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�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITYOF POLYNOMIALS IN TWO COMPLEX VARIABLESBYJANUSZ GWO�DZIEWICZ and ARKADIUSZ P�OSKI (Kiele)Abstrat. For every polynomial F in two omplex variables we de�ne the �ojasiewizexponents £p,t(F ) measuring the growth of the gradient ∇F on the branhes entered atpoints p at in�nity suh that F approahes t along γ. We alulate the exponents £p,t(F )in terms of the loal invariants of singularities of the penil of projetive urves assoiatedwith F .Introdution. The notion of �ojasiewiz exponent was introdued andstudied by Lejeune-Jalabert and Teissier [LJ-T℄. In the ase of isolated sin-gularities of hypersurfaes Teissier [T℄ showed that the �ojasiewiz expo-nent of the gradient an be alulated by means of polar invariants. ThenHà [H℄ de�ned the �ojasiewiz exponents at in�nity £∞,t(F ) and £∞(F ) forevery polynomial F of two omplex variables and applied these notions tothe singularities at in�nity. His results were ompleted by Ch¡dzy«ski andKrasi«ski [ChK1℄, [ChK2℄. Moreover Cassou-Noguès and Hà [CN-H℄ gave aformula for £∞(F ) using the Eisenbud and Neumann diagrams.In this note we de�ne the �ojasiewiz exponents £p,t(F ) at points (p, t)at in�nity. To be more spei�, onsider a polynomial F : C

2 → C of degree
d > 0. To study the growth of the gradient ∇F = (∂F/∂X, ∂F/∂Y ) at in�-nity we extend C

2 to the projetive plane P
2(C) = C

2∪L∞ and onsider the�ojasiewiz exponents £p,t(F ) for every pair (p, t) ∈ L∞ × C. Roughly spe-aking (see Setion 1 for the preise de�nition), £p,t(F ) measures the growthof ∇F on the branhes γ of P
2(C) entered at p suh that F approahes

t ∈ C along γ. Let F ∗(X, Y, Z) = ZdF (X/Z, Y/Z) be the homogeneousform orresponding to F = F (X, Y ). We will show how to alulate £p,t(F )in terms of the loal invariants of singularities at in�nity of the penil of pro-jetive urves F ∗(X, Y, Z)− tZd, t ∈ C. It turns out that if (p, t) is a ritialpoint at in�nity for F (see [D℄ and Preliminaries 0.3) then £p,t(F ) an bealulated by means of the polar invariants, as in the loal ase (see [T℄). If
(p, t) is a regular point at in�nity then we need another invariant of singu-2000 Mathematis Subjet Classi�ation: 32S99, 14R99.Key words and phrases: �ojasiewiz exponent, equisingularity at in�nity, polar urves.This researh was partially supported by KBN Grant No 2P03A01522.[47℄



48 J. GWO�DZIEWICZ AND A. P�OSKIlarity to alulate £p,t(F ) (see Preliminaries 0.2 and Theorem 1.2). Putting
£∞,t(F ) = inf{£p,t(F ) : p ∈ L∞} we get the �ojasiewiz exponent of thegradient ∇F along the �ber F = t. This notion was studied by Hà [H℄ andreently by Ch¡dzy«ski and Krasi«ski in [ChK2℄ in a global a�ne ontext.In partiular in [ChK2℄ it was proved that there is a onstant ª∞(F ) ≥ 0suh that £∞,t(F ) = ª∞(F ) for all regular values t of the mapping F . In ge-neral ª∞(F ) 6= £∞(F ). The onstant ª∞(F ) haraterizes the growth of thegradient ∇F on the regular �bers F−1(t). In this paper we give a desriptionof polynomials F with ª∞(F ) = 0 (Theorem 1.3(i)) and we alulate ª∞(F )in the ase of one branh at in�nity (Proposition 1.9). Our main theorems(Theorem 1.2 and 1.3) improve the results obtained in [H℄ and [ChK2℄ andshow that the �ojasiewiz exponent at in�nity is a purely loal notion.0. Preliminaries. In this setion we �x our notation and reall someuseful notions and results.0.1. Branhes at in�nity. We use the notions of the lassial theory ofplane algebrai urves. Let P

2(C) = C
2∪L∞, where L∞ is the line at in�nity.A plane branh γ will be alled a branh at in�nity if it is entered at apoint p ∈ L∞ and it is not a branh of L∞. We denote by B∞,p the set of allbranhes at in�nity entered at p and put B∞ =

⋃

p B∞,p.Consider a projetive oordinate system (X : Y : Z) suh that Z = 0is the equation of L∞. If F = F (X, Y ) ∈ C[X, Y ] is a polynomial of de-gree d > 0 and F ∗ = F ∗(X, Y, Z) ∈ C[X, Y, Z] is the homogeneous formorresponding to F , then we put
degγ F = − ordγ

F ∗

Zd
= d ordγ Z − ordγ F ∗, deg γ = ordγ Zfor every branh γ ∈ B∞.Here ordγ F ∗ stands for the order of vanishing of the homogeneous form

F ∗ = F ∗(X, Y, Z) at the branh γ. We adopt the usual onventions on thesymbol ∞. Note that degγ F ∈ Z ∪ {−∞} with degγ F = −∞ if and only if
γ is a branh of the projetive urve F ∗ = 0.For every branh γ ∈ B∞ we de�ne the value F (γ) ∈ C∪{∞} as follows:if degγ F ≤ 0 then F (γ) is the unique t ∈ C suh that degγ(F − t) < 0;if degγ F > 0 then F (γ) = ∞.Let γ ∈ B∞. We say that a pair p(T ) = (x(T ), y(T )) of Laurent series
x(T ), y(T ) ∈ C((T )) is a meromorphi parametrization of γ if ord p(T ) :=
min{ordx(T ), ord y(T )} is negative and γ is given in projetive oordinatesby (T kx(T ) : T ky(T ) : T k), where k = − ord p(T ). It is easy to hek that
deg γ = − ord p(T ), degγ F = − ord F (p(T )) and F (γ) = F (p(T ))|T=0.For every nononstant polynomial F ∈ C[X, Y ] we onsider its gradient
∇F = (∂F/∂X, ∂F/∂Y ). For every γ ∈ B∞ we put
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degγ ∇F = sup

{

degγ

∂F

∂X
, degγ

∂F

∂Y

}

.Using meromorphi parametrizations we hek that degγ ∇F = −∞ if andonly if γ is a branh at in�nity of a multiple omponent of the urve F ∗ = 0.Moreover for every γ ∈ B∞ if degγ F 6= 0 then degγ F ≤ degγ ∇F +deg γ.0.2. Germs of urves. Our main referene is [Ca℄. We will onsider thegerms γ, γ′, . . . of analyti urves at a given point p of a omplex nonsingularsurfae. We denote by (γ · γ′)p the intersetion multipliity of γ and γ′ at pand by µp(γ) the Milnor number of γ. If γ is a branh then S(γ) denotes thesemigroup of γ generated by all intersetion numbers (γ · γ′)p. Let λ be asmooth branh at p. We say that two redued germs γ, γ′ are λ-equisingularif λ 6⊂ γ ∪ γ′ and there are deompositions γ =
⋃r

i=1 γi and γ′ =
⋃r

i=1 γ′
i asunions of the same number r > 0 of branhes suh that

• S(γi) = S(γ′
i),

• (γi · γj)p = (γ′
i · γ

′
j)p,

• (γi · λ)p = (γ′
i · λ)pfor all i, j = 1, . . . , r.The �rst two onditions de�ne the equisingularity of germs γ and γ′.Note that the equisingularity of the germs γ ∪ λ and γ′ ∪ λ does not implythat γ and γ′ are λ-equisingular. Take for example the germs at the origin ofthe urves x(y−x2) = 0, x(x−y2) = 0 and y = 0 as γ, γ′ and λ respetively.Let U be an open and onneted subset of C. Using the Zariski disrimi-nant riterion [Z℄ we get the

Equisingularity Criterion. Let (γt : t ∈ U) be an analyti family ofgerms suh that:(i) there is an integer n > 0 suh that (γt · λ)p = n for all t ∈ U,(ii) there is an integer µ ≥ 0 suh that µ0(γ
t) = µ for all t ∈ U .Then any two germs of the family (γt : t ∈ U) are λ-equisingular.Note here that in [Z℄ the disriminant riterion is proved in the asewhere γt and λ are transverse. The proof in the general ase needs somerather obvious modi�ations.Let λ be a smooth branh at a point p of a omplex surfae. For any germ

γ of an analyti urve we onsider the maximal polar quotient ηp(γ, λ) (f.[T℄ and [Pª2℄). To reall the de�nition of ηp(γ, λ) hoose a system of loaloordinates (X, Y ) suh that X(p) = Y (p) = 0 and identify the loal ringat 0 with the ring of onvergent power series C{X, Y }. Let f(X, Y ) = 0 and
l(X, Y ) = 0 be the loal redued equations of γ and λ, respetively. Let

j(f, l) =
∂f

∂X

∂l

∂Y
−

∂f

∂Y

∂l

∂X
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ηp(γ, λ) = sup

{

(f, g)0
(l, g)0

: g is an irreduible fator of j(f, l)

}

.In [Pª2℄ an expliit formula for ηp(γ, λ) is given whih shows that ηp(γ, λ) isa λ-invariant of equisingularity.Now, de�ne
Θp(γ, λ) = sup

{

(h, j(f, l))0
(l, h)0

: h is an irreduible fator of f

}

.By the well known properties of intersetion numbers
(fi, j(f, l))0 = (fi, j(fi, l))0 +

∑

j 6=i

(fi, fj)0

= µ0(fi) + (fi, l)0 − 1 +
∑

j 6=i

(fi, fj)0

we get the following formula for Θp(γ, λ):Let γ =
⋃r

i=1 γi with branhes γi pairwise di�erent. Let µi be the Milnornumber of γi. Then
Θp(γ, λ) =

r
sup
i=1

{

µi − 1

(γi · λ)p
+ 1 +

1

(γi · λ)p

∑

j 6=i

(γi · γj)p

}

.

The properties listed below are useful.1. If (γ ·λ)p = 2 (for γ irreduible or not) then Θp(γ, λ) = (µp(γ) + 1)/2.2. Θp(γ, λ) ≥ 0 with equality if and only if γ and λ are smooth andtransverse.3. Θp(γ, λ) ≥ µp(γ)−1
(γ·λ)p

+ 1 with equality if γ is a branh.0.3. Critial points at in�nity. For any projetive plane urve C we de-note by |C| the support of C. We identify C and |C| if C has no multipleomponents. For any two projetive plane urves C, C ′ we denote by (C ·C ′)pthe intersetion multipliity of the germs (C, p) and (C ′, p), and by µp(C)the Milnor number of the germ (C, p). Note that µp(C) < +∞ if and only ifthere is no multiple omponent of C passing through p.The following onstrution is due to Broughton [B℄. Let F = F (X, Y ) bea polynomial of degree d > 0 and let F ∗ = F ∗(X, Y, Z) be the homogeneousform orresponding to F . Consider the penil Ct : F ∗(X, Y, Z) − tZd = 0,
t ∈ C, of projetive urves. The set C∞ given by F ∗(X, Y, Z) = Z = 0 is theset of base points of the penil (Ct : t ∈ C). Fix a point p ∈ C∞ and let

µmin
p = inf{µp(C

t) : t ∈ C}, Λp(F ) = {t ∈ C : µp(C
t) > µmin

p }.
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p is an integer and Λp(F ) is a �nite subset of C. Clearly the integer

dp = (Ct ·L∞)p does not depend on t. Applying the Equisingularity Criterionto the family (Ct, p), t ∈ C \ Λp(F ), and to λ = (L∞, p) we get the
Equisingularity at Infinity Property. For every p ∈ C∞ any twogerms of the family (Ct, p), t ∈ C \ Λp(F ), are (L∞, p)-equisingular.The pairs (p, t) ∈ L∞ × C, where p ∈ C∞ and t ∈ Λp(F ), are alledritial points at in�nity of the polynomial F (see [D℄ and [GwP℄ for otherde�nitions and examples).1. Results. We keep the notation introdued in the Preliminaries. Let

F : C
2 → C be a polynomial of degree d > 1 and let∇F = (∂F/∂X, ∂F/∂Y )be its gradient. For every pair (p, t) ∈ L∞ × C we put

£p,t(F ) = inf

{

degγ ∇F

deg γ
: γ ∈ B∞,p and F (γ) = t

}

and all £p,t(F ) the �ojasiewiz exponent of the polynomial F at (p, t).Let C be the projetive losure of the a�ne urve F (X, Y ) = 0 and let
C∞ = |C| ∩ L∞.Property 1.1. Let (p, t) ∈ L∞ × C. If p 6∈ C∞ then £p,t(F ) = +∞. If
p ∈ C∞ and a multiple omponent of Ct passes through p then £p,t(F ) =
−∞.Proof. If p 6∈ C∞ then the set {γ ∈ B∞,p : F (γ) = t} is empty andonsequently £p,t(F ) = inf ∅ = +∞. If p ∈ C∞ and a multiple omponentof Ct passes through p then degγ ∇F = −∞ for a branh γ of Ct enteredat p and £p,t(F ) = −∞.In what follows we assume that p ∈ C∞. We say that the �ojasiewizexponent £p,t(F ) is attained on an a�ne urve Γ if there is a branh γ of Γentered at p suh that F (γ) = t and degγ ∇F

deg γ = £p,t(F ).Reall that Ct is the projetive losure of the �ber F (X, Y ) − t = 0(Ct may have multiple omponents). We put ∇qF = a ∂F
∂X + b∂F

∂Y for every
q = (a : b : 0) ∈ L∞ and we all ∇qF = 0 a polar urve. Our main resultsare:Theorem 1.2. Let F : C

2 → C be a polynomial mapping of degree d > 1and let (Ct : t ∈ C) be the penil of projetive urves assoiated with F . Then(i) £p,t(F ) = d − 1 − Θp(C
t, L∞) if t ∈ C \ Λp(F ). Moreover £p,t(F ) isattained on the �ber F = t.(ii) £p,t(F ) = d − 1 − ηp(C
t, L∞) if t ∈ Λp(F ) and £p,t(F ) is attainedon every polar urve ∇qF = 0, q 6∈ C∞.



52 J. GWO�DZIEWICZ AND A. P�OSKITheorem 1.3. Assume additionally that (p, t) ∈ C∞×C and there is nomultiple omponent of Ct passing through p. Then the �ojasiewiz exponent
£p,t(F ) is determined by the lass of (L∞, p)-equisingularity of the germ
(Ct, p) and the following holds:(i) There exists a rational number ªp(F ) ≥ 0 suh that £p,t(F ) = ªp(F )for all t ∈ C \ Λp(F ). For every t ∈ C \ Λp(F ) the exponent £p,t(F )is attained on the �ber F = t.(ii) ªp(F ) = 0 if and only if C is a penil of lines passing through p.(iii) If t ∈ Λp(F ) then £p,t(F ) < −1. Let q ∈ L∞\C∞. Then the exponent

£p,t(F ) is attained on the polar urve ∇qF = 0.Note that property (ii) is impliit in [K-P℄. The proofs of the abovetheorems are given in Setion 4. Now let us present some appliations.Corollary 1.4 (f. [H℄, [D℄). The following onditions are equivalent :(M) the pair (p, t) ∈ L∞ × C is a ritial point at in�nity for the poly-nomial F ,(�) £p,t(F ) < −1,(G) there exists a branh γ ∈ B∞,p suh that
∂F

∂X
(γ) =

∂F

∂Y
(γ) = 0 and F (γ) = t.Proof. Conditions (M) and (�) are equivalent by Theorem 1.3(i) and (iii).To hek that (G) implies (�) take a branh γ ∈ B∞,p satisfying (G). Then

degγ ∇F < 0 and by de�nition of the �ojasiewiz exponent, £p,t(F ) < 0.Therefore £p,t(F ) < −1 by Theorem 1.3. The impliation (�)⇒(G) is ob-vious.Following [ChK2℄ we put
£∞,t(F ) = inf

{

degγ ∇F

deg γ
: γ ∈ B∞ and F (γ) = t

}

and all £∞,t(F ) the �ojasiewiz exponent of F along the �ber F = t.It is easy to see that £∞,t(F ) = inf{£p,t(F ) : p ∈ C∞}. We say that theexponent £∞,t(F ) is attained on an a�ne urve Γ if there is a branh atin�nity γ of Γ suh that degγ ∇F

deg γ = £∞,t(F ). Let Λ(F ) =
⋃

p∈C∞

Λp(F ).Corollary 1.5 (f. [ChK2℄ and [H℄). There exists a onstant ª∞(F ) ≥ 0suh that £∞,t(F ) = ª∞(F ) for all t ∈ C \ Λ(F ). For suh t the exponent
£∞,t(F ) is attained on the �ber F = t. If t ∈ Λ(F ) then £∞,t(F ) < −1 andthe exponent £∞,t(F ) is attained on every polar urve ∇qF = 0, q 6∈ C∞.Proof. We put ª∞(F ) = inf{ªp(F ) : p ∈ C∞} and use Theorem 1.3.



�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITY 53Finally, onsider the total �ojasiewiz exponent £∞(F ) (see [H℄ and[ChK1℄):
£∞(F ) = inf

{

degγ ∇F

deg γ
: γ ∈ B∞

}

.Using Corollary 1.5 we get easilyCorollary 1.6 (f. [H℄). If Λ(F ) 6= ∅ then £∞(F ) = inft∈Λ(F ) £∞,t(F ).Remark 1.7. If Λ(F ) = ∅ and the projetive losure of the a�ne urve
F (X, Y ) = 0 rosses the line at in�nity L∞ at c 6= deg F distint points,then £∞(F ) < ª∞(F ).In [CN-H℄ the authors alulated the total �ojasiewiz exponent £∞(F )in terms of the Eisenbud and Neumann diagrams. Here is a reformulation oftheir result for polynomials F with Λ(F ) 6= ∅.Proposition 1.8 (f. [CN-H, Proposition 6℄). Let F : C

2 → C be apolynomial of degree d > 1 suh that Λ(F ) 6= ∅. Put C ′
∞ = { p ∈ C∞ :

(C, L∞)p > 1 }. Then
£∞(F ) = d − 1 − sup{ηp(C

t, L∞) : (p, t) ∈ C ′
∞ × C}.Proof. We use Corollary 1.6 and Theorem 1.2(ii).Let µ(F ) be the total Milnor number of F de�ned to be the sum of allMilnor numbers of the urves F = t. Then µ(F ) < +∞ if and only if all theurves F = t are redued.Proposition 1.9. Let F be a square-free polynomial of degree d > 1suh that the urve F = 0 has only one branh at in�nity. Thenª∞(F ) =

µ(F ) − 1

d
+ 1.In partiular , if F is a omponent of a polynomial automorphism then ª∞(F )

= 1 − 1/d.Proof. Aording to the Ephraim�Moh theorem ([E, Theorem 3.4℄) wehave Λ(F ) = ∅. Let p be the unique point at in�nity of the urve C. Then allgerms (Ct, p) are redued and irreduible, µt
p ≡ µmin

p and θt
p ≡ (µmin

p − 1)/d
+1 (see Preliminaries 0.2 and 0.3). By Theorem 1.2(i) we get ª∞(F ) = d−2
−(µmin

p − 1)/d. Using [CN, Proposition 12℄ we have d2−3d+2 = µmin
p +µ(F )and the proposition follows.2. Loal invariants of singularities. We keep the notation introduedin the Preliminaries. Both invariants ηp(γ, λ) and Θp(γ, λ) an be alulatedby means of Puiseux series. Let f(X, Y ) = 0 and l(X, Y ) = 0 be loalredued equations of γ and λ. Let C{X}∗ =

⋃

n≥1 C{X1/n}.



54 J. GWO�DZIEWICZ AND A. P�OSKIProposition 2.1. Let (X, Y ) be a system of oordinates suh that λ hasthe equation X = 0. Suppose that f(X, Y ) = U(X, Y )
∏n

i=1(Y − yi(X)) with
yi = yi(X) ∈ C{X}∗ without onstant terms and U(X, Y ) ∈ C{X, Y } suhthat U(0, 0) 6= 0. Then(i) (γ · λ)p = n,(ii) Θp(γ, λ) =

n
sup
i=1

{

∑

j 6=i

ord(yi − yj)
},(iii) ηp(γ, λ) =

n
sup
i=1

{

∑

j 6=i

ord(yi − yj) + max
j 6=i

{ord(yi − yj)}
}.

Proof. Properties (i) and (ii) follow easily from the de�nitions. The proofof (iii) is given in [Pª2, Proposition 2.2℄.Proposition 2.2. If n = (γ · λ)p > 1 then Θp(γ, λ) ≤ n−1
n ηp(γ, λ).Proof. With the above notation, Θp(γ, λ) =

∑

j 6=i0
ord(yi0 − yj) for an

i0 ∈ {1, . . . , n}. Therefore Θp(γ, λ) ≤ (n − 1) maxj 6=i0{ord(yi0 − yj)} and
Θp(γ, λ) +

1

n − 1
Θp(γ, λ) ≤

∑

j 6=i0

ord(yi0 − yj) + max
j 6=i0

{ord(yi0 − yj)}

≤ ηp(γ, λ)by Proposition 2.1(iii).Proposition 2.3. Let n = (γ ·λ)p > 1. If Θp(γ, λ) = n−1 and ηp(γ, λ)
= n then n = ord γ, that is, γ and λ are transverse.Proof. With the notations of Proposition 2.1 we get

∑

j 6=i0

ord(yi0 − yj) = n − 1 for an i0 ∈ {1, . . . , n},(1)
∑

j 6=i0

ord(yi0 − yj) + max
j 6=i0

{ord(yi0 − yj)} ≤ n.(2)
From (1) and (2) we get(3) ord(yi0 − yj) = 1 for all j 6= i0.Now we an hek that yi0 = yi0(X) ∈ C{X}. In fat, let f1(X, Y ) ∈
C{X, Y } be the irreduible power series suh that f1(X, yi0(X)) = 0. If wehad (f1, X)0 > 1 then there would exist a solution yi1(X) 6= yi0(X) of theequation f1(X, Y ) = 0 suh that ord(yi0(X)−yi1(X)) 6= 1 (see, for example,[Pª2, Proposition 3.1℄) and we would get a ontradition with (3). There-fore yi0(X) ∈ C{X} and onsequently ord yi0(X) ≥ 1. Now, by (3) we get
ord yj(X) ≥ 1 for all j = 1, . . . , n and ord f(X, Y ) = ord

∏n
j=1(Y −yj(X)) =

∑n
j=1 ord(Y − yj(X)) = n = (f, X)0.



�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITY 55The germ given by the equation j(f, l) = 0 will be alled a loal polar of
γ with respet to λ.Proposition 2.4. Let γ′ be a loal polar of γ with respet to λ. Thenfor every branh ξ,

(γ · ξ)p

(λ · ξ)p
≤ ηp(γ, λ) or (γ′ · ξ)p

(λ · ξ)p
≤ Θp(γ, λ).Proof. Let f = f1 · · · fr and j(f, l) = g1 · · · gs be the deompositions intoirreduible fators and let h = 0 be the redued equation of ξ. Then

(f, h)0
(l, h)0

≤
s

max
j=1

{

(f, gj)0
(l, gj)0

} or (j(f, l), h)0
(l, h)0

≤
r

max
i=1

{

(fi, j(f, l))0
(l, fi)0

}

by [ChP, Theorem 1.1 and Conluding Remarks℄. Now we use the de�nitionsof ηp and Θp.3. Polar urves. Let F : C
2 → C be a polynomial of degree d > 1 andlet C be the projetive urve F ∗(X, Y, Z) = 0. The polar urve ∇qC withthe equation a∂F ∗/∂X + b∂F ∗/∂Y = 0 will be alled generi at in�nity if

q = (a : b : 0) ∈ L∞ \ |C|, that is, if q = (a : b : 0) and F ∗(a, b, 0) 6= 0. Thefollowing is well known:Lemma 3.1. Let D be a polar of C, generi at in�nity. Suppose that thegerm (C, p) is redued and (C · L∞)p > 1. Then (D, p) is a loal polar urveof (C, p) with respet to (L∞, p).Reall that C ′
∞ = {p ∈ C∞ : dp > 1}.Lemma 3.2. Let D be a polar of C generi at in�nity. Then(i) |C| ∩ |D| ∩ L∞ = C ′

∞.(ii) If γ ∈ B∞ is a branh of D suh that degγ F 6= 0 then degγ F =
degγ ∇F + deg γ.Proof. (i) It su�es to observe that p = (x0 : y0 : 0) ∈ |C| ∩ |D| if andonly if the linear form y0X − x0Y is a multiple fator of F ∗(X, Y, 0).(ii) Let p(T ) = (x(T ), y(T )) be a meromorphi parametrization of γ andlet l(X, Y ) = bX − aY . We get ord l(p(T )) = −degγ l = deg γ, for the line

l = 0 does not interset the polar D at in�nity. From
a

∂F

∂X
(p(T )) + b

∂F

∂Y
(p(T )) = 0and

ẋ(T )a
∂F

∂X
(p(T )) + ẏ(T )b

∂F

∂Y
(p(T )) =

d

dT
F (p(T ))we get

d

dt
l(T )

∂F

∂X
(p(T )) = −b

d

dT
F (p(T )).



56 J. GWO�DZIEWICZ AND A. P�OSKIComputing the orders along γ of both sides we get degγ ∂F/∂X = degγ F −
deg γ if b 6= 0, degγ ∂F/∂X = −∞ if b = 0, and similarly for degγ ∂F/∂Y .Hene (ii) follows.Lemma 3.3. Let D be a polar of C generi at in�nity. Let p ∈ C∞ andsuppose that the germ (C, p) is redued.(i) If p ∈ C ′

∞ then
ηp(C, L∞) = sup

{

ordγ C

ordγ L∞
: γ ∈ B∞,p is a branh of D

}

.

(ii) Θp(C, L∞) = sup

{

ordγ D

ordγ L∞
: γ ∈ B∞,p is a branh of }.Proof. Use Lemma 3.1 and the de�nitions of ηp and Θp.Proposition 3.4. Let D be a generi polar of C. Let p ∈ C∞ be suhthat (C, p) is redued. Then for every branh γ ∈ B∞,p,

ordγ C

ordγ L∞
≤ ηp(C, L∞) or ordγ D

ordγ L∞
≤ Θp(C, L∞).Proof. Use Proposition 2.4 and Lemma 3.1.4. �ojasiewiz exponents and invariants of singularities. In thissetion we give the proofs of Theorems 1.2 and 1.3. The following propositionis well known.Proposition 4.1. Let F : C

2 → C be a polynomial mapping of degree
d > 1.(i) If Λp(F ) = ∅ then ηp(C

t, L∞) = ηp(C, L∞) < d.(ii) If Λp(F ) 6= ∅ then η(Ct, L∞) = d for t ∈ C \ Λp(F ) and ηp(C
t, L∞)

> d for t ∈ Λp(F ) (if Ct is not redued at p then ηp(C
t, L∞) = +∞

> d by onvention).Proof. See [CaP, pp. 35�37℄, [Pª1, Corollary 1.3℄, and [GaP, Proposi-tion 1.4℄.Proof of Theorem 1.2. We may assume that degX F = degY F = d. Let
D1 be the polar ∂F ∗/∂X = 0 and D2 the polar ∂F ∗/∂Y = 0 (note that
(∂F/∂X)∗ = ∂F ∗/∂X provided that degX F = d). Then, by de�nitions, weget
(1)

degγ ∇F

deg γ
= d − 1 − inf

i

{

ordγ Di

ordγ L∞

}

,

(2) £p,t(F ) = d − 1 − sup

{

inf
i

{

ordγ Di

ordγ L∞

}

: γ ∈ B∞,p,
ordγ Ct

ordγ L∞
> d

}

.



�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITY 57The property �if degγ F 6= 0 then degγ F ≤ degγ ∇F + deg γ� an be refor-mulated as follows:(3) if ordγ C

ordγ L∞
6= d then inf

i
{ordγ Di} ≤ ordγ C.Now, let us pass to the proof of the �rst part of Theorem 1.2. Fix

t ∈ C \ Λp(F ) and let γ ∈ B∞,p be a branh suh that ordγ Ct

ordγ L∞

> d. ByProposition 3.4 we get, for every polar D generi at in�nity,(4) ordγ Ct

ordγ L∞
≤ ηp(C

t, L∞) or ordγ D

ordγ L∞
≤ Θp(C

t, L∞).Sine t ∈ C \ Λp(F ) we have ηp(C
t, L∞) ≤ d by Proposition 4.1. Therefore

ordγ Ct

ordγ L∞

> d ≥ ηp(C
t, L∞) and by (4), we get(5) ordγ D

ordγ L∞
≤ Θp(C

t, L∞) for every polar D generi at in�nity.In partiular ordγ Di

ordγ L∞

≤ Θp(C
t, L∞) for i = 1, 2 and onsequently, by (2), weget(6) £p,t(F ) ≥ d − 1 − Θp(C

t, L∞).It is easy to hek that(7) ordγ D1 = ordγ D2 for every branh γ ∈ B∞,p of Ct.Thus, for every branh γ of Ct,(8) degγ ∇F

deg γ
= d − 1 −

ordγ D1

ordγ L∞by (1). By de�nition of Θp there is a branh γ0 ∈ B∞,p of Ct suh that
ordγ0

D1

ordγ0
L∞

= Θp(C
t, L∞). Consequently,(9) degγ0

∇F

deg γ0
= d − 1 − Θp(C

t, L∞)and Theorem 1.2(i) follows from (6) and (9).To prove the seond part of Theorem 1.2 �x t ∈ Λp(F ). We may assumethat the germ (Ct, p) is redued. Let γ be a branh suh that ordγ Ct

ordγ L∞

> d.By Proposition 3.4 we get either(10) (a)
ordγ Ct

ordγ L∞
≤ ηp(C

t, L∞) or (b)
ordγ D1

ordγ L∞
≤ Θp(C

t, L∞).In ase (a), by (3) we get(11) infi{ordγ Di}

ordγ L∞
≤ ηp(C

t, L∞).



58 J. GWO�DZIEWICZ AND A. P�OSKI
In ase (b), we have infi{ordγ Di}

ordγ L∞

≤ Θp(C
t, L∞) < ηp(C

t, L∞) by Proposi-tion 2.2. Consequently, in both ases (11) holds and �nally we get(12) £p,t(F ) ≥ d − 1 − ηp(C
t, L∞).Now, �x a polar D generi at in�nity. Then there is a branh γ0 of D suhthat ordγ0

Ct

ordγ0
L∞

= ηp(C
t, L∞). Sine t ∈ Λp(F ), we have ηp(C

t, L∞) > d byProposition 4.1 and onsequently ordγ0
Ct

ordγ0
L∞

> d. On the other hand, usingLemma 3.2(ii) we hek that inf{ordγ0
Di} = ordγ0

Ct.Therefore
(13) £p,t(F )≤ d−1−

inf{ordγ0
Di}

ordγ0
L∞

= d−1−
ordγ0

Ct

ordγ0
L∞

= d−1−ηp(C
t, L∞)and Theorem 1.2(ii) follows from (12) and (13).Now, we an giveProof of Theorem 1.3. By the Equisingularity at In�nity Property (Pre-liminaries 0.3) there is a onstant Θgen

p suh that Θp(C
t, L∞) = Θgen

p forall t ∈ C \ Λp(F ). Put ªp(F ) = d − 1 − Θgen
p . For t 6∈ Λp(F ) we have

ηp(C
t, L∞) ≤ d by Proposition 4.1. Let dp = (C · L∞)p. Proposition 2.2yields(14) Θgen

p ≤

(

1 −
1

dp

)

d ≤ d − 1.Therefore ªp(F ) = d − 1 − Θgen
p ≥ 0 and Theorem 1.3(i) follows from The-orem 1.2(i).To hek the seond part of Theorem 1.3 suppose that ªp(F ) = 0. Thenfrom (14) we get dp = d, i.e. p is the only point at in�nity of C. Moreover

Θp(C
t, L∞) = Θgen

p = d − 1 and ηp(C
t, L∞) = d for t ∈ C \ Λp(F ). ByProposition 2.3 we get ordp Ct = deg Ct = d. Therefore Ct and onsequently

C are penils of lines through p. This proves Theorem 1.3(ii).Fix now t ∈ Λp(F ). If (Ct, p) is not redued then £p,t(F ) = −∞ and
ηp(C

t, L∞) = +∞. Thus we may assume that (Ct, p) is redued. UsingTheorem 1.2(ii) and Proposition 4.1(ii) we get £p,t(F ) = d− 1− ηp(C
t, L∞)

< −1. Moreover £p,t(F ) is attained on every polar ∇qC = 0, q 6∈ C byTheorem 1.2(ii), and Theorem 1.3(iii) follows.5. Growth of the gradient. Let F : C
2 → C be a nononstant poly-nomial. Fix (p, t) ∈ C∞ × C. For ompleteness we give an interpretation of

£p,t(F ) as the exponent of growth of ∇F (z) near the �ber F (z) = t for
z → p. We onsider P

2(C) with the usual topology. If z = (x, y) ∈ C then
|z| = max(|x|, |y|). We set F−1(t)δ = {z ∈ C

2 : |F (z) − t| ≤ δ} for every
δ > 0.



�OJASIEWICZ EXPONENTS AND SINGULARITIES AT INFINITY 59Theorem 5.1. Assume that the germ (Ct, p) is redued. Let δ > 0 besuh that the set {t̃ ∈ C : 0 < |t̃ − t| ≤ δ} does not interset Λ(F ). Thenthere is a onstant c > 0 suh that(1) |∇F (z)| ≥ c|z|£p,t(F ) on the set F−1(t)δ for z → p.The exponent £p,t(F ) in (1) is optimal : if ∇F (z)| ≥ cσ|z|
σ with some cσ > 0and σ ∈ R on F−1(t)δ for z → p then σ ≤ £p,t(F ).Proof (see [ChK2, Setion 5℄). Fix δ > 0 as above and let £

δ
p,t(F ) bethe least upper bound of the set of all σ ∈ R suh that |∇F (z)| ≥ cσ|z|

σwith some cσ > 0 on F−1(t)δ for z → p. By the Curve Seletion Lem-ma there is a meromorphi parameterization p(T ) = (x(T ), y(T )) ∈ C((T ))with ord p(T ) < 0, onvergent in a puntured dis, suh that the mapping
τ 7→ p(τ) de�ned for the real numbers τ 6= 0 small enough has the followingproperties:

• p(τ) → p for τ → 0+,
• |F (p(τ)) − t| ≤ δ for τ → 0+,
•

ord∇F (p(T ))

ord p(T )
= £

δ
p,t(F ).Let γ be the branh at in�nity with meromorphi parameterization p(T ).Then
degγ ∇F

deg γ
=

ord∇F (p(T ))

ord p(T )and |F (γ) − t| ≤ δ for F (γ) = limτ→0+ F (p(τ)). By the hoie of δ we get
F (γ) = t or F (γ) /∈ Λ(F ). Hene by Theorem 1.3 we have

£
δ
p,t(F ) =

degγ ∇F

deg γ
≥ £p,F (γ)(F ) ≥ £p,t(F ).This proves the �rst part of the theorem.To show the seond part take by Theorem 1.2 a branh γ ∈ B∞,p suhthat F (γ) = t and £p,t(F ) =

degγ ∇F

deg γ . Let Γ ⊂ C
2 be the image of a smallpuntured dis entered at 0 ∈ C under the meromorphi parameterizationof γ. Sine F (z) → t on Γ for z → p we may assume that Γ ⊂ F−1(t)δ. It iseasy to see that

|∇F (z)| ≥ c|z|£p,t(F ) on Γ for z → pand the exponent £p,t(F ) is optimal. Thus £
δ
p,t(F ) ≤ £p,t(F ).
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