VOL. 103

2005

NO. 1

UNIVERSAL COMPLETELY REGULAR DENDRITES

BҮ

K. OMILJANOWSKI (Wrocław) and S. ZAFIRIDOU (Patras)

Dedicated to the memory of Professor Janusz J. Charatonik

Abstract. We define a dendrite $E_{\{n\}}$ which is universal in the class of all completely regular dendrites with order of points not greater than n. In particular, the dendrite $E_{\{\omega\}}$ is universal in the class of all completely regular dendrites. The construction starts with the standard universal dendrite $D_{\{n\}}$ of order n described by J. J. Charatonik.

We use the term *continuum* to mean any nonempty, compact and connected metrizable space. A continuum X is said to be:

- regular if X has a basis of open sets with finite boundaries;
- completely regular if each nondegenerate subcontinuum of X has nonempty interior (in X);
- a *dendrite* if X is locally connected and contains no simple closed curve.

It is well known that any dendrite is regular ([8, §51, VI, p. 301]), any planar, completely regular continuum is regular and every regular continuum is hereditarily locally connected ([8, §51, IV]). Thus any completely regular continuum that contains no simple closed curve is a dendrite.

For more results concerning the properties of dendrites and their behavior under some special mappings we refer the reader to [3].

A space X is said to be *universal* for a class \mathcal{F} of spaces provided that $X \in \mathcal{F}$ and each member of \mathcal{F} can be homeomorphically imbedded in X. Note that the definition of a universal space does not guarantee its uniqueness.

It is known that:

- (1) There exists a universal dendrite ([13]).
- (2) There is no universal regular continuum ([12], compare [9, Th. 1.6]).
- (3) There exists a universal completely regular continuum ([5]).
- (4) There is no universal planar regular continuum ([6], compare [10, Th. 4.2]).

2000 Mathematics Subject Classification: 54C25, 54F50.

Key words and phrases: dendrite, completely regular continuum, universal space.

The problem of existence of a universal element in the class of all planar completely regular continua raised by J. Krasinkiewicz ([7]) is still open.

The universal dendrite, first constructed by Ważewski, is described in [1] (denoted as D_{ω}). In [2], [4] there are descriptions of dendrites $D_{\{n\}}$ which are universal in the class of all dendrites with order of points not greater than n.

In this paper we define dendrites $E_{\{n\}}$ with similar properties in the class of completely regular dendrites.

For the reader's convenience we picture the dendrites $D_{\{4\}}$ and $E_{\{4\}}$ ($D_{\{4\}}$ is sometimes called the Janiszewski cemetery). They are limits of the following spaces. Starting with a square we inductively replace each square with a small copy of the appropriate pattern: for $D_{\{4\}}$ and for $E_{\{4\}}$. The dendrites $E_{\{n\}}$ will be defined axiomatically.

First we recall the concept of order of a point (see [8, §51]). By the order of a point p in a space X, written $\operatorname{ord}(p, X)$, is meant the least cardinal number n such that p has an arbitrarily small neighborhood in X with boundary of cardinality $\leq n$. We say that p is of order ω in X if p has arbitrarily small neighborhoods in X with finite boundaries but $\operatorname{ord}(p, X) > n$ for any natural number n.

We put $\operatorname{Ord}_n X$ for the set of all points of X of order n.

A point of order 2 (resp. > 2) is called an *ordinary point* (resp. a *branch point*).

The set of all ordinary points is a dense subset of a dendrite and the set of all branch points of a dendrite is at most countable ([8, §51, VI, Theorems 7, 8].

The symbol pq stands for the arc with end points p and q. An arc pq is said to be *free* in a space X if $pq \setminus \{p, q\}$ is an open subset of X. For dendrites this is equivalent to $pq \setminus \{p, q\}$ not containing any branch points.

Note that the above definition of order of a point in a regular continuum coincides with the definition of order of a point p as the number of arcs intersecting exactly in their common end point p (see [8, §51, I, 8, and the following remark]).

We use the following concept of arc-density.

DEFINITION 1. We say that a set $Q \subset X$ is arcwise dense at $a \in X$ if $Q \cap ab \setminus \{a\} \neq \emptyset$ for any arc $ab \subset X$; Q is arcwise dense in X if Q is arcwise dense at each $a \in X$.

In [2] and [4] there are some generalizations concerning the uniqueness of some special universal dendrites. They may be summarized in the following theorem.

THEOREM 2 ([2], [4]). Let $\emptyset \neq S \subset \{3, 4, \dots, \omega\}$ be given. There exists a unique D_S with the following two properties:

 (\mathcal{D}'_S) the order of any branch point of D_S belongs to S, (\mathcal{D}''_S) Ord_s D_S is arcwise dense in D_S for any $s \in S$.

Moreover, if $m = \max S$, then D_S and $D_{\{m\}}$ are universal in the class of dendrites having orders at most m. In particular $D_{\{\omega\}}$ is a universal dendrite.

We define axiomatically completely regular dendrites E_S with similar properties.

DEFINITION 3. Let $\emptyset \neq S \subset \{3, 4, \dots, \omega\}$ be given. We denote by E_S any dendrite X satisfying the following three conditions:

- (\mathcal{E}'_S) the order of any branch point of X belongs to S,
- (\mathcal{E}_{S}'') Ord_s X is arcwise dense at any non-ordinary point of X for any $s \in S$,
- (\mathcal{E}''') for any arc $ab \subset X$ there is a free arc a'b' in X contained in ab.

We show the existence and uniqueness of E_S , and that E_S is universal in the class of completely regular dendrites with branch points having orders in S. But first we describe some details of a method of replacing points with arcs.

Let q be a separating point of a continuum X and let $X \setminus \{q\} = C^0 \cup C^1$ be the union of disjoint open sets. We can replace q with an arc by attaching its end points to C^0 and C^1 . Formally, we can define this new space $\mathcal{A}(X, \{q\})$ as the subspace of the product $X \times [0, 1]$:

$$\mathcal{A}(X, \{q\}) = (C^0 \times \{0\}) \cup (\{q\} \times [0, 1]) \cup (C^1 \times \{1\}).$$

Note that if q separates X into exactly two components, then $\mathcal{A}(X, \{q\})$ is uniquely defined (up to homeomorphism).

For a countable set $Q = \{q_1, q_2, ...\}$ of separating points of a continuum X we may replace these points with arcs inductively. In short, if $X \setminus \{q_n\} = C_n^0 \cup C_n^1$, where C_n^0 and C_n^1 are open and disjoint for n = 1, 2, ..., then we put

$$\mathcal{A}(X,Q) = \{(x,t_1,t_2,\ldots) \in X \times [0,1]^{\omega} : x \in C_n^i \Rightarrow t_n = i\}.$$

Note that if for any $q_n \in Q$ the set $X \setminus \{q_n\}$ has exactly two components, then the space $\mathcal{A}(X,Q)$ is uniquely defined (up to homeomorphism) and it does not depend on the enumeration of elements of Q.

Observe that the projection $\pi : \mathcal{A}(X,Q) \to X$ is monotone since $\pi^{-1}(q)$ is a free arc of $\mathcal{A}(X,Q)$ for $q \in Q$, and $\pi^{-1}(x)$ is a singleton for $x \notin Q$.

PROPOSITION 4. Let Q be a countable set of ordinary points of a dendrite X.

(i) Then $\mathcal{A}(X,Q)$ is a dendrite.

(ii) If Q is arcwise dense in X, then $\mathcal{A}(X,Q)$ is completely regular.

Proof. (i) Of course $\mathcal{A}(X, \{q_1\})$ is a dendrite and the projection f_1 : $\mathcal{A}(X, \{q_1\}) \to X$ is monotone. Observe that for $n = 1, 2, \ldots$ we have by induction

$$\mathcal{A}(X, \{q_1, \dots, q_n, q_{n+1}\}) = \mathcal{A}(\mathcal{A}(X, \{q_1, \dots, q_n\}), (f_1 \circ \dots \circ f_n)^{-1}(q_{n+1})),$$

hence the space $\mathcal{A}(X, \{q_1, \ldots, q_n, q_{n+1}\})$ is a dendrite and the natural projection $f_{n+1} : \mathcal{A}(X, \{q_1, \ldots, q_{n+1}\}) \to \mathcal{A}(X, \{q_1, \ldots, q_n\})$ is monotone.

So $\mathcal{A}(X,Q)$ is homeomorphic to the inverse limit

$$\lim \{\mathcal{A}(X, \{q_1, \ldots, q_n\}), f_n\}$$

of the system of dendrites with monotone bonding mappings, hence it is a dendrite (see [11, Theorem 10.36]).

(ii) As Q is arcwise dense in X, the sets $\pi^{-1}(X \setminus Q)$ and $\operatorname{cl}(\pi^{-1}(X \setminus Q))$ are zero-dimensional. Therefore each nondegenerate subcontinuum of $\mathcal{A}(X,Q)$ contains an interior point of some free arc $\pi^{-1}(q_n)$, hence it has nonempty interior.

THEOREM 5. Let $\emptyset \neq S \subset \{3, 4, \dots, \omega\}$ be given.

- (i) If Q is a countable set of ordinary points of the dendrite D_S which is arcwise dense in D_S, then the dendrite A(D_S, Q) has properties (E'_S), (E''_S) and (E''').
- (ii) If a dendrite X has properties (\$\mathcal{E}'_S\$), (\$\mathcal{E}''_S\$) and (\$\mathcal{E}'''\$), then it is homeomorphic to \$\mathcal{A}(D_S, Q)\$ for some countable arcwise dense set \$Q\$ of ordinary points in \$D_S\$.
- (iii) Let Q', Q'' be countable sets of ordinary points of the dendrite D_S which are arcwise dense in D_S . Then there exists an autohomeomorphism h of D_S such that h(Q') = Q''. Moreover, $\mathcal{A}(D_S, Q')$ is homeomorphic to $\mathcal{A}(D_S, Q'')$.

Proof. (i) By Proposition 4 the space $\mathcal{A}(D_S, Q)$ is a completely regular dendrite, hence it has property (\mathcal{E}''') .

It follows easily from the construction of $\mathcal{A}(D_S, Q)$ that $\operatorname{ord}(z, \mathcal{A}(D_S, Q))$ = $\operatorname{ord}(\pi(z), D_S)$ for each $z \in \mathcal{A}(D_S, Q)$, and therefore properties (\mathcal{D}'_S) and (\mathcal{D}''_S) of D_S yield properties (\mathcal{E}'_S) and (\mathcal{E}''_S) of $\mathcal{A}(D_S, Q)$.

(ii) First, notice that (\mathcal{E}''_S) implies that the end points of any free arc in X are ordinary. Therefore maximal free arcs are pairwise disjoint. Now we identify points of free arcs; formally, we define $x \approx y$ iff x = y or xy is a free arc in X.

We shall prove that the quotient space $X \approx$ is the dendrite D_S .

Since the natural projection $p: X \to X/\approx$ is monotone, the space X/\approx is a dendrite and for any nonfree arc ab of X the projection p(ab) is an arc of X/\approx . One can easily verify that $\operatorname{ord}(x, X) = \operatorname{ord}(p(x), X/\approx)$ for each $x \in X$. Therefore, since X satisfies conditions (\mathcal{E}'_S) and (\mathcal{E}''_S) , the dendrite X/\approx satisfies conditions (\mathcal{D}'_S) and (\mathcal{D}''_S) of Theorem 2. Thus X/\approx is the dendrite D_S .

Let Q denote the set of all nondegenerate equivalence classes of \approx . Since for any $q \in Q$ the set $p^{-1}(q)$ is a maximal free arc of X, Q is a countable set of ordinary points of X/\approx . From (\mathcal{E}''') it follows that Q is arcwise dense in X/\approx .

It is easy to see that $\mathcal{A}(X/\approx, Q)$ is homeomorphic to X.

(iii) The proof of the existence of the homeomorphism h is similar to the proof of Theorem 6.2 of [4] (cf. Lemma 6.13 of [4]), therefore it is omitted. Of course h induces a natural homeomorphism between $\mathcal{A}(D_S, Q')$ and $\mathcal{A}(D_S, Q'')$.

THEOREM 6. Let $\emptyset \neq S \subset \{3, 4, \ldots, \omega\}$ be given. There exists a unique dendrite E_S with properties (\mathcal{E}'_S) , (\mathcal{E}''_S) and (\mathcal{E}'') . The space E_S is universal in the class of completely regular dendrites with branch points having orders in S, i.e. in the class of dendrites which satisfy (\mathcal{E}'_S) and (\mathcal{E}''') .

Proof. The existence and uniqueness of E_S follow from Theorem 5. To prove its universality let a completely regular dendrite X have orders of its branch points in S. We can assume that $X \subset D_S$ (see Theorems 6.6–6.8 of [4]). Since $\operatorname{Ord}_2 D_S$ is arcwise dense in D_S the set $\operatorname{Ord}_2 D_S \cap X$ is arcwise dense in X. Since X satisfies (\mathcal{E}''') we can find a countable set $Q_1 \subset$ $\operatorname{Ord}_2 D_S \cap X$ arcwise dense in X which is contained in the union of the interiors of all free arcs in X. Of course $Q_1 \subset \operatorname{Ord}_2 X$. One can easily verify that $\mathcal{A}(X, Q_1)$ is homeomorphic to X.

Further let Q_2 be a countable set arcwise dense in $D_S \setminus X$ such that $Q_2 \subset \operatorname{Ord}_2 D_S$. Observe that for any arc $ab \subset D_S$ we have $(Q_1 \cup Q_2) \cap ab \neq \emptyset$, i.e. $Q_1 \cup Q_2$ is arcwise dense in D_S . Theorem 5 shows that $\mathcal{A}(D_S, Q_1 \cup Q_2)$ is homeomorphic to E_S . Obviously $\mathcal{A}(X, Q_1)$ is homeomorphic to a subspace of $\mathcal{A}(D_S, Q_1 \cup Q_2)$.

The proof is complete.

COROLLARY 7. Let $\emptyset \neq S \subset \{3, 4, \dots, \omega\}$ be given and suppose $m = \max S$ exists. Then E_S and $E_{\{m\}}$ are universal in the class of completely regular dendrites with branch points of orders at most m. In particular, $E_{\{\omega\}}$ is universal in the class of all completely regular dendrites.

REFERENCES

- J. J. Charatonik, Monotone mappings of universal dendrites, Topology Appl. 38 (1991), 163-187.
- [2] —, Homeomorphisms of universal dendrites, Rend. Circ. Mat. Palermo (2) 44 (1995), 457–468.
- J. J. Charatonik, W. J. Charatonik and J. R. Prajs, *Mapping hierarchy for dendrites*, Dissertationes Math. 333 (1994).
- W. J. Charatonik and A. Dilks, On self-homeomorphic spaces, Topology Appl. 55 (1994), 215-238.
- S. D. Iliadis, Universal continuum for the class of completely regular continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 603–607.
- S. D. Iliadis and S. S. Zafiridou, Planar rational compacta and universality, Fund. Math. 141 (1992), 109–118.
- [7] J. Krasinkiewicz, On two theorems of Dyer, Colloq. Math. 50 (1986), 201–208.
- [8] K. Kuratowski, Topology, Vol. II, Academic Press, New York, 1968.
- [9] J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Math. 293 (1990).
- [10] —, —, Containing spaces for planar rational compacta, ibid. 300 (1990).
- S. B. Nadler, Jr., Multicoherence techniques applied to inverse limits, Trans. Amer. Math. Soc. 157 (1971), 227–234.
- [12] G. Nöbeling, Über regular-eindimensionale Räume, Math. Ann. 104 (1931), 81–91.
- [13] T. Ważewski, Sur les courbes de Jordan ne renfermant aucune courbe simple fermée de Jordan, Ann. Soc. Polon. Math. 2 (1923), 49–170.

Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: komil@math.uni.wroc.pl Department of Mathematics Faculty of Science University of Patras 26500 Patras, Greece E-mail: zafeirid@math.upatras.gr

Received 26 August 2004; revised 21 March 2005 (4483)