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THE σ-COMPLETE MV-ALGEBRASWHICH HAVE ENOUGH STATESBYANTONIO DI NOLA (Salerno) and MIRKO NAVARA (Praha)Abstrat. We haraterize �ukasiewiz tribes, i.e., olletions of fuzzy sets that arelosed under the standard fuzzy omplementation and the �ukasiewiz t-norm with ount-ably many arguments. As a tool, we introdue σ-MNaughton funtions as the losure ofMNaughton funtions under ountable MV-algebrai operations. We give a measure-theo-retial haraterization of σ-omplete MV-algebras whih are isomorphi to �ukasiewiztribes.1. Introdution. The MV-algebra approah presents one of the mostfruitful theoretial bakgrounds of many-valued logis and a basis of su-essful appliations in deision making, approximations, fuzzy ontrol, et.(see [3, 6℄). In this paper we haraterize the σ-omplete MV-algebras repre-sented by funtions with values in [0, 1] with pointwise operations (�ukasie-wiz tribes). Our result di�ers from a previous haraterization whih saysthat every σ-omplete MV-algebra an be desribed as a olletion of on-tinuous [0, 1]-valued funtions on the spae of all maximal ideals endowedwith the spetral topology (see [3℄). To speify the distintion, let us tryto draw the analogy with Boolean algebras. Every Boolean algebra an beuniquely represented by two-valued (harateristi) funtions on its Stonespae (see [14℄). Nevertheless, another set representation may be more use-ful on oasions. (For an analogy, the Borel σ-algebra on the real line isusually not studied via its Stone spae.) Here we give a haraterization of
σ-omplete MV-algebras by making use of any set representation. However,an additional ondition is assumed that the operations oinide with thepointwise appliation of the operations of the standard MV-algebra [0, 1].This speial ase seems to be of onsiderable importane, in partiular asa basis of many-valued probability theory [13℄. Besides, every σ-omplete2000 Mathematis Subjet Classi�ation: Primary 06D35; Seondary 03B52, 03E72,06C15, 06D30, 06D50, 28E10.Key words and phrases: MV-algebra, σ-omplete MV-algebra, MNaughton funtion,tribe.Researh of M. Navara was supported by grant 201/02/1540 of the Grant Ageny ofthe Czeh Republi and grant INDAM. [121℄
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MV-algebra an be obtained as a σ-homomorphi image of a �ukasiewiztribe [5, 10℄.It an happen that nonisomorphi σ-omplete MV-algebras may be ex-pressed as subdiret produts of the same family of σ-omplete MV-algebraseven if they have the same Boolean skeletons. In ontrast to this, we present astruture that represents a unique �ukasiewiz tribe. More exatly, we provethat there is an underlying σ-algebra and a sequene of σ-�lters determiningall elements of the tribe. We also give neessary and su�ient onditions forthese strutures to orrespond to a σ-omplete MV-algebra.We prove that �ukasiewiz tribes are exatly those σ-omplete MV-alge-bras whih admit separating sets of pure states.As an important tool, we study σ-MNaughton funtions, i.e., the ele-ments of the least �ukasiewiz tribe ontaining all MNaughton funtions.Their role in the study of σ-omplete MV-algebras is analogous to that ofMNaughton funtions in the theory of MV-algebras; every �ukasiewiz tribeis losed under pointwise appliation of all σ-MNaughton funtions.2. Basi notions. We refer to [3℄ for basi notions on MV-algebras.Unless stated otherwise, M is a σ-omplete MV-algebra. By N, resp. Q, wedenote the set of natural, resp. rational, numbers.The standard MV-algebra is the real unit interval S∞ = [0, 1] equippedwith the �ukasiewiz operations x⊕ y = min(1, x + y) and ¬x = 1− x. Theonly σ-omplete proper MV-subalgebras of S∞ are of the form Sn = {i/n :
i = 0, . . . , n}, n ∈ N. All in�nite MV-subalgebras of S∞ are dense subsetsof [0, 1].Definition 2.1 ([1℄). Let X be a nonempty set. A olletion T ⊆ [0, 1]Xis alled a �ukasiewiz lan if it ontains the onstant zero funtion and islosed under the pointwise appliation of �ukasiewiz operations ⊕,¬. If,moreover, T is losed under pointwise appliation of ⊕ to ountably manyarguments, then T is alled a �ukasiewiz tribe.As we shall work only with �ukasiewiz operations here, we shall speakbrie�y of a lan and a tribe. Every lan, resp. tribe, is an MV-algebra, resp.a σ-omplete MV-algebra.The Boolean skeleton of M is the Boolean algebra B(M) = {a ∈ M :
a ⊕ a = a} (of all Boolean elements of M). All operations of B(M) agreewith the restritions of the orresponding operations of M (see [3℄). Booleanelements of a lan M are funtions whih attain only values 0, 1, thus theyoinide with those harateristi funtions χA (A ⊆ X) whih belong to M .An n-ary funtion is aMNaughton funtion i� it belongs to the least lanof funtions [0, 1]n → [0, 1] ontaining all projetions πi,n: (x1, . . . , xn) 7→
xi, i = 1, . . . , n. Following [9℄, a funtion is a MNaughton funtion i� it
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is ontinuous, pieewise linear, and eah piee is determined by a linearequation with integer oe�ients.Corollary 2.2. Every �ukasiewiz lan, T , is losed under ompositionwith all MNaughton funtions, i.e., if a1, . . . , an ∈ T and f : [0, 1]n → [0, 1]is a MNaughton funtion, then the funtion f(a1, . . . , an): x 7→ f(a1(x), . . .
. . . , an(x)) is in T .3. σ-ompletions of MNaughton funtions. In this paper we dealwith the lass of funtions whih is obtained when we lose the lass ofMNaughton funtions under ountable pointwise suprema and �ukasiewizoperations. Let us all an n-ary funtion a σ-MNaughton funtion i� it be-longs to the least tribe of funtions [0, 1]n → [0, 1] ontaining all projetions
πi,n: (x1, . . . , xn) 7→ xi, i = 1, . . . , n. (A similar notion for a di�erent type oftribes was introdued in [11℄.) The tribe of unary σ-MNaughton funtionswas haraterized already in [8℄ without referene to MV-algebras. Here wegive an equivalent MV-algebrai haraterization and its proof simpli�ed bythe use of the MNaughton theorem. Further, we extend it to n-ary fun-tions.The only σ-MNaughton onstant funtions are 0 and 1. We shall needfuntions whih are �as lose to onstants as possible�. For eah x ∈ [0, 1],let S(x) denote the least σ-omplete MV-subalgebra of S∞ = [0, 1] suh that
x ∈ S(x). For eah r ∈ [0, 1], we de�ne a funtion cr: [0, 1] → [0, r] by

cr(x) = sup([0, r] ∩ S(x)).(1) Proposition 3.1. Let r ∈ [0, 1]. Then the following ases may our :
• If x ∈ [0, 1] \ Q, then cr(x) = r.
• If x ∈ [0, 1] ∩ Q, then cr(x) ≤ r, and equality holds i� r ∈ S(x).For eah ε > 0, there are only �nitely many points x ∈ [0, 1] suh that

cr(x) /∈ [r − ε, r].Theorem 3.2. A funtion f : [0, 1] → [0, 1] is a σ-MNaughton funtioni� it satis�es the following onditions:(σMN0) f is Borel measurable,(σMN1) f(q) ∈ S(q) for all q ∈ [0, 1] ∩ Q.Proof. The olletion of all funtions satisfying (σMN0), (σMN1) is atribe, so it ontains all σ-MNaughton funtions. We have to prove thateah funtion f satisfying (σMN0), (σMN1) is a σ-MNaughton funtion.We �rst prove it for speial forms of f . For eah k ∈ N, j ∈ {0, . . . , k − 1},
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we de�ne the MNaughton funtion

sj,k(x) =







0 if x ∈ [0, j/k],

−j + kx if x ∈ (j/k, (j + 1)/k),

1 if x ∈ [(j + 1)/k, 1].For eah r = i/n ∈ [0, 1) ∩ Q, the harateristi funtion χ(r,1] is a σ-MNaughton funtion, beause
χ(r,1] =

∨

p∈N

sip,np.By a standard Boolean onstrution, we dedue that also all harateristifuntions of Borel subsets of [0, 1] are σ-MNaughton funtions.To prove that a funtion cr for r ∈ [0, 1] is a σ-MNaughton funtion,we take the σ-MNaughton funtion tr = id ∧ χ[0,r]. We shall prove that
cr =

∨

g(tr ◦g) , where the (ountable) supremum is taken over all MNaugh-ton funtions g. Let x ∈ [0, 1]. We shall use Proposition 3.1. If x ∈ Q,it generates a �nite MV-algebra S(x) and there is a MNaughton funtionwhose value at x is cr(x). If x /∈ Q, then there is a sequene of MNaugh-ton funtions whose values at x onverge to r = cr(x) and it is enough toompose them with tr.By a standard argument, all Borel measurable funtions are obtained aspointwise suprema of simple funtions (i.e., �nitely-valued measurable fun-tions). All simple funtions [0, 1] \Q → [0, 1] are restritions of σ-MNaugh-ton funtions. Taking their suprema, we obtain all Borel measurable fun-tions on [0, 1] \Q as restritions of σ-MNaughton funtions. Thus, for eahfuntion f satisfying (σMN0), we may �nd a σ-MNaughton funtion f∗whih oinides with f on [0, 1] \ Q. Using Proposition 3.1 and (σMN1), wesee that the σ-MNaughton funtion
∨

q∈[0,1]∩Q

cf(q) ∧ χ{q}oinides with f on [0, 1]∩Q and vanishes on [0, 1] \Q. Thus we obtain f asa σ-MNaughton funtion
f = (f∗ ∧ χ[0,1]\Q) ∨

∨

q∈[0,1]∩Q

cf(q) ∧ χ{q}.

Theorem 3.3. An n-ary funtion f : [0, 1]n → [0, 1] is a σ-MNaughtonfuntion i� it satis�es the following onditions:(σMN0) f is Borel measurable.(σMNn) Let x1, . . . , xn ∈ [0, 1] ∩ Q. Then f(x1, . . . , xn) ∈ Sk, where
k ∈ N is the least index suh that {x1, . . . , xn} ⊆ Sk.



MV-ALGEBRAS 125

Proof. The proof follows the pattern of Theorem 3.2. The harateristifuntion of any n-dimensional subinterval of [0, 1]n is σ-MNaughton, andthis extends to all Borel subsets of [0, 1]. We obtain all measurable funtions
[0, 1]n \ Qn → [0, 1] as suprema of simple funtions, and the values at the(ountably many) remaining points are restrited only by (σMNn).In analogy to Corollary 2.2, σ-MNaughton funtions play a similar rolewith respet to tribes as MNaughton funtions do with respet to lans:Corollary 3.4. Every �ukasiewiz tribe T is losed under ompositionwith all σ-MNaughton funtions, i.e., if a1, . . . , an ∈ T and f : [0, 1]n → [0, 1]is a σ-MNaughton funtion, then f(a1, . . . , an): x 7→ f(a1(x), . . . , an(x)) isin T .We obtained an analytial haraterization of σ-MNaughton funtions.From the logial point of view, operations with ountably many argumentsshould be avoided; if this is not possible, their use should be at least reduedto the very last step. Thus it is desirable to express any σ-MNaughton fun-tion as a supremum (or in�mum) of MNaughton funtions. However, χ{r},
r ∈ [0, 1], annot be expressed as suprema of MNaughton funtions. Thereare also σ-MNaughton funtions whih are neither suprema nor in�ma ofMNaughton funtions. Thus the σ-omplete lattie generated by all n-aryMNaughton funtions is a proper sublattie of the σ-omplete lattie of all
n-ary σ-MNaughton funtions. (The ase of MaNeille ompletions insteadof σ-ompletions is lari�ed in [7, Th. 6.3, p. 91℄.)4. Charaterization of �ukasiewiz tribes and σ-omplete MV-algebras. We shall refer to the lattie (N, |), where | is the divisibility rela-tion on N. For a σ-algebra B, we denote by F(B) the set of all its σ-�lters.For a �ukasiewiz tribe T on X we de�ne C(T ) = {A ⊆ X : χA ∈ T} (whihis a σ-algebra isomorphi to B(T )).Theorem 4.1. Let T be a �ukasiewiz tribe on X. Then there is a σ-algebra B ⊆ 2X and an order-preserving mapping ∇: (N, |) → (F(B),⊇)suh that

T = {a ∈ [0, 1]X : a is B-measurable and (∀n ∈ N) a−1[Sn] ∈ ∇(n)}.(2) Proof. We shall prove that T is of the above form for B = C(T ) and
∇(n) = {f−1[Sn] : f ∈ T}, n ∈ N.For all n ∈ N, ∇(n) is a σ-�lter in B. Indeed, the preimages f−1[Sn]under f ∈ T belong to B. If A ∈ ∇(n), B ∈ B, and A ⊆ B, then thereis an f ∈ T suh that f−1[Sn] = A. We take g = f ∨ χB ∈ T and obtain
g−1[Sn] = A ∪ B = B ∈ ∇(n). For a sequene (Ai)i∈N ∈ ∇(n)N, there are
fi ∈ T suh that Ai = f−1

i [Sn]. We take an r ∈ (1 − 1/2n, 1) and the σ-MNaughton funtion cr from (1). The σ-MNaughton funtion sn = cr∨χSn
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equals 1 on Sn; at all other points it takes values from [0, r] \ Sn. We de�nethe funtion g =

∧

i∈N(sn ◦ fi) ∈ T . Then ⋂

i∈N Ai = g−1[Sn] ∈ ∇(n).Let a ∈ T . Eah harateristi funtion χB of a Borel set B ⊆ [0, 1] is
σ-MNaughton and hene χa−1[B] = χB ◦a ∈ T . Thus a is B-measurable andwe are done.On the other hand, let a ∈ [0, 1]X be a B-measurable funtion suh that
a−1[Sn] ∈ ∇(n) for all n ∈ N. Then χa−1[[r,1]] ∈ T for all r ∈ [0, 1] and foreah n ∈ N there exists a funtion fn ∈ T suh that a−1[Sn] = f−1

n [Sn]. Weshall reonstrut the funtion a from χa−1[[r,1]], r ∈ [0, 1], and fn, n ∈ N,using σ-MNaughton funtions.Let C be the least lan ontaining all fn, n ∈ N. It is a ountable subsetof T . For eah q ∈ [0, 1] ∩ Q, we de�ne a funtion gq: X → [0, 1] by
gq = χa−1[[q,1]] ∧

∨

b∈C

(cq ◦ b) ∈ T.(3)Let
d =

∨

q∈[0,1]∩Q

gq ∈ T.(4)We shall prove that a = d. For eah b ∈ C, the funtion cq ◦ b attains onlyvalues from [0, q]; so does the supremum ∨

b∈C(cq ◦ b). Therefore gq ≤ a andalso d ≤ a. Suppose that there is an x ∈ X suh that d(x) < a(x). Assume�rst that a(x) /∈ Q. Then, for eah n ∈ N, we have x /∈ a−1[Sn], therefore
x /∈ f−1

n [Sn]. We have values fn(x), n ∈ N, satisfying fn(x) /∈ Sn. Thereis no m ∈ N suh that Sm ontains all these values fn(x). Therefore theygenerate an in�nite MV-subalgebra whih is dense in [0, 1]. The restritionof the lan C to {x} gives a dense set of values in [0, 1]. For any rationalnumber q ∈ (d(x), a(x)), the set {b(x) : b ∈ C} ∩ (d(x), q] is in�nite. Weapply cq to this set. Aording to Proposition 3.1, there are only �nitelymany points at whih cq attains values outside the interval (d(x), q], so thereis a funtion b ∈ C suh that (cq ◦ b)(x) ∈ (d(x), q]. As q < a(x), with theuse of (3) we obtain
d(x) < (cq ◦ b)(x) = χa−1[[q,1]](x)

︸ ︷︷ ︸

1

∧ (cq ◦ b)(x) ≤ gq(x).

This ontradits (4), hene a(x) annot be irrational.Suppose �nally that a(x) = i/m, where i, m ∈ N, i ≤ m, and i, mare relatively prime. Then a(x) ∈ Sn i� m |n. Thus fn(x) ∈ Sn i� m |n.If the values fn(x), n ∈ N, are not ontained in Sk for any k ∈ N, thenthey generate an MV-subalgebra dense in [0, 1] and we proeed as in theprevious ase. In the remaining ase, there is the least k ∈ N suh that
{fn(x) : n ∈ N} ⊆ Sk. If k is not a multiple of m, then fk(x) /∈ Sk whihis impossible. Thus m | k. Hene i/m ∈ Sk. As Sk is the MV-subalgebra of
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[0, 1] generated by {fn(x) : n ∈ N}, there is an element b ∈ C suh that
b(x) = i/m. As ci/m(i/m) = i/m, we obtain gi/m(x) = i/m = a(x) > d(x),a ontradition with (4). We proved that d(x) = a(x) for all x ∈ X, therefore
a ∈ T .We may ask whih σ-algebras and sequenes of σ-�lters give rise to �u-kasiewiz tribes. It appears that ∇ preserves not only the ordering, but alsoall meets.Theorem 4.2. Let B be a σ-algebra of subsets of a set X and (∇(n))n∈Nbe a sequene of σ-ideals in B. Then the following are equivalent :(i) {a ∈ [0, 1]X : a is B-measurable and (∀n ∈ N) a−1[Sn] ∈ ∇(n)} is a�ukasiewiz tribe,(ii) ∇: (N, |) → (F(B),⊇) is a meet semilattie isomorphism.Proof. As (ii)⇒(i) follows from Theorem 4.1, we shall prove that (i)⇒(ii).For brevity, let P =

{
a ∈ [0, 1]X : a is B-measurable and (∀n ∈ N) a−1[Sn] ∈

∇(n)
}. From the de�nition of P and the ordering of (Sn)n∈N (by the set-theoretial inlusion), we see that ∇ preserves the ordering. It remains toprove that it also preserves all meets.Let p, q ∈ N, n = p ∧ q (in the divisibility lattie (N, |), i.e., n is thegreatest ommon divisor of p, q and Sn = Sp ∩ Sq). We shall prove that

∇(n) oinides with the meet of ∇(p) and ∇(q) in (F(B),⊇), i.e., withthe σ-�lter generated by ∇(p) ∪ ∇(q). One inlusion is obvious, beause
∇(n) ⊇ ∇(p) ∪∇(q). For the reverse inlusion, take D ∈ ∇(n). It is enoughto �nd g, h ∈ P suh that D ⊇ g−1[Sp] ∩ h−1[Sq]. Due to the de�nition of
∇(n), there is an f ∈ P satisfying D = f−1[Sn]. We de�ne σ-MNaughtonfuntions dp = id∨χSp

and dq = id∨χSq
. The funtion s = (dp ◦f)∧ (dq ◦f)belongs to P and satis�es s−1[Sn] = f−1[Sp] ∩ f−1[Sq]. It su�es to take

g = dp ◦ f and h = dq ◦ f .The meet semilattie homomorphism ∇ need not be injetive and neednot preserve joins:Example 4.3. Let p, q be two di�erent prime numbers, n = p · q = p∨q.Let X = {x, y}, T = SX
n . Then f−1[Sp] may be empty for some f ∈ T(e.g., for the onstant funtion 1/q on X), so ∇(p) = C(T ) and analogously

∇(q) = C(T ). Nevertheless, ∇(n) = {X} 6= ∇(p) ∨∇(q) = C(T ).Remark 4.4. A related result has been proved in [2℄ (see also [12℄): Let
n ∈ N and let M be an MV-algebra from the variety generated by Sn. Wedenote by (Nn, |) the lattie of all divisors of n. Let X be the Stone spaeof B(M) and Cl(X) the lattie of all losed subsets of X. Then there is ameet-semilattie homomorphism h: (Nn, |) → (Cl(X),⊇) suh that

M ∼= {f ∈ SX
n : f is ontinuous and f(h(j)) ⊆ Sj for all j}.
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This theorem embraes also MV-algebras whih are not isomorphi to tribes,but it does not over all �ukasiewiz tribes.5. Relation to states. Here we study a many-valued extension of prob-ability aording to [13℄. A state (probability measure) on M is a mapping
s: M → [0, 1] suh that1. s(1) = 1,2. if a ⊙ b = 0, then s(a ⊕ b) = s(a) + s(b),3. if (ai)i∈N is an inreasing sequene in M, then s(

∨

i∈N ai)=
∨

i∈N s(ai).As a onsequene, s(0) = 0 and s(¬a) = 1 − s(a). Every ountable onvexombination of states is a state. A state s is alled pure if it annot beexpressed as a nontrivial onvex ombination of di�erent states, i.e., if sdoes not admit the equality
s = λt + (1 − λ)u(5)for di�erent states t, u and λ ∈ (0, 1). As we required σ-additivity, the statespae of M need not be a ompat subset of [0, 1]M and it need not have anypure states. Only the ase when M admits many pure states is of importanein probability.The restrition of a pure state s on M to B(M) attains only the values 0and 1. Indeed, if s↾B(M) is not two-valued, then there is a b ∈ B(M) suhthat s(b) = λ ∈ (0, 1). Two di�erent states t, u de�ned by

t(a) =
s(a ∧ b)

s(b)
, u(a) =

s(a ∧ ¬b)

s(¬b)satisfy (5), so s is not pure.We shall haraterize all set representations of M . A set H of funtionalson M is alled separating if
(∀a, b ∈ M)(a 6= b ⇒ (∃h ∈ H) h(a) 6= h(b)).Proposition 5.1. Let M be a σ-omplete MV-algebra and let X be thespae of all σ-homomorphisms from M to S∞. Then M is isomorphi toa �ukasiewiz tribe i� X is separating. All set representations of M (as a�ukasiewiz tribe) are restritions of the representation on X to separatingsubsets of X.Proof. If M is a tribe, then the restrition to a point of its domain is a σ-homomorphism into S∞. The set of all suh σ-homomorphisms is separating.Conversely, suppose that X is separating. Then eah a ∈ M an berepresented by a funtion f(a): X → [0, 1] = S∞ de�ned by f(a)(h) = h(a).Apparently, f : M → [0, 1]X = SX

∞ is an injetive σ-homomorphism and it isan isomorphism onto a σ-omplete MV-subalgebra of the tribe [0, 1]X .The �nal statement of the proposition follows diretly.
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Every σ-homomorphism into S∞ is a state, but not all states are σ-homo-morphisms. This annot happen with pure states:Proposition 5.2. Eah pure state s on a σ-omplete MV-algebra M isa σ-homomorphism from M to S∞.Proof. Let X be the Stone spae of B(M). The restrition s↾B(M) isa two-valued state on a σ-algebra, hene there exists an ideal J ∈ X suhthat s(b) = 0 ⇔ b ∈ J . It determines a unique maximal ideal I of M by
I = {a ∈ M : (∃b ∈ J ) a ≤ b} (see [3℄ or [4, Prop. 1.7℄) whih is thekernel of a σ-homomorphism, hI . We shall prove that hI = s. Then, due tomonotoniity of s and maximality of I, we infer that I equals the kernel of sand the quotient algebra M/I is a subalgebra of S∞.Suppose that c, d ∈ M are suh that hI(c) = hI(d). Then there is b ∈ Isatisfying c∨b = d∨b. Without loss of generality, we an assume that b ∈ J .As s(b) = 0, we obtain s(c) = s((c ∧ ¬b)⊕ (c ∧ b)) = s(c ∧ ¬b) and similarly
s(c∨b) = s(c∧¬b), s(d) = s(d∧¬b), and s(d∨b) = s(d∧¬b). All these valuesare equal, hene s(c) = s(d). We have proved that, for eah c ∈ M , the value
s(c) depends only on hI(c). Thus there exists a funtion ϕ: M/I → [0, 1]suh that s = ϕ◦hI . Obviously, ϕ is a state on M/I, i.e., the identity, hene
hI = s.We obtained the following analogue of Proposition 5.1:Corollary 5.3. A σ-omplete MV-algebra M is isomorphi to a �uka-siewiz tribe i� there exists a separating set of pure states on M .The latter ondition annot be replaed by the weaker requirement that
M admits a separating set of states. (E.g., the Borel σ-algebra on the realline fatorized over all sets of Lebesgue measure zero admits a separating setof states, but it has no pure states.)Aknowledgements. The authors wish to express their gratitude toDaniele Mundii for valuable disussions and suggestions. They also thankthe referee for areful reading and orretions.
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