COLLOQUIUM MATHEMATICUM

VOL. 103 2005 NO. 1

NONALIQUOTS AND ROBBINS NUMBERS

BY

WILLIAM D. BANKS (Columbia, MO) and FLORIAN LUCA (Morelia)

Abstract. Let ¢(-) and o(-) denote the Euler function and the sum of divisors func-
tion, respectively. We give a lower bound for the number of m < x for which the equation
m = o(n) — n has no solution. We also show that the set of positive integers m not of
the form (p —1)/2 — ¢(p — 1) for some prime number p has a positive lower asymptotic
density.

1. Introduction. Let ¢(-) denote the Euler function, whose value at
the positive integer n is

w(n):ng<1—%>,

and let o(-) denote the sum of divisors function, whose value at the positive

integer n is
pa+l -1
o= d=]]= =~

d|n p%|n

An integer in the image of the function f,(n) = o(n) —n is called an aliquot
number. If m is a positive integer for which the equation f,(n) = m has
no solution, then m is said to be nonaliqguot. Erdés [1] showed that the
collection of nonaliquot numbers has a positive lower asymptotic density,
but no numerical lower bound on this density was given. In Theorem 1
(Section 2), we show that the lower bound #Ng(z) > f52 (1 + o(1)) holds,
where

No(z) ={1 <m < x:m# fu(n) for every positive integer n}.

For an odd prime p, let f.(p) = (p—1)/2—¢(p—1). Note that f,.(p) counts
the number of quadratic nonresidues modulo p which are not primitive roots.
At the 2002 Western Number Theory Conference in San Francisco, Neville
Robbins asked whether there exist infinitely many positive integers m for
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which f,(p) = m has no solution; let us refer to such integers as Robbins
numbers. The existence of infinitely many Robbins numbers has been shown
recently by Luca and Walsh [4], who proved that for every odd integer w > 3,
there exist infinitely many integers ¢ > 1 such that 2‘w is a Robbins number.
In Theorem 2 (Section 3), we show that the set of Robbins numbers has a
positive density; more precisely, if

No(z)={1<m <z:m+# f(p) for every odd prime p},
then the lower bound #M;(z) > 2 (14 o(1)) holds.

Notation. Throughout the paper, the letters p and ¢ are used to denote
prime numbers. As usual, 7(z) denotes the number of primes p < z, and if
a,b > 0 are coprime integers, 7(x;b,a) denotes the number of primes p < x
such that p = a (mod b). For any set A and real number x > 1, we denote by
A(zx) the set AN[1, z]. For a real number z > 0, we put log x = max{lnz, 1},
where Inz is the natural logarithm, and log, = log(log ). Finally, we use
the Vinogradov symbols < and >, as well as the Landau symbols O and o,
with their usual meanings.
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2. Nonaliquots

THEOREM 1. The inequality
x

HNo(2) > 2 (14 0(1)

holds as x — oo.

Proof. Let K be the set of positive integers k = 0 (mod 12). Clearly,

(1) #K(z) = % +0(1).

We first determine an upper bound for the cardinality of (K \ Ny)(z).
Let k € (K \ NV,)(x); then there exists a positive integer n such that

fa(n) =0(n) —n==k.
Since k € IC, it follows that
(2) n =o(n) (mod12).
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Assume first that n is odd. Then o(n) is odd as well, and therefore n is

a perfect square. If n = p? for some prime p, then
z>k=0(p’)—p’=p+1;
hence, the number of such integers k is at most m(z — 1) = o(x). On the
other hand, if n is not the square of a prime, then n has at least four prime
factors (counted with multiplicity). Let p; be the smallest prime dividing n;
then p; < n'/4, and therefore
n3/4§£ <on)—n=k<u;
n

hence, n < z4/3. Since n is a perfect square, the number of integers k is at
most £%/% = o(z) in this case.

The above arguments show that all but o(z) integers k € (K \ Ny)(x)
satisfy an equation of the form

fa(n)=0(n)—n==k
for some even positive integer n. For such k, we have

gga(n)—n:k‘gw;

that is, n < 2z. It follows from the work of [2] (see, for example, the dis-
cussion on page 196 of [3]) that 12|o(n) for all but at most o(x) positive
integers n < 2z. Hence, using (2), we see that every integer k € (K \N,)(x),
with at most o(x) exceptions, can be represented in the form k = f,(n) for
some n = 0 (mod 12). For such k, we have

kaza(n)—nzn(%n)—QZn(dll;)—l):%,

therefore n < %x. Since n is a multiple of 12, it follows that
T
#IC\Na)(2) < 25 (L+o(1)).

Combining this estimate with (1), we derive that

#Na(@) 2 #(K NN (2) = #K(z) — #(K\ Na)(2)

T

. (E _ f_6><1 +o(1)) = = (1+ (1)),

which completes the proof. =

3. Robbins numbers

THEOREM 2. The inequality

#Nev(z) > 2 (1+0(1))

wlr

holds as x — oo.
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Proof. Let
Mqp ={2% : k=3 (mod6) and « =0 (mod2)},
My ={2% : k=5 (mod6) and o =1 (mod 2)},
and let M be the (disjoint) union M; U Mas. It is easy to see that
x

#Mi(z) = %:C (1+0(1)) and #Ms(z) = 5

(1+0(1))
as x — 00; therefore,
#M(@) = 5 (1+o(1).

Hence, it suffices to show that all but o(z) numbers in M(z) also lie in
N ().

Let m € M(x), and suppose that f,(p) = m for some odd prime p. If
m = 2% and p — 1 = 2%w, where k and w are positive and odd, then

Qﬁfl(w —p(w)) = 1%1 —pp—1) = fr(p) =m =2%.

If w =1, then w — ¢p(w) = 0, and thus m = 0, which is not possible. Hence,
w > 3, which implies that ¢(w) is even, and w — p(w) is odd. We conclude
that 6 =a+ 1 and w — p(w) = k.

Let us first treat the case that ¢? | w for some odd prime g¢. In this case,
we have

k=w—p(w) >

|8

and therefore w < gk < gm < qx. Since ¢? |w and w| (p — 1), it follows that
p =1 (mod ¢?). Note that ¢*> < w < gx; hence, ¢ < . Since
p=2"tw+1<2T gk +1=2gm +1 < 3¢z,

the number of such primes p is at most 7(3gz; ¢%,1). Put y = exp(y/logz ).
If ¢ < z/y, we use the well known result of Montgomery and Vaughan [5]
to derive that

W(Sqﬂ:‘gQ 1) < 6qx < 6z < 9z
T p(g?)log(3x/q) T (g —1)logy T gy/logw

(in the last step, we used the fact that ¢ > 3), while for ¢ > x/y, we have

the trivial estimate
3qr 3z
7(3gz % 1) < S22 = 32
? q
Summing over q, we see that the total number of possibilities for the prime p
is at most

9z 1 1
o 2 gt 2 g

q<z/y z/y<q<w
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Since
> L < logy(a/y) < logy 7,
q<z/y

and

1 1
Z — =logy x — logy(x/y) + O(logm)

z/y<q<z

logy 1 1
=1 14+ — Ol — —_—
o8 ( + logz — logy) + (logaz) < Viogz’

the number of possibilities for p (hence, also for m = f,(p)) is at most

xlogy x
O< T > = o(z).

Thus, for the remainder of the proof, we can assume that w is squarefree.

We claim that 3 |w. Indeed, suppose that this is not the case. As w is
squarefree and coprime to 3, it follows that p(w) # 2 (mod3) (if ¢|w for
some prime ¢ = 1 (mod3), then 3| (g — 1) [ ¢(w); otherwise ¢ = 2 (mod 3)
for all ¢|w; hence, p(w) = [[;,(¢ —1) = 1 (mod3)). In the case that
m € Mj, we have p = 2°Ttw + 1 = 2w + 1 (mod 3), thus w # 1 (mod 3)
(otherwise, p = 3 and m = 0); then w = 2 (mod 3). However, since p(w) # 2
(mod 3), it follows that 3 cannot divide K = w — ¢(w), which contradicts
the fact that k¥ = 3 (mod6). Similarly, in the case that m € May, we have
p=2"w+1=w+1 (mod3), thus w # 2 (mod3); then w = 1 (mod 3).
However, since ¢(w) # 2 (mod3), it follows that £ = w — ¢(w) = 0 or 1
(mod 3), which contradicts the fact that £ = 5 (mod 6). These contradictions
establish our claim that 3 | w.

From the preceding result, we have

which implies that p = 2°Tw +1 = 2271 .3k +1 < 6m + 1 < Tz. As
7(7x) < z/log x, the number of integers m € M(x) such that m = f,.(p) for
some prime p of this form is at most o(x), and this completes the proof. =
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