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Dedicated to the memory of Professor Janusz J. Charatonik

Abstract. We define a dendrite E{,} which is universal in the class of all completely
regular dendrites with order of points not greater than n. In particular, the dendrite E,,;
is universal in the class of all completely regular dendrites. The construction starts with
the standard universal dendrite Dy, of order n described by J. J. Charatonik.

We use the term continuum to mean any nonempty, compact and con-
nected metrizable space. A continuum X is said to be:

— regular if X has a basis of open sets with finite boundaries;

— completely reqular if each nondegenerate subcontinuum of X has non-
empty interior (in X);

— a dendrite if X is locally connected and contains no simple closed curve.

It is well known that any dendrite is regular ([8, §51, VI, p. 301]), any
planar, completely regular continuum is regular and every regular continuum
is hereditarily locally connected ([8, §51, IV]). Thus any completely regular
continuum that contains no simple closed curve is a dendrite.

For more results concerning the properties of dendrites and their behavior
under some special mappings we refer the reader to [3].

A space X is said to be universal for a class F of spaces provided that
X € F and each member of F can be homeomorphically imbedded in X.
Note that the definition of a universal space does not guarantee its unique-
ness.

It is known that:

(1) There exists a universal dendrite ([13]).

(2) There is no universal regular continuum ([12], compare [9, Th. 1.6]).
(3) There exists a universal completely regular continuum ([5]).

(4) There is no universal planar regular continuum ([6], compare [10,

Th. 4.2]).
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The problem of existence of a universal element in the class of all planar
completely regular continua raised by J. Krasinkiewicz ([7]) is still open.

The universal dendrite, first constructed by Wazewski, is described in [1]
(denoted as D). In [2], [4] there are descriptions of dendrites Dy, which
are universal in the class of all dendrites with order of points not greater
than n.

In this paper we define dendrites F,) with similar properties in the class
of completely regular dendrites.
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For the reader’s convenience we picture the dendrites D4y and Ey4y (D4
is sometimes called the Janiszewski cemetery). They are limits of the follow-
ing spaces. Starting with a square we inductively replace each square with

a small copy of the appropriate pattern: for D4y and <>'§'<> for Egyy.
The dendrites Ey,, will be defined axiomatically.

First we recall the concept of order of a point (see [8, §51]). By the order of
a point p in a space X, written ord(p, X), is meant the least cardinal number
n such that p has an arbitrarily small neighborhood in X with boundary of
cardinality < n. We say that p is of order w in X if p has arbitrarily small
neighborhoods in X with finite boundaries but ord(p, X)) > n for any natural
number n.

We put Ord,, X for the set of all points of X of order n.

A point of order 2 (resp. > 2) is called an ordinary point (resp. a branch
point).

The set of all ordinary points is a dense subset of a dendrite and the
set of all branch points of a dendrite is at most countable (|8, §51, VI,
Theorems 7, 8.

The symbol pq stands for the arc with end points p and ¢. An arc pq is
said to be free in a space X if pg\ {p, ¢} is an open subset of X. For dendrites
this is equivalent to pq \ {p, ¢} not containing any branch points.

Note that the above definition of order of a point in a regular continuum
coincides with the definition of order of a point p as the number of arcs
intersecting exactly in their common end point p (see [8, §51, I, 8, and the
following remark]).
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We use the following concept of arc-density.

DEFINITION 1. We say that a set Q C X is arcwise dense at a € X if
QnNab\ {a} # 0 for any arc ab C X; Q is arcwise dense in X if Q) is arcwise
dense at each a € X.

In 2] and [4] there are some generalizations concerning the uniqueness of
some special universal dendrites. They may be summarized in the following
theorem.

THEOREM 2 ([2], [4]). Let O #£ S C {3,4,...,w} be given. There exists a
unique Dg with the following two properties:

(DY)  the order of any branch point of Dg belongs to S,
(D4) Ordg Dg is arcwise dense in Dg for any s € S.

Moreover, if m = maxS, then Dg and Dy, are universal in the class
of dendrites having orders at most m. In particular Dy, is a universal
dendrite.

We define axiomatically completely regular dendrites Eg with similar
properties.

DEFINITION 3. Let ) # S C {3,4,...,w} be given. We denote by Eg
any dendrite X satisfying the following three conditions:

(€5)  the order of any branch point of X belongs to S,

(£¢)  Ordg X is arcwise dense at any non-ordinary point of X for any
seS,

(") for any arc ab C X there is a free arc a’b’ in X contained in ab.

We show the existence and uniqueness of Eg, and that Eg is universal in
the class of completely regular dendrites with branch points having orders
in S. But first we describe some details of a method of replacing points with
arcs.

Let ¢ be a separating point of a continuum X and let X\ {¢q} = C°UC! be
the union of disjoint open sets. We can replace ¢ with an arc by attaching its
end points to C° and C!. Formally, we can define this new space A(X, {q})
as the subspace of the product X x [0, 1]:

A(X,{g}) = (C° x {0}) U ({g} x [0,1]) U (C* x {1}).

Note that if ¢ separates X into exactly two components, then A(X, {¢}) is
uniquely defined (up to homeomorphism).

For a countable set @ = {q1, g2, ...} of separating points of a continuum
X we may replace these points with arcs inductively. In short, if X \ {g,} =
CYU O}, where C% and C} are open and disjoint for n = 1,2,..., then we
put

AX,Q) = {(z,t1,t2,...) € X x [0,1]Y : x € C} = t,, = i}.
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Note that if for any ¢, € @ the set X \ {¢,} has exactly two components,
then the space A(X, Q) is uniquely defined (up to homeomorphism) and it
does not depend on the enumeration of elements of Q).

Observe that the projection 7 : A(X,Q) — X is monotone since 7~ 1(q)
is a free arc of A(X,Q) for ¢ € Q, and 7 !(z) is a singleton for z € Q.

PROPOSITION 4. Let Q) be a countable set of ordinary points of a den-
drite X.

(i) Then A(X,Q) is a dendrite.
(ii) If Q is arcwise dense in X, then A(X, Q) is completely regular.

Proof. (i) Of course A(X,{q1}) is a dendrite and the projection f; :
A(X,{q1}) — X is monotone. Observe that for n = 1,2,... we have by
induction

A(X’ {Q1v «o s Qn, QH-H}) = A(A(X’ {Q1, ) qn})’ (fl ©---0 fn)_l(Qn-i-l)),

hence the space A(X,{q1,...,qn,qn+1}) is a dendrite and the natural pro-

jection fn+1 : A(X7 {qla s QTLJrl}) - A(X7 {QIv s 7Qn}) is monotone.
So A(X, @) is homeomorphic to the inverse limit

im{AX, {q1, -, 4n}), fn}

of the system of dendrites with monotone bonding mappings, hence it is a
dendrite (see [11, Theorem 10.36]).

(i) As Q is arcwise dense in X, the sets 7~ 1(X\Q) and cl(771(X \ Q)) are
zero-dimensional. Therefore each nondegenerate subcontinuum of A(X, Q)
contains an interior point of some free arc ﬂfl(qn), hence it has nonempty
interior.

THEOREM 5. Let ) £S5 C {3,4,...,w} be given.

(i) If Q is a countable set of ordinary points of the dendrite Dg which
is arcwise dense in Dg, then the dendrite A(Dg, Q) has properties
(£4). (€4) and ().

(i) If a dendrite X has properties (£5), (£2) and (E"), then it is hom-
eomorphic to A(Dg, Q) for some countable arcwise dense set Q of
ordinary points in Dg.

(iii) Let @', Q" be countable sets of ordinary points of the dendrite Dg
which are arcwise dense in Dg. Then there exists an autohomeo-
morphism h of Dg such that h(Q') = Q". Moreover, A(Dg, Q') is
homeomorphic to A(Dg,Q").

Proof. (i) By Proposition 4 the space A(Dg, @) is a completely regular
dendrite, hence it has property (£").
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It follows easily from the construction of A(Dg, @) that ord(z, A(Dg, Q))
= ord(n(z), Dg) for each z € A(Dg,Q), and therefore properties (D) and
(DY) of Dg yield properties (£¢) and (£%) of A(Dgs, Q).

(ii) First, notice that (£§) implies that the end points of any free arc in
X are ordinary. Therefore maximal free arcs are pairwise disjoint. Now we
identify points of free arcs; formally, we define x ~ y iff z = y or zy is a free
arc in X.

We shall prove that the quotient space X/~ is the dendrite Dg.

Since the natural projection p : X — X/~ is monotone, the space X/~
is a dendrite and for any nonfree arc ab of X the projection p(ab) is an
arc of X/~. One can easily verify that ord(z, X) = ord(p(z), X/~) for each
z € X. Therefore, since X satisfies conditions (%) and (£¢), the dendrite
X/~ satisfies conditions (Dg) and (D§) of Theorem 2. Thus X/~ is the
dendrite Dg.

Let @ denote the set of all nondegenerate equivalence classes of ~. Since
for any ¢ € @ the set p~!(g) is a maximal free arc of X, Q is a countable
set of ordinary points of X/~. From (") it follows that @ is arcwise dense
in X/~.

It is easy to see that A(X/~, Q) is homeomorphic to X.

(iii) The proof of the existence of the homeomorphism h is similar to
the proof of Theorem 6.2 of [4] (cf. Lemma 6.13 of [4]), therefore it is omit-
ted. Of course h induces a natural homeomorphism between A(Dg, Q') and

A(Ds, Q").

THEOREM 6. Let ) # S C {3,4,...,w} be given. There exists a unique
dendrite Es with properties (£5), (£¢) and (E™). The space Egs is universal

in the class of completely reqular dendrites with branch points having orders
in S, i.e. in the class of dendrites which satisfy (€g) and (E").

Proof. The existence and uniqueness of Eg follow from Theorem 5. To
prove its universality let a completely regular dendrite X have orders of its
branch points in S. We can assume that X C Dg (see Theorems 6.6-6.8
of [4]). Since Ords Dg is arcwise dense in Dg the set Orda Dg N X is arc-
wise dense in X. Since X satisfies (£””) we can find a countable set Q1 C
Ordy Dg N X arcwise dense in X which is contained in the union of the in-
teriors of all free arcs in X. Of course )1 C Ords X. One can easily verify
that A(X, Q1) is homeomorphic to X.

Further let Q2 be a countable set arcwise dense in Dg \ X such that
Q2 C Ordy Dg. Observe that for any arc ab C Dg we have (Q1UQ2)Nab # 0,
i.e. Q1 UQyq is arcwise dense in Dg. Theorem 5 shows that A(Dg, Q1 UQ2) is
homeomorphic to Eg. Obviously A(X, Q1) is homeomorphic to a subspace
of A(Dg,Q1UQ2).

The proof is complete.
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COROLLARY 7. Let ) # S C {3,4,...,w} be given and suppose m =
max S erists. Then Eg and Ey,,, are universal in the class of completely
reqular dendrites with branch points of orders at most m. In particular, Ey,
is universal in the class of all completely regular dendrites.
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