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ON pq-HYPERELLIPTIC RIEMANN SURFACES
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Abstract. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic
if X admits a conformal involution p, called a p-hyperelliptic involution, for which X/p
is an orbifold of genus p. If in addition X admits a g-hypereliptic involution then we
say that X is pg-hyperelliptic. We give a necessary and sufficient condition on p, g and
g for existence of a pg-hyperelliptic Riemann surface of genus g. Moreover we give some
conditions under which p- and g¢-hyperelliptic involutions of a pg-hyperelliptic Riemann
surface commute or are unique.

1. Introduction. A Riemann surface X = H/I" of genus g > 2 is
said to be p-hyperelliptic if X admits a conformal involution p, called a
p-hyperelliptic involution, such that X /g is an orbifold of genus p. In the par-
ticular cases p = 0,1, X is called a hyperelliptic and an elliptic-hyperelliptic
Riemann suface respectively. The Hurwitz—Riemann formula asserts that a
p-hyperelliptic involution has 2g + 2 — 4p fixed points. In [4] we proved that
for g in the range 3p + 2 < g < 4p + 1, any two p-hyperelliptic involutions
commute and X can admit at most two such involutions. Thus their product
is a central g-involution for some ¢ # p. This leads to the study of surfaces X
admitting two involutions ¢ and § such that X/p and X /4 have genera p and
q respectively. We shall call them pg-hyperelliptic and for simplicity we shall
say that o and ¢ are their p- and g-involutions. We prove that the genus of a
pg-hyperelliptic Riemann surface X does not exceed 2p+2g-+1, which in par-
ticular gives the result of H. Farkas and I. Kra from [2] that a p-hyperelliptic
involution is unique and central in the group of all automorphisms of X if
g > 4p + 1. On the other hand for p < ¢, the genus of such a surface cannot
be smaller than 2¢ — 1 since 2g + 2 — 4q is the number of fixed points of its ¢-
involution. Consequently, for ¢ > 2p+1, the p-involution of X is unique. Fur-
thermore we argue that for any ¢ in the range 2¢—1 < g < 2p+2¢g+1, there
exists a pg-hyperelliptic Riemann surface of genus g with commuting p- and
g-involutions and for g > 2p+2¢g —2, their product is a (g9 —p— ¢)-involution.
In particular we conclude that a Riemann surface which is simultaneously
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hyperelliptic and elliptic-hyperelliptic has genus 2 or 3 and the product of its
0- and l-involutions is a 1-involution or a 2-involution respectively. Finally,
we notice that p- and g-involutions of a Riemann surface commute if its genus
satisfies 3p + 3¢ + 2 < 29 < 4p + 4q + 2. This allows us to prove that for
2<p<qg<2pandg > 3q+1, the p- and g-involutions of a Riemann surface
X of genus g are central and unique in the full automorphism group of X.

In [1], Accola proved some similar results using detailed analysis of
branching coverings.

2. Preliminaries. We shall be using the Riemann uniformization the-
orem stating that each compact Riemann surface X of genus g > 2 can be
represented as the orbit space of the hyperbolic plane H under the action of
some Fuchsian surface group I'. Furthermore any group of automorphisms
of a surface X = H/I" can be represented as A/I" for another Fuchsian
group A. The algebraic and geometric structure of a Fuchsian group A is
determined by its signature

(1) o(4) = (g;m1,....,my),

where g, m; are integers satisfying g > 0, m; > 2. The group with signature

(1) has a canonical presentation given by

@) generators: 1,...,Tp,a1,b1,...,a4,by,
relations: x| = =2 = w1z [ar,bi] - [ag, by) = 1.

Such a set of generators is called a canonical set of generators and often,
by abuse of language, the set of canonical generators. Geometrically x; are
elliptic elements which correspond to hyperbolic rotations and the remaining
generators are hyperbolic translations. The integers my, ..., m, are called the
periods of A and g is the genus of the orbit space H/A. Fuchsian groups with
signatures (g; —) are called surface groups and they are characterized among
Fuchsian groups as those which are torsion free.

The group A has a fundamental region whose area p(A), called the area
of the group, is

(3) p(A) :27T<29—2+Z(1—1/mi)).
=1

An abstract group A with presentation (2) is isomorphic to a Fuchsian
group with signature (1) if and only if the right hand side of (3) is greater
than 0; in that case (1) is called a Fuchsian signature.

If I' is a subgroup of finite index in A, then we have the Hurwitz—Riemann
formula

C k()
(4) [A.F]_M.
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We shall use the following result of Macbeath [3] concerning the number
of fixed points of an automorphism of a Riemann surface.

THEOREM 2.1. Let G = A/I" be an automorphism group of a Riemann
surface X = H/I" and let x1,...,x, be elliptic canonical generators of A
with periods mq,...,m, respectively. Let 6 : A — G be the canonical epi-
morphism and for 1 # g € G let £,(g) be 1 or 0 according as g is or is not
conjugate to a power of 0(x;). Then the number F(g) of points of X fized
by g is given by the formula

(5) F(g) = | Na(lg rZaz )/mi.

3. On pg-hyperelliptic Riemann surfaces. A Riemann surface X of
genus g > 2 is said to be pg-hyperelliptic if there exist two involutions g and
0 of X such that X/p and X/ have genera p and ¢ respectively. First we
show that the genus of such a surface is bounded.

THEOREM 3.1. For arbitrary integers 0 < p < q except p = q = 0,
the genus g of a pq-hyperelliptic Riemann surface satisfies 2g — 1 < g <
2p +2q+ 1.

Proof. Suppose that a Riemann surface X = H/I" of genus g admits
a p-involution § and a g-involution ¢. Then g > 2¢g — 1 since 2g + 2 —
4q is the number of fixed points of ¢. The involutions ¢ and J generate a
dihedral group G, say of order 2n, and there exist a Fuchsian group A and an
epimorphism 6 : A — G with kernel I'. If x; is a canonical elliptic generator of
A corresponding to some period m; > 2 then 6(x;) € (pd). But no conjugate
of o nor of § belongs to (pd) and so in the notation of Macbeath’s theorem
ei(0) = €i(6) = 0. Now if n is odd then p and § are conjugate and so p = q.
Moreover |Ng({0))| = 2 and F(g) = 2g+ 2 —4p imply that A has 2g+2—4p
periods equal to 2. If n is even then |Ng({0))| = 4 and so g+ 1 —2p canonical
elliptic generators are mapped by 6 onto conjugates of p. Similarly another
g+ 1—2q canonical elliptic generators are mapped by € onto conjugates of ¢.
So in both cases (A) = (v;2,.%.,2,ms41,...,m,) for s =29 +2 —2p — 2q
and some integer r > s. Now applying the Hurwitz—Riemann formula for
(A, T"), we obtain 29 =2 =2n(2y =2+ g+1—-p—q+> i, (1 -1/my)),
which implies

(6) g—1>2n(g—1-p—q).

Since n > 2, it follows that g < 2p + 2¢ + 1. Thus for g > 2p+2¢ + 1, X is
not pg-hyperelliptic. m

The above theorem yields the following result of Farkas and Kra [2].
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COROLLARY 3.2. A p-hyperelliptic involution of a Riemann surface X

of genus g > 4p + 1 is unique and central in the full automorphism group
of X.

Proof. Let G be the full automorphism group of a Riemann surface X of
genus g > 4p + 1 and let p € G be a p-involution. By the previous theorem,
0 is unique in G. Moreover given g € G, gog~! has the same number of fixed
points as p. So by the Hurwitz—Riemann formula it is also a p-involution,
which implies that gog™' = 0. =

Furthermore using Theorem 3.1, it is easy to show that for appropriate
parameters g,p,q, any p- and g-involutions of a pg-hyperelliptic Riemann
surface of genus g commute.

COROLLARY 3.3. Let X be a pg-hyperelliptic Riemann surface of genus g.
If q > 2p+ 1 then a p-hyperelliptic involution is central and unique in the
full automorphism group of X. Furthermore for (p,q) # (0,0), any p- and
q-involutions of X commute if the genus g of X satisfies 3p+3q+2 < 2g <
dp + 4q + 2.

Proof. If ¢ > 2p + 1 then by Theorem 3.1, g > 2¢ —1 > 4p + 1 and
so by Corollary 3.2, a p-involution of X is central and unique in the full
automorphism group of X.

Now, let (p,q) # (0,0). Then any p- and g-involutions of X generate a
dihedral group of order 2n, for some n satisfying (6). Since n > 3 implies
2g < 3p + 3q + 2, it follows that p- and g-involutions commute if 2g >
3p+3¢+2. =

Now we shall show that the necessary conditions from 3.1 on the genus
of a pg-hyperelliptic Riemann surface are also sufficient for the existence of
such a surface.

THEOREM 3.4. Let g > 2 and q > p > 0 be integers such that 2¢ — 1 <
g < 2p+2q+ 1. Then there exists a Riemann surface of genus g admitting
commuting p- and q-involutions whose product is a t-involution if and only
if t is a nonnegative integer with (9 +1)/2 —(p+1) <t < (g+1)/2 such
that p+ q+1t — g is even and nonnegative.

Proof. Assume that a Riemann surface X = H/I" of genus g admits a
p-involution § and a g-involution g whose product is a t-involution. Then X
is pt-hyperelliptic and so by Theorem 3.1, 2t — 1 < g < 2t + 2p 4+ 1. Thus
g/2—=p<t<g/2or(g+1)/2—(p+1) <t < (g9+1)/2 according as g is
even or odd. Since g and J generate a group Z» @ Zo, there exists a Fuchsian
group A with signature (v;2,.7.,2) and an epimorphism 0 : A — Zs @ Z,
with kernel I'. By Theorem 2.1, r = 3g + 3 — 2p — 2q — 2t and so applying
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the Hurwitz—Riemann formula for (A, I") we obtain v = (p+ ¢+t — g)/2,
which implies that p + ¢ +¢ — g is even and nonnegative.

Conversely, let g be an integer with 2¢—1 < g < 2p+2¢g+ 1 and suppose
that p 4+ ¢ + ¢t — ¢ is nonnegative and even for some nonnegative integer ¢
with (¢+1)/2—(p+1) <t <(g+1)/2. Then for y = (p+q+t—g)/2 and
r =39+ 3 —2p— 2q — 2t, there exists a Fuchsian group A with signature
(7;2,.7.,2). Define an epimorphism 6 : A — Zy® Zs = (o) @ (J) by 0(x1) =
= 9(x81) = 0 9($81+1) = = 9($81+82) = 9, 9($31+32+1) = =
O(xy) = 06, where s;1 = g+ 1 —2q and s9 = g+ 1 — 2p. By Theorem 2.1 and
the Hurwitz—Riemann formula, ¢ and § are commuting ¢- and p-involutions
of a Riemann surface of genus g and their product is a t-involution. =

COROLLARY 3.5. For any integers g > 2 and q¢ > p > 0 such that
2¢—1 < g < 2p+2qg+1, there exists a Riemann surface of genus g admitting
commuting p- and g-involutions. Moreover if g > 2p+2q—2 then the product
of p- and g-involutions is a (g — p — q)-involution.

Proof. We need to find an appropriate t satisfying the conditions of
Lemma 3.4. If simultaneously ¢ = 2p — 1 and p = ¢ then we can take
t = 1. In the remaining cases we can choose t = g — p — ¢ and it is easy to
check that for 2p +2¢g —2 < g < 2p+2¢g + 1, such a ¢ is unique and so the
product of any p- and ¢-involutions of a Riemann surface of such genus is a
(g — p — q)-involution. =

COROLLARY 3.6. There exists a Riemann surface which is simultane-
ously hyperelliptic and elliptic-hyperelliptic. It has genus 2 or 3 and the prod-
uct of its 0- and 1-involutions is a 1- or a 2-involution respectively.

Proof. By Theorem 3.1, the genus of a 01-hyperelliptic Riemann surface
is 2 or 3. Moreover by Corollaries 3.2 and 3.5, such a surface actually exists
and the product of its 0- and 1-involutions is a 1- or a 2-involution according
asgis2or3. =

The final theorem concerns the number of p- and ¢-involutions of a pg-
hyperelliptic Riemann surface.

THEOREM 3.7. If p<q<2p and 3¢+1< g<2p+2q+1 then p- and
q-involutions of a pq-hyperelliptic Riemann surface of genus g are central
and unique in the full automorphism group. Moreover a Riemann surface of
genus g with 3¢+ 2 < g < 4q+ 1 can admit at most two q-involutions.

Proof. For p < q < 2p, let X = H/I" be a pg-hyperelliptic Riemann
surface of genus g with 3¢ +1 < g < 2p+ 2¢g + 1 and let T be the set
of all p- and g¢-involutions of X. By Corollary 3.3, any two elements of T’
commute. Moreover, by Theorem 3.4, the product of any two such elements
can be neither a p- nor a g-involution. So if X admits a p-involution g, and
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two g-involutions g, and Qf] then they generate the group G = Zs @ Zs ® Zo
which can be identified with A/I" for some Fuchsian group A, say with
signature (v;2,.7.,2). Let  : A — G be the canonical epimorphism and for
1 7f g€ G/, let £;(g) be diﬁned as in Theorem 2.1. Let s, :/22:1 gi(0q), 54 =
> i—1€i(0y) and s, = > i €i(0p). By Theorem 2.1, s, = s;, = (9+1—2q)/2
and s, = (¢ + 1 — 2p)/2. Thus applying the Hurwitz—Riemann formula
for (A, I'), we obtain 2g — 2 = 8(2y — 2+ (39 + 3 — 4¢ — 2p)/4 + s/2),
where s = 7 — sy — s, —8p. So vy = (2+2¢+p—g—s)/4 > 0if and
only if g < 2qg + p + 2. Repeating the argument we see that X admits two
p-involutions and a g-involution only if g < 2p + ¢ + 2. Consequently, for
p < q, the p- and g¢-involutions of a Riemann surface of genus g > 3¢+ 1 are
unique and a Riemann surface of genus g > 3¢ + 2 can admit at most two
g-involutions. =
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