) = π(x; k, a) − π(x)

φ(k)
, E(x; k) := max

(a,k)=1
|E(x; k, a)|,

where π(x) = π(x; 1, 1) is the number of primes up to x; moreover, µ(d)
denotes the Möbius function, and v(d) the number of distinct prime divisors
of the integer d.

2. Preliminaries. In this section, we give some simple sieve results that
we need in the proofs of the theorems.

Let A be a finite sequence of positive integers (not necessarily distinct),
and, for any given integer d,

Ad := {a ∈ A : a ≡ 0 (modd)}.
Suppose X := |A| > 1, and for each positive integer d, let |Ad| be approxi-
mated by a “main term” (ω(d)/d)X, where ω(d) is a multiplicative function
with ω(1) = 1. Let

Rd := |Ad| −
ω(d)

d
X,

and, for a given real number z > 1,

S(A, z) := |{a ∈ A : l | a ⇒ l ≥ z}|.
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Lemma 2.1. Let ξ ≥ z and τ = log ξ/log z. Suppose there exist some

constants A0 > 0, 0 < δ < 1 such that , for every prime p,

0 ≤ ω(p) ≤ min{(1 − δ)p, A0}.(2.1)

Then

S(A, z) = XW (z)(1 + O(e−τ(log τ+1))) + θ
∑

d<ξ2

µ2(d)3v(d)|Rd|,(2.2)

where |θ| ≤ 1 and

W (z) :=
∏

p<z

(

1 − ω(p)

p

)

.

Proof. This is essentially a special case (g = 1) of Theorem 7.1 in [2].

We now make use of Lemma 2.1 to deduce a lower bound sieve result.
Let A > 0 be a fixed number, and ε > 0 be a constant which is suffi-
ciently small such that, if we let C be the constant involved in the O-
symbol in (2.2), then C exp(−(1 − log(100ε))/100ε) < 1/2. Suppose N is
sufficiently large, Q, R, S ≤ (log N)A, and 2 < D ≤ N ε, where Q, R and
S are odd integers, pairwise coprime and 3 ∤ S. Let P(Q, R, S, D, N) be the
set

{

p ≤ N : p ≡ f (mod2QRS) and l
∣

∣

p − 1

2Q
⇒ l ≥ D

}

,

where f (mod2QRS) is determined by the following three congruences:

p ≡ 1 (mod2Q), p ≡ 2 (modR), p ≡ −2 (modS).

Lemma 2.2. There is a constant c > 0 such that , for large N ,

|P(Q, R, S, D, N)| ≥ cN

QRS log N log D
.

Proof. Let

A = A(Q, R, S, D, N) :=

{

p − 1

2Q
: p ≤ N and p ≡ f (mod2QRS)

}

.

Then |P(Q, R, S, D, N)| = S(A, D). We also note that, for any integer d ≥ 1,
we have

|Ad| =

{

π(N ; 2QRSd, g) if (d, RS) = 1,

0 if (d, RS) > 1,

where g (mod2QRSd) is the intersection of the residue classes

1 (mod2Qd), 2 (modR), −2 (modS).
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Let X := |A| = π(N ; 2QRS, f), and

ω(d) =







dφ(2Q)

φ(2Qd)
if (d, RS) = 1,

0 if (d, RS) > 1.

It is easy to see that ω(d) is multiplicative and satisfies (2.1) with A0 = 2
and δ = 1/2. We also note that Rd = 0 if (d, RS) > 1 and

Rd = E(N ; 2QRSd, g) − φ(2Q)

φ(2Qd)
E(N ; 2QRS, f)(2.3)

≪ E(N ; 2QRSd) +
N exp(−κ

√
log N)

φ(d)

if (d, RS) = 1, where the estimate for the term φ(2Q)
φ(2Qd)E(N ; 2QRS, f) in (2.3)

is from the Siegel–Walfisz Theorem, and κ > 0 is a certain constant. Apply-
ing Lemma 2.1 with ξ = N1/5 and noticing the restriction on ε, we get

|P(Q, R, S, D, N)| ≥ 1
2XW (D) − O(E(Q, R, S, D, N))

where the error term E(Q, R, S, D, N) is given by the sum in (2.2). By the
Siegel–Walfisz Theorem and the Mertens Theorem, the term 1

2XW (D) is

1

2
π(N ; 2QRS, f)

∏

p|2Q

(

1 − 1

p

)

∏

p∤2QRS
p≤D

(

1 − 1

p − 1

)

≫ N

QRS log N log D
.

The sum of the terms N exp(−κ
√

log N)/φ(d) in (2.3) over d gives a contri-

bution O(N exp(−(κ/2)
√

log N)), which is obviously negligible. Then, from
Lemma 3.3 of [2], we have

E(Q, R, S, D, N) ≪ N

(log N)B

for any given B > 0. We have thus proved the lemma.

We also state an upper bound result here.

Lemma 2.3. Let g be a natural number , ai, bi (i = 1, . . . , g) be pairs of

integers satisfying

(ai, bi) = 1, i = 1, . . . , g,

and

E :=

g
∏

i=1

ai

∏

1≤i<j≤g

(aibj − ajbi) 6= 0.

For prime p, let ̺(p) be the number of solutions of

g
∏

i=1

(ain + bi) ≡ 0 (modp).
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Then for any fixed constant δ ∈ (0, 1) and D ≤ xδ, we have

#

{

n ≤ x : p
∣

∣

g
∏

i=1

(ain + bi) ⇒ p > D

}

≪
∏

p|E

(

1 − 1

p

)̺(p)−g x

(log D)g
,

where the constant involved in the ≪-symbol depends on δ only.

Proof. This is a straightforward corollary of Theorem 2.2 in [2].

3. Infinitude of E-symmetric primes. In this section, we prove The-
orem 1.1. Suppose N is sufficiently large. Let

P1(N) =

{

p ≤ N : l
∣

∣

p − 1

2
⇒ l ≥ (log log N)2

}

.

Then from Lemma 2.2 (with Q = R = S = 1 and D = (log log N)2), we
have

|P1(N)| ≥ c3N

log N log log log N

for some constant c3 > 0.
We claim that, for almost all p ∈ P1(N),

(φ(p), φ(p + 2)) = 2.(3.1)

Assume p ∈ P1(N) and (3.1) does not hold. Then there is a prime
q ≥ (log log N)2 such that 2q divides (φ(p), φ(p + 2)), thus p + 2 is divisible
by a prime l ≡ 1 (mod2q).

Let l = 2sq + 1 for some s ≥ 1. Then

p + 2 = (2sq + 1)(2tq + 3)

for some t ≥ 1. (Note that t = 0 is impossible since p ≡ 1 (mod2q) and
3 ∤ (p + 2).) Thus the number of such primes p ∈ P1(N) with q > (log N)3 is
bounded by

∑

(log N)3<q≤
√

N

∑

st≤N/q2

1 ≪
∑

q

∑

m≤N/q2

d(m) ≪ N

(log N)2
≪ P1(N)√

log N
.(3.2)

The number of those p ∈ P1(N) with D ≤ q ≤ (log N)3 and l >
√

N is
bounded by

∑

D≤q≤(log N)3

∑

t≤
√

N/2q

∑

s≤N/4tq2

l|(2sq+1)((2sq+1)(2tq+3)−2)⇒l≥N1/4

1(3.3)

(for which we appeal to Lemma 2.3 with g = 2) and has upper bound
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(3.4)
∑

D≤q≤(log N)3

∑

t≤
√

N/2q

N

q2t(log N)2

∏

p|2q(2tq+3)

(

1 − 1

p

)−1

≪ N log log N

D log N
≪ |P1(N)|√

log log N
,

where we have used the fact that n/φ(n) ≪ log log n for n ≥ 3. By the Brun–
Titchmarsh inequality (cf. Theorem 3.8 in [2], for example), we have the

upper bound for the number of primes with D ≤ q ≤ (log N)3 and l ≤
√

N :

≪
∑

D≤q≤(log N)3

∑

l≤
√

N
l≡1 (mod 2q)

∑

p≤N
p≡1 (mod2q)
p≡−2 (mod l)

1(3.5)

≪ N

log N

∑

D≤q≤(log N)3

1

q

∑

l≤
√

N
l≡1 (mod 2q)

1

l

≪ N

log N

∑

D≤q≤(log N)3

(

1

q2
+

1

q

√
N\

4q

1

t
dπ(t; 2q, 1)

)

≪ N

D log N

+
N

log N

∑

D≤q≤(log N)3

1

q

(

1

q log(
√

N/2q)
+

1

q

√
N\

4q

1

t log(t/2q)
dt

)

≪ N log log N

D log N
≪ |P1(N)|√

log log N
.

From (3.2)–(3.5), we have shown that

|{p ∈ P1(N) : (φ(p), φ(p + 2)) 6= 2}| ≪ |P1(N)|√
log log N

;

we have thus proved Theorem 1.1.

4. Infinitude of E-asymmetric primes. We now prove Theorem 1.2.
Let ε > 0 be sufficiently small, as required in Lemma 2.2. Suppose N is
sufficiently large. We let q ≍ (log N)4 be a fixed prime. From Heath-Brown’s
work [4], we can further fix two distinct primes l1, l2 satisfying l1, l2 ≡ 1
(mod2q) and l1, l2 ≪ q5.5.

Let P2(N) be the set of primes p ≤ N satisfying

p ≡ 1 (mod2q), p ≡ 2 (mod l1), p ≡ −2 (mod l2),(4.1)
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and

l
∣

∣

p − 1

2q
⇒ l ≥ N ε.

Directly from Lemma 2.2, we have

|P2(N)| ≥ c4N

ql1l2(log N)2

for some constant c4 > 0.
We shall show that almost all p ∈ P2(N) are E-asymmetric. Namely, for

almost all p ∈ P2(N),

(φ(p), φ(p ± 2k)) 6= 2k

for all 2k | p − 1.
We discuss this case by case.

• k = 1. Note that 2q | (φ(p), φ(p ± 2)), thus (φ(p), φ(p ± 2)) 6= 2.
• k = q. If p ∈ P2(N) satisfies 2q |φ(p + 2q), then p + 2q is divisible by

a prime l(q) ≡ 1 (mod2q).
(1) l(q) = p + 2q. In this case, (p + 2q)(p − 1)/2q is free of prime divi-

sors ≤ N ε, and p ≡ f(q) (mod2ql1l2). Thus the number of such primes is
bounded by the number of integers n ≤ N such that each such n satisfies the
congruences (4.1) and n(n + 2q)(n − 1)/2q is free of prime divisors ≤ N ε.
This is equal to the number of integers k ∈ (−f/2ql1l2, (N − f)/2ql1l2

]

such
that

(2ql1l2k + f)(2ql1l2k + 2q + f)

(

l1l2k +
f − 1

2q

)

is free of prime divisors ≤ N ε. By Lemma 2.3, the number of such integers
k is bounded by

≪ N

ql1l2(log N)3
· 2q + 1

φ(2q + 1)
≪ |P2(N)|√

log N
.

(2) l(q) < p + 2q. Then there is an integer a > 0 such that p + 2q =
l(q)(aq + 1); the number of such p ∈ P2(N) is bounded by

∑

(aq+1)(bq+1)≤N
(aq+1)(bq+1)≡f(q)+2q (mod l1l2)

1.(4.2)

Note that f(q) + 2q is obviously prime to l1l2, so this sum is

≪
∑

a≤
√

N/q

N

aq2l1l2
≪ N

ql1l2(log N)3
≪ |P2(N)|

log N
.(4.3)

Therefore,

|{p ∈ P2(N) : (φ(p), φ(p + 2q)) = 2q}| ≪ |P2(N)|√
log N

.
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Similarly, we can show that

|{p ∈ P2(N) : (φ(p), φ(p − 2q)) = 2q}| ≪ |P2(N)|√
log N

.

• k > q. Suppose there is a prime l > N ε such that

(φ(p), φ(p + 2ml)) = 2ml,

where m satisfies

(I) if q |m, then m/q = 1 or r |m/q ⇒ r ≥ N ε;
(II) if q ∤ m, then m = 1 or r |m ⇒ r ≥ N ε.

We estimate the number of such primes p ∈ P2(N) in dependence on whether
p + 2ml is a prime.

(1) p + 2ml is a prime. The two cases (q |m or q ∤ m) can be treated
similarly.

When q |m, the corresponding prime p ∈ P2(N) satisfies the following
conditions:

(i) p = 2qst + 1, r | st ⇒ r ≥ N ε;
(ii) 2qst + 2qs + 1 is a prime;
(iii) st ≡ g(q) (mod l1l2) for some (s, t) ∈ N2, where g(q) = (f(q) − 1)/2q.

The number of such primes is bounded by
∑

st≤N/2q, s>Nε

st≡g(q) (mod l1l2)
r|st(2qst+1)(2qst+2qs+1)⇒r≥Nε

1.

From Lemma 2.3, this sum is bounded by
∑

t≤N1−ε/2q
(t,l1l2)=1
r|t⇒r≥Nε

∑

s≤N/2qt
s≡g(q)t̄ (mod l1l2)

r|s(2qst+1)(2qst+2qs+1)⇒r≥Nε

1

≪
∑

t≤N1−ε/2q
(t,l1l2)=1
r|t⇒r≥Nε

N

ql1l2t(log N)3

∏

l|ql1l2

(

1 − 3

l

)−1
∏

3<l|t(t+1)

(

1 − 2/l

1 − 3/l

)

≪ N

ql1l2(log N)3

∑

t≤N1−ε/2q
r|t⇒r≥Nε

t + 1

φ(t(t + 1))
.

Taking (log log N)2/t(t + 1) as an upper bound of 1/φ(t(t + 1)), by the
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Mertens Theorem, this sum is bounded by

N(log log N)2

ql1l2(log N)3

∑

t≤N

r|t⇒r≥Nε

1

t
≪ N(log log N)2

ql1l2(log N)3

∏

Nε≤r≤N

(

1 +
1

r

)

≪ N(log log N)2

ql1l2(log N)3
≪ |P2(N)|√

log N
.

We can similarly deal with the case when q ∤ m and get the same upper
bound.

(2) p + 2ml is not a prime. Then p + 2ml is (strictly) divisible by a
prime r(l) ≡ 1 (mod l). This is similar to the case when p + 2q is divisible
by a prime r(q) ≡ 1 (mod2q). With the same argument as in (4.2)–(4.3),
the number of these p ∈ P2(N) is bounded by O(N1−ε).

We have thus shown that

|{p ∈ P2(N) : (φ(p), φ(p + 2k) = 2k for some k > q}| ≪ |P2(N)|√
log N

.

Similarly, we have

|{p ∈ P2(N) : (φ(p), φ(p − 2k) = 2k for somek > q}| ≪ |P2(N)|√
log N

.

Collecting all these estimates together, we have shown that almost all
primes in P2(N) are E-asymmetric, and thus Theorem 1.2 follows.
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