COLLOQUIUM MATHEMATICUM

UNIVERSAL COMPLETELY REGULAR DENDRITES

Abstract

BY K. OMILJANOWSKI (Wrocław) and S. ZAFIRIDOU (Patras)

Dedicated to the memory of Professor Janusz J. Charatonik

Abstract

We define a dendrite $E_{\{n\}}$ which is universal in the class of all completely regular dendrites with order of points not greater than n. In particular, the dendrite $E_{\{\omega\}}$ is universal in the class of all completely regular dendrites. The construction starts with the standard universal dendrite $D_{\{n\}}$ of order n described by J. J. Charatonik.

We use the term continuum to mean any nonempty, compact and connected metrizable space. A continuum X is said to be:

- regular if X has a basis of open sets with finite boundaries;
- completely regular if each nondegenerate subcontinuum of X has nonempty interior (in X);
- a dendrite if X is locally connected and contains no simple closed curve.

It is well known that any dendrite is regular ([8, §51, VI, p. 301]), any planar, completely regular continuum is regular and every regular continuum is hereditarily locally connected ([8, §51, IV]). Thus any completely regular continuum that contains no simple closed curve is a dendrite.

For more results concerning the properties of dendrites and their behavior under some special mappings we refer the reader to [3].

A space X is said to be universal for a class \mathcal{F} of spaces provided that $X \in \mathcal{F}$ and each member of \mathcal{F} can be homeomorphically imbedded in X. Note that the definition of a universal space does not guarantee its uniqueness.

It is known that:
(1) There exists a universal dendrite ([13]).
(2) There is no universal regular continuum ([12], compare [9, Th. 1.6]).
(3) There exists a universal completely regular continuum ([5]).
(4) There is no universal planar regular continuum ([6], compare [10, Th. 4.2]).

[^0]The problem of existence of a universal element in the class of all planar completely regular continua raised by J. Krasinkiewicz ([7]) is still open.

The universal dendrite, first constructed by Ważewski, is described in [1] (denoted as D_{ω}). In [2], [4] there are descriptions of dendrites $D_{\{n\}}$ which are universal in the class of all dendrites with order of points not greater than n.

In this paper we define dendrites $E_{\{n\}}$ with similar properties in the class of completely regular dendrites.

For the reader's convenience we picture the dendrites $D_{\{4\}}$ and $E_{\{4\}}\left(D_{\{4\}}\right.$ is sometimes called the Janiszewski cemetery). They are limits of the following spaces. Starting with a square we inductively replace each square with a small copy of the appropriate pattern: The dendrites $E_{\{n\}}$ will be defined axiomatically.

First we recall the concept of order of a point (see [8, §51]). By the order of a point p in a space X, written $\operatorname{ord}(p, X)$, is meant the least cardinal number n such that p has an arbitrarily small neighborhood in X with boundary of cardinality $\leq n$. We say that p is of order ω in X if p has arbitrarily small neighborhoods in X with finite boundaries but $\operatorname{ord}(p, X)>n$ for any natural number n.

We put $\operatorname{Ord}_{n} X$ for the set of all points of X of order n.
A point of order $2($ resp. >2) is called an ordinary point (resp. a branch point).

The set of all ordinary points is a dense subset of a dendrite and the set of all branch points of a dendrite is at most countable ([8, §51, VI, Theorems 7, 8].

The symbol $p q$ stands for the arc with end points p and q. An arc $p q$ is said to be free in a space X if $p q \backslash\{p, q\}$ is an open subset of X. For dendrites this is equivalent to $p q \backslash\{p, q\}$ not containing any branch points.

Note that the above definition of order of a point in a regular continuum coincides with the definition of order of a point p as the number of arcs intersecting exactly in their common end point p (see $[8, \S 51, \mathrm{I}, 8$, and the following remark]).

We use the following concept of arc-density.
Definition 1. We say that a set $Q \subset X$ is arcwise dense at $a \in X$ if $Q \cap a b \backslash\{a\} \neq \emptyset$ for any arc $a b \subset X ; Q$ is arcwise dense in X if Q is arcwise dense at each $a \in X$.

In [2] and [4] there are some generalizations concerning the uniqueness of some special universal dendrites. They may be summarized in the following theorem.

Theorem $2([2],[4])$. Let $\emptyset \neq S \subset\{3,4, \ldots, \omega\}$ be given. There exists a unique D_{S} with the following two properties:
$\left(\mathcal{D}_{S}^{\prime}\right) \quad$ the order of any branch point of D_{S} belongs to S, $\left(\mathcal{D}_{S}^{\prime \prime}\right) \quad \operatorname{Ord}_{s} D_{S}$ is arcwise dense in D_{S} for any $s \in S$.
Moreover, if $m=\max S$, then D_{S} and $D_{\{m\}}$ are universal in the class of dendrites having orders at most m. In particular $D_{\{\omega\}}$ is a universal dendrite.

We define axiomatically completely regular dendrites E_{S} with similar properties.

Definition 3. Let $\emptyset \neq S \subset\{3,4, \ldots, \omega\}$ be given. We denote by E_{S} any dendrite X satisfying the following three conditions:
$\left(\mathcal{E}_{S}^{\prime}\right) \quad$ the order of any branch point of X belongs to S,
$\left(\mathcal{E}_{S}^{\prime \prime}\right) \quad \operatorname{Ord}_{s} X$ is arcwise dense at any non-ordinary point of X for any $s \in S$,
$\left(\mathcal{E}^{\prime \prime \prime}\right)$ for any arc $a b \subset X$ there is a free arc $a^{\prime} b^{\prime}$ in X contained in $a b$.
We show the existence and uniqueness of E_{S}, and that E_{S} is universal in the class of completely regular dendrites with branch points having orders in S. But first we describe some details of a method of replacing points with arcs.

Let q be a separating point of a continuum X and let $X \backslash\{q\}=C^{0} \cup C^{1}$ be the union of disjoint open sets. We can replace q with an arc by attaching its end points to C^{0} and C^{1}. Formally, we can define this new space $\mathcal{A}(X,\{q\})$ as the subspace of the product $X \times[0,1]$:

$$
\mathcal{A}(X,\{q\})=\left(C^{0} \times\{0\}\right) \cup(\{q\} \times[0,1]) \cup\left(C^{1} \times\{1\}\right)
$$

Note that if q separates X into exactly two components, then $\mathcal{A}(X,\{q\})$ is uniquely defined (up to homeomorphism).

For a countable set $Q=\left\{q_{1}, q_{2}, \ldots\right\}$ of separating points of a continuum X we may replace these points with arcs inductively. In short, if $X \backslash\left\{q_{n}\right\}=$ $C_{n}^{0} \cup C_{n}^{1}$, where C_{n}^{0} and C_{n}^{1} are open and disjoint for $n=1,2, \ldots$, then we put

$$
\mathcal{A}(X, Q)=\left\{\left(x, t_{1}, t_{2}, \ldots\right) \in X \times[0,1]^{\omega}: x \in C_{n}^{i} \Rightarrow t_{n}=i\right\}
$$

Note that if for any $q_{n} \in Q$ the set $X \backslash\left\{q_{n}\right\}$ has exactly two components, then the space $\mathcal{A}(X, Q)$ is uniquely defined (up to homeomorphism) and it does not depend on the enumeration of elements of Q.

Observe that the projection $\pi: \mathcal{A}(X, Q) \rightarrow X$ is monotone since $\pi^{-1}(q)$ is a free arc of $\mathcal{A}(X, Q)$ for $q \in Q$, and $\pi^{-1}(x)$ is a singleton for $x \notin Q$.

Proposition 4. Let Q be a countable set of ordinary points of a dendrite X.
(i) Then $\mathcal{A}(X, Q)$ is a dendrite.
(ii) If Q is arcwise dense in X, then $\mathcal{A}(X, Q)$ is completely regular.

Proof. (i) Of course $\mathcal{A}\left(X,\left\{q_{1}\right\}\right)$ is a dendrite and the projection f_{1} : $\mathcal{A}\left(X,\left\{q_{1}\right\}\right) \rightarrow X$ is monotone. Observe that for $n=1,2, \ldots$ we have by induction

$$
\mathcal{A}\left(X,\left\{q_{1}, \ldots, q_{n}, q_{n+1}\right\}\right)=\mathcal{A}\left(\mathcal{A}\left(X,\left\{q_{1}, \ldots, q_{n}\right\}\right),\left(f_{1} \circ \cdots \circ f_{n}\right)^{-1}\left(q_{n+1}\right)\right),
$$

hence the space $\mathcal{A}\left(X,\left\{q_{1}, \ldots, q_{n}, q_{n+1}\right\}\right)$ is a dendrite and the natural projection $f_{n+1}: \mathcal{A}\left(X,\left\{q_{1}, \ldots, q_{n+1}\right\}\right) \rightarrow \mathcal{A}\left(X,\left\{q_{1}, \ldots, q_{n}\right\}\right)$ is monotone.

So $\mathcal{A}(X, Q)$ is homeomorphic to the inverse limit

$$
\underset{\leftarrow}{\lim }\left\{\mathcal{A}\left(X,\left\{q_{1}, \ldots, q_{n}\right\}\right), f_{n}\right\}
$$

of the system of dendrites with monotone bonding mappings, hence it is a dendrite (see [11, Theorem 10.36]).
(ii) As Q is arcwise dense in X, the sets $\pi^{-1}(X \backslash Q)$ and $\operatorname{cl}\left(\pi^{-1}(X \backslash Q)\right)$ are zero-dimensional. Therefore each nondegenerate subcontinuum of $\mathcal{A}(X, Q)$ contains an interior point of some free arc $\pi^{-1}\left(q_{n}\right)$, hence it has nonempty interior.

Theorem 5. Let $\emptyset \neq S \subset\{3,4, \ldots, \omega\}$ be given.
(i) If Q is a countable set of ordinary points of the dendrite D_{S} which is arcwise dense in D_{S}, then the dendrite $\mathcal{A}\left(D_{S}, Q\right)$ has properties $\left(\mathcal{E}_{S}^{\prime}\right),\left(\mathcal{E}_{S}^{\prime \prime}\right)$ and $\left(\mathcal{E}^{\prime \prime \prime}\right)$.
(ii) If a dendrite X has properties $\left(\mathcal{E}_{S}^{\prime}\right),\left(\mathcal{E}_{S}^{\prime \prime}\right)$ and $\left(\mathcal{E}^{\prime \prime \prime}\right)$, then it is homeomorphic to $\mathcal{A}\left(D_{S}, Q\right)$ for some countable arcwise dense set Q of ordinary points in D_{S}.
(iii) Let $Q^{\prime}, Q^{\prime \prime}$ be countable sets of ordinary points of the dendrite D_{S} which are arcwise dense in D_{S}. Then there exists an autohomeomorphism h of D_{S} such that $h\left(Q^{\prime}\right)=Q^{\prime \prime}$. Moreover, $\mathcal{A}\left(D_{S}, Q^{\prime}\right)$ is homeomorphic to $\mathcal{A}\left(D_{S}, Q^{\prime \prime}\right)$.

Proof. (i) By Proposition 4 the space $\mathcal{A}\left(D_{S}, Q\right)$ is a completely regular dendrite, hence it has property ($\mathcal{E}^{\prime \prime \prime}$).

It follows easily from the construction of $\mathcal{A}\left(D_{S}, Q\right)$ that ord $\left(z, \mathcal{A}\left(D_{S}, Q\right)\right)$ $=\operatorname{ord}\left(\pi(z), D_{S}\right)$ for each $z \in \mathcal{A}\left(D_{S}, Q\right)$, and therefore properties (\mathcal{D}_{S}^{\prime}) and $\left(\mathcal{D}_{S}^{\prime \prime}\right)$ of D_{S} yield properties $\left(\mathcal{E}_{S}^{\prime}\right)$ and $\left(\mathcal{E}_{S}^{\prime \prime}\right)$ of $\mathcal{A}\left(D_{S}, Q\right)$.
(ii) First, notice that $\left(\mathcal{E}_{S}^{\prime \prime}\right)$ implies that the end points of any free arc in X are ordinary. Therefore maximal free arcs are pairwise disjoint. Now we identify points of free arcs; formally, we define $x \approx y$ iff $x=y$ or $x y$ is a free arc in X.

We shall prove that the quotient space X / \approx is the dendrite D_{S}.
Since the natural projection $p: X \rightarrow X / \approx$ is monotone, the space X / \approx is a dendrite and for any nonfree arc $a b$ of X the projection $p(a b)$ is an arc of X / \approx. One can easily verify that $\operatorname{ord}(x, X)=\operatorname{ord}(p(x), X / \approx)$ for each $x \in X$. Therefore, since X satisfies conditions $\left(\mathcal{E}_{S}^{\prime}\right)$ and $\left(\mathcal{E}_{S}^{\prime \prime}\right)$, the dendrite X / \approx satisfies conditions $\left(\mathcal{D}_{S}^{\prime}\right)$ and $\left(\mathcal{D}_{S}^{\prime \prime}\right)$ of Theorem 2. Thus X / \approx is the dendrite D_{S}.

Let Q denote the set of all nondegenerate equivalence classes of \approx. Since for any $q \in Q$ the set $p^{-1}(q)$ is a maximal free arc of X, Q is a countable set of ordinary points of X / \approx. From $\left(\mathcal{E}^{\prime \prime \prime}\right)$ it follows that Q is arcwise dense in X / \approx.

It is easy to see that $\mathcal{A}(X / \approx, Q)$ is homeomorphic to X.
(iii) The proof of the existence of the homeomorphism h is similar to the proof of Theorem 6.2 of [4] (cf. Lemma 6.13 of [4]), therefore it is omitted. Of course h induces a natural homeomorphism between $\mathcal{A}\left(D_{S}, Q^{\prime}\right)$ and $\mathcal{A}\left(D_{S}, Q^{\prime \prime}\right)$.

Theorem 6. Let $\emptyset \neq S \subset\{3,4, \ldots, \omega\}$ be given. There exists a unique dendrite E_{S} with properties $\left(\mathcal{E}_{S}^{\prime}\right),\left(\mathcal{E}_{S}^{\prime \prime}\right)$ and $\left(\mathcal{E}^{\prime \prime \prime}\right)$. The space E_{S} is universal in the class of completely regular dendrites with branch points having orders in S, i.e. in the class of dendrites which satisfy $\left(\mathcal{E}_{S}^{\prime}\right)$ and $\left(\mathcal{E}^{\prime \prime \prime}\right)$.

Proof. The existence and uniqueness of E_{S} follow from Theorem 5. To prove its universality let a completely regular dendrite X have orders of its branch points in S. We can assume that $X \subset D_{S}$ (see Theorems 6.6-6.8 of [4]). Since $\operatorname{Ord}_{2} D_{S}$ is arcwise dense in D_{S} the set $\operatorname{Ord}_{2} D_{S} \cap X$ is arcwise dense in X. Since X satisfies $\left(\mathcal{E}^{\prime \prime \prime}\right)$ we can find a countable set $Q_{1} \subset$ $\operatorname{Ord}_{2} D_{S} \cap X$ arcwise dense in X which is contained in the union of the interiors of all free arcs in X. Of course $Q_{1} \subset \operatorname{Ord}_{2} X$. One can easily verify that $\mathcal{A}\left(X, Q_{1}\right)$ is homeomorphic to X.

Further let Q_{2} be a countable set arcwise dense in $D_{S} \backslash X$ such that $Q_{2} \subset \operatorname{Ord}_{2} D_{S}$. Observe that for any arc $a b \subset D_{S}$ we have $\left(Q_{1} \cup Q_{2}\right) \cap a b \neq \emptyset$, i.e. $Q_{1} \cup Q_{2}$ is arcwise dense in D_{S}. Theorem 5 shows that $\mathcal{A}\left(D_{S}, Q_{1} \cup Q_{2}\right)$ is homeomorphic to E_{S}. Obviously $\mathcal{A}\left(X, Q_{1}\right)$ is homeomorphic to a subspace of $\mathcal{A}\left(D_{S}, Q_{1} \cup Q_{2}\right)$.

The proof is complete.

Corollary 7. Let $\emptyset \neq S \subset\{3,4, \ldots, \omega\}$ be given and suppose $m=$ $\max S$ exists. Then E_{S} and $E_{\{m\}}$ are universal in the class of completely regular dendrites with branch points of orders at most m. In particular, $E_{\{\omega\}}$ is universal in the class of all completely regular dendrites.

REFERENCES

[1] J. J. Charatonik, Monotone mappings of universal dendrites, Topology Appl. 38 (1991), 163-187.
[2] -, Homeomorphisms of universal dendrites, Rend. Circ. Mat. Palermo (2) 44 (1995), 457-468.
[3] J. J. Charatonik, W. J. Charatonik and J. R. Prajs, Mapping hierarchy for dendrites, Dissertationes Math. 333 (1994).
[4] W. J. Charatonik and A. Dilks, On self-homeomorphic spaces, Topology Appl. 55 (1994), 215-238.
[5] S. D. Iliadis, Universal continuum for the class of completely regular continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 603-607.
[6] S. D. Iliadis and S. S . Zafiridou, Planar rational compacta and universality, Fund. Math. 141 (1992), 109-118.
[7] J. Krasinkiewicz, On two theorems of Dyer, Colloq. Math. 50 (1986), 201-208.
[8] K. Kuratowski, Topology, Vol. II, Academic Press, New York, 1968.
[9] J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Math. 293 (1990).
[10] -, 一, Containing spaces for planar rational compacta, ibid. 300 (1990).
[11] S. B. Nadler, Jr., Multicoherence techniques applied to inverse limits, Trans. Amer. Math. Soc. 157 (1971), 227-234.
[12] G. Nöbeling, Über regular-eindimensionale Räume, Math. Ann. 104 (1931), 81-91.
[13] T. Ważewski, Sur les courbes de Jordan ne renfermant aucune courbe simple fermée de Jordan, Ann. Soc. Polon. Math. 2 (1923), 49-170.

Institute of Mathematics
University of Wrocław
Department of Mathematics
Pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
E-mail: komil@math.uni.wroc.pl
Faculty of Science
University of Patras
26500 Patras, Greece
E-mail: zafeirid@math.upatras.gr

Received 26 August 2004;
revised 21 March 2005

[^0]: 2000 Mathematics Subject Classification: 54C25, 54F50.
 Key words and phrases: dendrite, completely regular continuum, universal space.

