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ISOMETRIES OF SPACES OF CONVEX COMPACT SUBSETS

OF GLOBALLY NON-POSITIVELY BUSEMANN CURVED SPACES

BY

THOMAS FOERTSCH (Bonn)

Abstract. We consider the Hausdorff metric on the space of compact convex subsets
of a proper, geodesically complete metric space of globally non-positive Busemann curva-
ture in which geodesics do not split, and characterize their surjective isometries. Moreover,
an analogous characterization of the surjective isometries of the space of compact subsets
of a proper, uniquely geodesic, geodesically complete metric space in which geodesics do
not split is given.

1. Introduction. Let (X, d) be a metric space. For A ⊂ X, r > 0 we
define the closed tubular neighborhood Nr(A) of A of radius r as

Nr(A) := {x ∈ X | ∃a ∈ A with d(a, x) ≤ r}.
For p ∈ X we also write Br(p) := Nr(p). The sphere Sr(p) of radius r around
p is defined via Sr(p) := {x ∈ X | d(x, p) = r}. On the set B = B(X, d) of
closed, bounded subsets of X the map dH : B × B → R

+
0 given via

dH(A,B) := inf{r | A ⊂ Nr(B) ∧B ⊂ Nr(A)}(1)

defines the so-called Hausdorff metric.

In the late 70’s and early 80’s several authors started to investigate the
relations of isometries of the Euclidean space E

n and those of the space
C(En) of its compact convex subsets endowed with the Hausdorff metric. Of
course, given an isometry i of the Euclidean space, one derives an isometry
I of the space (C(En), dH) by setting

I(C) := i(C) ∀C ∈ C(En).
In [9] Schneider showed that these are the only surjective isometries of
(C(En), dH). In [5] Gruber proved the same for the surjective isometries
of (C(En), dH), where C(En) denotes the set of compact subsets of E

n; [7]
generalizes these observations to certain non-Euclidean cases and raises the
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question whether a similar statement also holds for real hyperbolic spaces.
To the best of our knowledge, this question has not been considered so far.
Recall that for a metric space (X, d) a midpoint map m : X ×X → X is

a symmetric map satisfying d(m(x, y), x) = 12d(x, y) = d(m(x, y), y) for all
x, y ∈ X.
The main purpose of this paper is to prove the following broad general-

izations of the above-mentioned theorems of Schneider and Gruber:

Theorem 1. Let (X, d) be a proper , uniquely geodesic, geodesically com-
plete metric space in which geodesics do not split and assume that the unique

midpoint map m of (X, d) is convex. Let further I be a surjective isometry
of (C(X, d), dH). Then there exists an isometry i ∈ Isom(X, d) such that

I(C) = i(C) ∀C ∈ C(X, d).
Theorem 2. Let (X, d) be a proper , uniquely geodesic, geodesically com-

plete metric space in which geodesics do not split , and let I be an isometry
of (C(X, d), dH) onto itself. Then there exists an isometry i ∈ Isom(X, d)
such that

I(C) = i(C) ∀C ∈ C(X, d).

For the precise definitions of the notions involved in Theorems 1 and 2
we refer the reader to Sections 2.1 and 2.2. Note, however, that our theo-
rems in particular apply to all proper, geodesically complete CAT (0)-spaces
in which geodesics do not split, therefore for instance to all complete, con-
nected, simply connected Riemannian manifolds of non-positive curvature
and, moreover, to all finite-dimensional Banach spaces with strictly convex
norm balls.

Outline of the paper . In Section 2.1 we recall some definitions and set
up the notation we frequently use. In Section 2.2 convex midpoint maps
are introduced, examples of which will be given in Section 2.3, where we
also observe that one consequence of our Theorem 1 is the existence of a
certain class of geodesics, which is invariant under isometries of the spaces
considered. Here we also point out that this can be interpreted as a Mazur–
Ulam type theorem for metric spaces.
Then, in Section 3, we prove Theorem 1, while the proof of Theorem 2

is the subject of Section 4.

Acknowledgments. It is a pleasure to thank Anders Karlsson, Viktor
Schroeder and, particularly, Mario Bonk for useful discussions.

2. Preliminaries

2.1. Basic definitions and notation. Recall that a metric space is called
proper if all its closed metric balls are compact. Further recall that for a, b
∈ R and I ∈ {(−∞, b], [a, b], [a,∞)} an isometric embedding γ : (I, | · |) →
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(X, d) is called a geodesic of (X, d). In case I = [a, b] we say that γ connects
γ(a) to γ(b).
A metric space (X, d) is said to be geodesic if for each x, y ∈ X there

exists a geodesic of (X, d) connecting x to y. Any such geodesic will be
denoted by γxy. In general, it might not be unique.
We call a geodesic metric space (X, d) geodesically complete if each

geodesic γxy connecting x ∈ X to y ∈ X has a biinfinite extension, i.e. a
geodesic γ : (−∞,∞)→ X such that im{γxy} ⊂ im{γ}. If for each geodesic
γxy in (X, d), x 6= y, the image of this biinfinite extension is unique, we say
that geodesics do not split.
A subset C ⊂ X of a metric space (X, d) is called convex if together

with any two points a, b ∈ C it also contains the images of all geodesics
connecting a to b. We denote by C(X, d) the set of convex, compact subsets
of (X, d), by C(X, d) the set of compact subsets of (X, d), and by Isom(X, d)
the group of isometries of (X, d) onto itself.
Note that for p ∈ X we have {p} ∈ C(X, d),C(X, d) and by a slight abuse

of notation we will also write p = {p}.
Finally, recall that a CAT (0)-space is a geodesic metric space (X, d)

such that any points a ∈ im{γxy} and b ∈ im{γxz} on a geodesic tri-
angle ∆(γxy, γxz, γyz) with vertices x, y, z ∈ X lie not further apart than
their corresponding comparison points a, b ∈ E

2 in a comparison trian-
gle ∆(γxy, γxz, γyz) in E

2. Here a comparison triangle for ∆(γxy, γxz, γyz)
is a geodesic triangle in E

2 = (R2, de) with vertices x, y, z ∈ E
2 such that

d(x, y) = de(x, y), d(x, z) = de(x, z) and d(y, z) = de(y, z), and the com-
parison points a ∈ im{γxy} and b ∈ im{γxz} are determined via d(x, a) =
de(x, a) and d(x, b) = de(x, b).
Note that in a CAT (0)-space geodesics connecting two points are unique

and metric balls are convex (see e.g. Proposition II.1.4 in [1]).

2.2. Convex midpoint maps. In this section we introduce the notion of
(convex) midpoint maps in a metric space (X, d).

Definition 1. Let (X, d) be a metric space. A symmetric map m :
X ×X → X is called a midpoint map for (X, d) if

d(m(x, y), x) = 12d(x, y) = d(m(x, y), y) ∀x, y ∈ X.
Furthermore, the midpoint map m is called convex if

d(m(x1, y1),m(x2, y2)) ≤ 12 [d(x1, x2) + d(y1, y2)] ∀x1, x2, y1, y2 ∈ X.
Remark 1. Assuming that the underlying metric space (X, d) is com-

plete, such a midpoint map corresponds to a certain class of geodesics in
(X, d): Given two points x, y ∈ X, in the first step we add the point m(x, y).
In the second step we add the two points m(x,m(x, y)) and m(m(x, y), y).
Proceeding like that, in the nth step we add 2n−1 points. Since the metric
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space is complete, this procedure determines a distinguished geodesic seg-
ment connecting x to y. We will refer to such a segment as an m-geodesic
segment.

Definition 2. Let (X, d) be a metric space and m : X ×X → X be a
midpoint map for (X, d). Then (X, d) is said to be

(i) m-distance convex if

d(m(x, y), z) ≤ 12 [d(x, z) + d(y, z)] ∀x, y, z ∈ X;
(ii) m-global non-positively Busemann curved (m-global NPBC) if

d(m(z, x),m(z, y)) ≤ 12d(x, y) ∀x, y, z ∈ X.
For an investigation of the notion of distance convexity we refer the

reader to [4].

The following lemma is a simple consequence of Definitions 1 and 2:

Lemma 1. Let (X, d) be a metric space and m : X×X → X be a convex
midpoint map. Then

(1) m is continuous,

(2) (X, d) is m-distance convex ,

(3) (X, d) is m-global NPBC.

In fact, (X, d) being m-global NPBC is a sufficient condition for the
midpoint map m to be convex:

Lemma 2. Let (X, d) be a metric space and m : X × X → X be a
midpoint map for (X, d). Then m is a convex midpoint map if and only if
(X, d) is m-global NPBC.

Proof. Due to Lemma 1 we only have to show that (X, d) being m-
global NPBC is a sufficient condition for m being convex. Let therefore
x1, x2, y1, y2 ∈ X. Then one has
d(m(x1, y1),m(x2, y2)) ≤ d(m(x1, y1),m(x2, y1)) + d(m(x2, y1),m(x2, y2))

≤ 12 [d(x1, x2) + d(y1, y2)].
Thus m is indeed convex.

Example 1. Let (V, ‖ · ‖) be a normed vector space. Then

m(x, y) :=
x+ y

2
∀x, y ∈ V

is a convex midpoint map.

If V is finite-dimensional, then it is not hard to see that m as defined
above is the only convex midpoint map in (V, ‖ · ‖). Whether or not this
generalizes to infinite dimensions is not known to the author.
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Given a convex midpoint map m in a metric space (X, d) and an isome-
try I ∈ Isom(X, d), obviously (I ◦m)(I−1(·), I−1(·)) is again a convex mid-
point map. Thus, establishing the uniqueness of a convex midpoint map in a
complete metric space (X, d) gives rise to a class of distinguished geodesics
(compare Remark 1) which is invariant under any isometry I ∈ Isom(X, d).
Unfortunately the author is not aware of a metric space admitting two dif-
ferent convex midpoint maps. However, if two such midpoint maps exist in
a metric space, then there are infinitely many:

Lemma 3. Let (X, d) be a metric space and m1,m2 : X×X → X be two
convex midpoint maps for (X, d). Then the map m̃ : X × X → X defined
via

m̃(x, y) := m1(m1(x, y),m2(x, y)) ∀x, y ∈ X
is also a convex midpoint map for (X, d).

Proof. That m̃ is a midpoint map follows simply from the m1-distance
convexity of (X, d) (Lemma 1). The convexity of m̃ follows from

d(m̃(x1, y1), m̃(x2, y2))

≤ 12 [d(m1(x1, y1),m1(x2, y2)) + d(m2(x1, y1),m2(x2, y2))]
≤ [d(x1, x2) + d(y1, y2)] ∀x1, x2, y1, y2 ∈ X.

2.3. Spaces of closed, bounded, convex sets. Note that for a proper metric
space we have B = C(X, d).

Given a midpoint map m for (X, d), we call a set A ⊂ X m-convex if
together with any two points a, a′ ∈ A it also contains their m-midpoint:
m(a, a′) ∈ A. The m-convex hull, convm(A), of a set A ⊂ X is defined via

convm(A) :=
⋂
{C | C is closed and m-convex ∧A ⊂ C}.

Denoting by Cm the set ofm-convex elements of B, we write convm : B → Cm
for the map which associates to an A ∈ B its m-convex hull convm(A).
A function f : X → R is called m-convex if

f(m(x, y)) ≤ 12 [f(x) + f(y)] ∀x, y ∈ X.
With this terminology it is easy to prove

Lemma 4. Let (X, d) be a metric space and m : X × X → X be a
convex midpoint map for (X, d). Let further C ⊂ X be a closed m-convex
set in (X, d). Then the map

dC : X → R
+
0 , x 7→ dist(x,C),

is m-convex.

Furthermore one obtains
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Lemma 5 ([3]). The map convm : B → Cm is 1-Lipschitz and does not
change the diameter.

Proof. Connecting b, b′ ∈ B ∈ B by an m-geodesic segment (see Re-
mark 1) increases neither diamB nor the Hausdorff distance to any B′ ∈ B
by convexity of the distance function. The claim follows since convm(B) co-
incides with the closure of

⋃
nBn, where B0 := B and Bn+1 is obtained from

Bn by connecting each pair of points b, b
′ ∈ Bn by an m-geodesic segment.

Proposition 1. Let (X, d) be a metric space and m : X ×X → X be a
convex midpoint map for (X, d). Then the map M : Cm × Cm → Cm defined
via

M(A,A′) := convm({x ∈ X | ∃a ∈ A, a′ ∈ A′ such that x = m(a, a′)})
∀A,A′ ∈ Cm

is a convex midpoint map for (Cm, dH).

Proof. (1) M is a midpoint map: Let M̃ ⊂ X be the set of midpoints
m(a, a′) for all a ∈ A, a′ ∈ A′. We set λ := 12dH(A,A′) and assume that
there exists b ∈ M̃ with dist(b, A) > λ. Then b = m(a, a′) with a ∈ A
and a′ ∈ A′. Since A is m-convex, the distance function dA is m-convex
(Lemma 4). Thus dist(a′, A) ≥ 2 dist(b, A), because dist(a,A) = 0. Hence,
dist(a′, A) > dH(A,A

′), contradicting the definition of dH(A,A
′). This shows

that M̃ lies in the closed λ-neighborhood of A, Nλ(A).

On the other hand, for each a ∈ A there is b ∈ M̃ with d(b, a) ≤ λ: let
b := m(a, a′), where a′ ∈ A′ is the closest point to a, thus d(a, a′) ≤ 2λ. This
shows that A ⊂ Nλ(M̃). Thus dH(M̃,A) ≤ λ and, similarly, dH(M̃,A′) ≤ λ.
By the triangle inequality we have 2λ ≤ dH(A, M̃) + dH(M̃,A′) ≤ 2λ and
hence

dH(M̃,A) = λ = dH(M̃,A
′).

For the m-convex hullM = convm(M̃) we have dH(M,A), dH(M,A
′) ≤ λ by

Lemma 5. Hence, dH(M,A) = λ = dH(M,A
′) and M is indeed a midpoint

map for (Cm, dH).
(2) M is convex : We need to show that

dH(M(A,A
′),M(B,B′)) ≤ 12 [dH(A,B) + dH(A′, B′)] ∀A,B,A′, B′ ∈ Cm.

Let A,A′, B,B′ ∈ Cm and set r0 := dH(A,B) and r′0 := dH(A′, B′). All we
have to prove is that given x ∈M(A,A′), there exists a y ∈M(B,B′) such
that d(x, y) ≤ (r0 + r′0)/2.
(i) Suppose first that x = m(a, a′) for some a ∈ A and a′ ∈ A′. Due to the

definition of r0 and r
′

0 there exist b ∈ B and b′ ∈ B′ such that d(a, b) ≤ r0
and d(a′, b′) ≤ r′0. Now m is a convex midpoint map for (X, d), and for
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y := m(b, b′) ∈M(B,B′) we find

d(y, x) = d(m(b, b′),m(a, a′)) ≤ 12 [d(b, a) + d(b′, a′)] ≤
r0 + r

′

0

2
.

(ii) For a general x ∈ M(A,A′) the existence of y ∈ M(B,B′) with
d(x, y) ≤ (r0 + r′0)/2 just follows by induction and the fact that the convex
midpoint map is continuous (see Lemma 1): In order to make this more

precise, write M0 := M̃ and let Mn+1 be obtained from Mn by adding to
Mn the midpoints of all pair of points in Mn. By induction we find that for
each n ∈ N every point inMn is at distance less than or equal to (r0 + r

′

0)/2
from a point in M(B,B′), due to the convexity of the midpoint map. Thus,
sinceM is the closure of

⋃
nMn andm is continuous, the same already holds

for M(A,A′).

Proposition 2. Let (X, d) be a proper metric space and m : X×X → X
be a convex midpoint map for (X, d). Then the map M : Cm × Cm → Cm
defined via

M(A,B) := NdH(A,B)/2A ∩NdH(A,B)/2B ∀A,B ∈ Cm(2)

is a midpoint map for (Cm, dH).
Proof. From (2) it follows that

M(A,B) ⊂ NdH(A,B)/2(A) ∧ M(A,B) ⊂ NdH(A,B)/2(B).(3)

With M as in Proposition 1 we have

dH(A,M(A,B)) = dH(A,B)/2 = dH(B,M(A,B)).

Thus we find

M(A,B) ⊂ NdH(A,B)/2(A) ∧ M(A,B) ⊂ NdH(A,B)/2(B)(4)

as well as

A ⊂ NdH(A,B)/2(M(A,B)) ∧ B ⊂ NdH(A,B)/2(M(A,B)).(5)

Now (2) and (4) yield M(A,B) ⊂M(A,B). This together with (5) implies

A ⊂ NdH(A,B)/2(M(A,B)) ∧ B ⊂ NdH(A,B)/2(M(A,B)),
which, combined with (3), yields

dH(A,M(A,B)), dH(B,M(A,B)) ≤ dH(A,B)/2,
so that the triangle inequality for dH implies

dH(A,M(A,B)) = dH(A,B)/2 = dH(B,M(A,B)).

Finally, the facts that (X, d) is proper and m is convex imply thatM(A,B)
∈ Cm.
It is easy to see that, in contrast to M , M is not convex in general:
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Example 2. Consider Cartesian coordinates in E
2 and define A,B,C,D

∈ Cm(E2) as follows:
A := {(−1, 1)}, B := {(1, 1)}, C := B1((−1, 0)), D := B1((1, 0)).

ThenM(A,B) = {(0, 1)} andM(C,D) = B2((−1, 0))∩B2((1, 0)), and thus
dH(M(A,B),M(C,D)) = 1 +

√
3 > 2 = 12 [dH(A,C) + dH(B,D)].

Along the lines of the proof of Proposition 2 one also obtains

Proposition 3. Let (X, d) be a proper metric space and m : X ×X →
X be a midpoint map for (X, d). Then the map M̃ : C× C→ C defined via

M̃(A,B) := NdH(A,B)/2A ∩NdH(A,B)/2B ∀A,B ∈ C

is a midpoint map for (C(X, d), dH).

Note that Theorem 1 implies that the class of distinguished geodesics in
(C(X, d), dH) determined by the midpoint map M (compare Remark 1) is
invariant under any isometry of (C(X, d), dH) onto itself.
This can be interpreted as a Mazur–Ulam type statement for these met-

ric spaces. Recall that the famous Mazur–Ulam Theorem (see [8]) states
that the surjective isometries from a normed vector space onto itself are lin-
ear up to translations, i.e. that they map straight lines onto straight lines,
thus leaving invariant a certain class of geodesics determined by the convex
midpoint map as given in Example 1. (For an astonishingly nice and simple
proof of the Mazur–Ulam Theorem see also [10].)

3. The proof of Theorem 1. In this section we prove Theorem 1.
The strategy of this proof is the same as those given in [9] and [5] for
the Euclidean case: First we establish that images of points are points, i.e.
i ∈ Isom(X, d) given via i(p) := I(p) is well defined. Then we prove that
the isometry J ∈ Isom(C(X, d), dH) given via J(C) := (i−1 ◦ I)(C) for all
C ∈ C(X, d) is the identity.
Lemma 6. Let (X, d) be a geodesic metric space such that geodesics do

not split , and let p ∈ X and A,B ∈ C(X, d) be such that

dH(p,A) =
1
2dH(A,B) = dH(p,B).

Then min{#A,#B} = 1.
Proof. Let h := dH(A, p) = dH(B, p). Since A and B are compact, there

exist a ∈ A, b ∈ B such that d(a, b) = 2h as well as d(a, b′) ≥ 2h for all
b′ ∈ B or d(a′, b) ≥ 2h for all a′ ∈ A. Without loss of generality we assume
that d(a, b′) ≥ 2h for all b′ ∈ B. Then #B = 1, since for a ∈ Sh(p) there
exists a unique b ∈ Bh(p) with d(a, b) ≥ 2h and thus B = {b}.
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Lemma 7. Let (X, d) be a uniquely geodesic, geodesically complete met-
ric space in which geodesics do not split , and let I ∈ Isom(C(X, d), dH) be
such that there exists p ∈ X with #I(p) = 1. Then #I(q) = 1 for all q ∈ X.
Proof. Let q ∈ X and choose p̃ ∈ X such that

d(p̃, p) = 12d(p̃, q) = d(p, q).

Then p is the unique midpoint between p̃ and q in (C(X, d), dH) and, since
I ∈ Isom(C(X, d), dH), I(p) is clearly the unique midpoint between I(p̃) and
I(q) in (C(X, d), dH). ThereforeM(I(p̃), I(q)) = I(p) ∈ X withM as defined
in Proposition 1, which yields #I(q) = 1.

Lemma 8. Let (X, d) be a proper , uniquely geodesic, geodesically com-
plete metric space such that geodesics do not split and the midpoint map is

convex. Let further I ∈ Isom(C(X, d), dH). Then #I(p) = 1 for all p ∈ X.
Proof. Suppose there exists A ∈ C(X, d) with #A > 1 and #I(A) = 1,

i.e. I(A) ∈ X. Let r := diamA 6= 0 and q ∈ A be such that there exists
q̃ ∈ A with d(q, q̃) = r.
For each x ∈ I(q) we choose y(x) such that

d(I(A), x) = d(x, y(x)) = 12d(I(A), y(x)),

set Q̃ =
⋃
x∈I(q){y(x)} and write Q for the closed convex hull of Q̃. It

immediately follows that dH(I(A), I(q)) =
1
2dH(I(A), Q) and thus

dH(Q, I(q)) ≥ dH(Q, I(A))− dH(I(A), I(q)) = 12dH(Q, I(A)).
To prove the opposite inequality, dH(Q, I(q)) ≤ 12dH(Q, I(A)), we have to
show that for all z ∈ Q there exists z′ ∈ I(q) such that

d(z, z′) ≤ 12dH(Q, I(A)) = dH(I(A), I(q)).
This is obviously true for all z ∈ Q̃. Next let z ∈ Q be such that there
exist y1, y2 ∈ Q̃ with d(y1, z) = d(y2, z) = 1

2d(y1, y2). Then there exist
x1, x2, x ∈ I(q) such that d(x1, y1), d(x2, y2) ≤ dH(I(A), I(q)) and d(x, x1) =
d(x, x2) =

1
2d(x1, x2). Since m is convex, we derive

d(x, z) ≤ 12d(x1, y1) + 12d(x2, y2) ≤ dH(I(A), I(q)).
The claim for general z ∈ Q now follows by induction, applying the same
argument again and again, the definition of Q and the fact that (X, d) is
complete.
Thus we find

dH(A, q) = dH(q, I
−1(Q)) = 12dH(A, I

−1(Q))

and it follows from Lemma 6 that #I−1(Q) = 1.
Let p := I−1(Q)∈X. Then there exists z ∈A such that d(z, q) = d(q, p)

= 12d(z, p) and q is the unique midpoint between p and z in (C(X, d), dH).
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Therefore I(q) is also the unique midpoint between I(p) and I(z) in
(C(X, d), dH). From Propositions 1 and 2 it follows that

I(q) =M(I(z), I(p)) =M(I(z), I(p))

with M and M as defined in Propositions 1 and 2.
Next we prove
(i) I(A) ∈ I(z): Since dH(I(A), I(q)) = dH(A, q) = r, it follows that

there exists x ∈ I(q) with d(I(A), x) = r. From I(q) = M(I(z), I(p)) we
deduce that there exists z′ ∈ I(z) with z′ ∈ Br(x). Since geodesics do not
split we also know that for all z̃ ∈ Br(x) \ I(A) we have d(z̃, y(x)) < 2r for
y(x) as in the definition of Q = I(p). Thus z′ = I(A), for otherwise I(q) =
M(I(z), I(p)) yields the existence of an x′ ∈ I(q) with d(x′, I(A)) > r, a
contradiction.
Now we establish
(ii) I(A) ∈ I(q): Without loss of generality #I(q) > 1, for otherwise the

claim of the lemma follows from Lemma 7. Thus, since I(q) is convex and
Br(I(A)) is strictly convex, there exists x

′ ∈ I(q) such that d(I(A), x′) =
dist(I(A), I(q)) =: r − ε < r. Suppose now I(A) 6∈ I(q), i.e. dist(I(A), I(q))
> 0, and denote the midpoint between a, b ∈ X by m(a, b). Then, since
I(q) = M(I(z), I(p)) and I(A) ∈ I(z), we have m(I(A), y(x′)) ∈ I(q); but
d(I(A),m(I(A), y(x′))) = r − 2ε, contradicting dist(I(A), I(q)) = r − ε.
(iii) Now I(A) ∈ I(q) of course implies I(A) ∈ I(p). On the other

hand, since r = dH(z,A) = dH(I(z), I(A)), there exists z0 ∈ I(z) with
d(z0, I(A)) = r. Now m(z0, I(A)) ∈ I(q), from which we conclude z0 ∈
I(p) and thus z0 = m(z0, z0) ∈ I(q), due to I(q) = M(I(z), I(p)). But
then y(z0) ∈ I(p) and, once again due to I(q) = M(I(z), I(p)), we have
m(y(z0), z0) ∈ I(q). This, however, contradicts dH(I(A), I(q)) = r, since
d(y(z0), I(A)) =

3
2r.

Lemma 9. Let (X, d) be as in Theorem 1, I ∈ Isom(C(X, d), dH), i ∈
Isom(X, d) defined via i(p) := I(p) for all p ∈ X, and J := i−1 ◦ I ∈
Isom(C(X, d), dH). Then for all p ∈ X and r > 0,

J(Br(p)) = Br(p).

Proof. From the definition of J it follows that J(p) = p for all p ∈ X.
Thus we find

r = dH(p,Br(p)) = dH(J(p), J(Br(p))) = dH(p, J(Br(p))),

which yields J(Br(p)) ⊂ Br(p). It now suffices to prove that Sr(p) ⊂
J(Br(p)). Under our assumptions, for all q ∈ Sr(p) there exists a unique
q̃ ∈ Br(p) such that d(q, q̃) = 2r. Then

2r = dH(q̃, Br(p)) = dH(q̃, J(Br(p)))

and thus q ∈ J(Br(p)).



SPACES OF COMPACT SUBSETS 81

Now we are ready to provide

Proof of Theorem 1. Let I ∈ Isom(C(X, d), dH), and let i ∈ Isom(X, d)
and J ∈ Isom(C(X, d), dH) be as defined in Lemma 9. All we have to prove
is that J(C) = C for all C ∈ C(X, d).
Suppose that there exists p ∈ C \ J(C). Since J(C) is compact, there

exists a q ∈ J(C) such that dist(p, J(C)) = d(p, q). Now let n be such that
C, J(C) ⊂ B(2n−1)d(p,q)(p). Then

dH(J(C), B(2n−1)d(p,q)(p)) = dH(C,B(2n−1)d(p,q)(p))(6)

≤ (2n − 1)d(p, q).
Let pn ∈ S(2n−1)d(p,q)(p) be such that d(pn, q) = d(pn, p)+d(p, q) = 2nd(p, q).
From Lemma 4 we know that dist(J(C), ·) is m-convex. Thus

dist(pn, J(C)) ≥ 2 dist(m(pn, q), J(C))
≥ 22 dist(m(m(pn, q), q), J(C))
≥ · · · ≥ 2nd(p, q).

and therefore

dist(J(C), pn) = 2
nd(p, q),

contradicting (6). This proves C ⊂ J(C). Of course, the same argument
with J replaced by J−1 yields J(C) ⊂ C and therefore J(C) = C.

4. The proof of Theorem 2. In this section we prove Theorem 2.
This proof is even more closely modeled on the classical one dealing with
the Euclidean space. In fact, once Lemma 12 is established in our more
general setting, Gruber’s original proof essentially also works in this setting
(see [6]).

Lemma 10 (see (2) in [5]). Let (X, d) be a proper , uniquely geodesic
metric space, I ∈ Isom(C(X, d), dH) and p, q ∈ X, p 6= q. Then

I(p) ⊂ ∂Nd(p,q)(I(q)).
Proof. Suppose to the contrary I(p) 6⊂ ∂Nd(p,q)(I(q)). We have

dH(I(p), I(q)) = d(p, q)

and the compactness of I(p) and I(q) yields I(p) ⊂ Nd(p,q)(I(q)). Thus for
M̃(I(p), I(q)) as in Proposition 3 we deduce M̃(I(p), I(q))◦ 6= ∅, i.e., the
interior of M̃(I(p), I(q)) is not-empty.

From M̃(I(p), I(q)) we remove a non-empty open subset contained in

M̃(I(p), I(q))◦ of diameter < d(p, q)/2, obtaining a set D. Now it is easy

to see that D 6= M̃(I(p), I(q)) is also a midpoint between I(p) and I(q) in
(C(X, d), dH), contradicting the uniqueness of the midpoint.
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Lemma 11. Let (X, d) be a proper , uniquely geodesic, geodesically com-
plete metric space in which geodesics do not split. If I ∈ Isom(C(X, d), dH),
then #I(p) = 1 for all p ∈ X.
Proof. Suppose there exists A ∈ C(X, d) with #A > 1 and #I(A) = 1.

Then with the notation as in the proof of Lemma 8 we find that I(q) is a

midpoint between I(A) and Q̃ and there exists p ∈ X such that I(p) = Q̃.
Lemma 10 applied to z and p as well as to z and q yields I(A) ∈ I(z),
from which together with Lemma 10 it follows that I(q) ∈ Sr(I(A)). The
same argument, of course, yields I(z) ∈ Sr(I(A)), which clearly contradicts
I(A) ∈ I(z).
Lemma 12. Let S ⊂ Sr(p) with #S < ∞. Then, with J as defined in

Lemma 9, J(S) = S.

Proof. Since dH(p, S) = dH(J(p), J(S)) = dH(p, J(S)), we find on the
one hand

J(S) ⊂ Br(p).(7)

On the other hand,

J(S) ∩ Sr(p) = S.(8)

In order to see this, let q ∈ S. Then there exists a unique q̃ ∈ Br(p)
with d(q, q̃) = 2r. Moreover, d(q̃, q′) < 2r for all q′ ∈ Br(p), q′ 6= q. But
2r = dH(q̃, S) = dH(q̃, J(S)), hence the inclusion (7) implies q ∈ J(S),
which yields S ⊂ J(S). The opposite inclusion just follows by an analogous
argument interchanging the roles of S and J(S).

Furthermore, the same argument yields

SR(p) ⊂ J(BR(p)) ⊂ BR(p) ∀R ≥ 0.(9)

From (7) and (8) the claim obviously follows, once we establish that

J(S) ∩B◦r (p) = ∅.
Suppose to the contrary that there exists q ∈ J(S) ∩ B◦r (p) and let µ :=
(r − d(p, q))/2 > 0. Since µ ≤ r/2, we find Nr−µ(Sµ(p)) = Br(p). From this
and the inclusion (7) it follows that

Nr−µ(Sµ(p)) = Br(p) ⊃ J(S),(10)

while from 0 ≤ d(p, q) = r − 2µ and q ∈ J(S) we deduce that
Nr−µ(J(S)) ⊃ Br−µ(q) ⊃ Bµ(p).(11)

Now (9)–(11) imply

dH(J(S), J(Bµ(p))) ≤ r − µ,
which contradicts dH(S,Bµ(p)) ≥ r, since J is an isometry of (C(X, d), dH).
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Proof of Theorem 2. We only have to show that J as in Lemma 12
satisfies J(A) = A for all A ∈ C(X, d).
Suppose there exists p ∈ A \ J(A). Since J(A) is compact, we have

µ := 12 inf{d(p, q) | q ∈ J(A)} > 0.
Thus U :=

⋃
q∈J(A)B

◦

d(p,q)−µ(q) is an open covering of J(A). Since J(A) is

compact, there exists a finite subcovering of U , say
n⋃

k=1

B◦d(p,qk)−µ(qk) ⊃ J(A).

Fix λ > dist(p, J(A))+diam J(A) and let y1, . . . , yk be such that d(yk, p) =
d(p, qk)+d(qk, yk), k = 1, . . . , n, and d(y1, p) = d(y2, p) = · · · = d(yn, p) = λ.
Then

⋃n
k=1B

◦

λ−µ(yk) is an open covering of J(A).
We set S := {y1, . . . , yk} ⊂ Sλ(p) and obtain, on the one hand,

Nλ−µS ⊃ J(A).(12)

On the other hand, d(qk, p) ≥ 2µ and thus d(yk, qk) = d(yk, p) − d(p, qk) ≤
λ− 2µ, which yields

S ⊂ Nλ−2µ(J(A)).(13)

From Lemma 12 we know that S = J(S), which together with the inclusions
(12) and (13) yields

dH(J(S), J(A)) ≤ λ− µ.(14)

But, since p ∈ A and S ⊂ Sλ(p), we also have dH(S,A) ≥ λ, contradicting
inequality (14), due to the fact that J is an isometry of (C(X, d), dH). Hence
A ⊂ J(A) and the same argument with J replaced by J−1 yields J(A) ⊂ A,
hence A = J(A) and thus the claim.
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