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MARIAN HOTLOŚ (Wrocław) and LEOPOLD VERSTRAELEN (Leuven)

Dedicated to the memory of Professor Stanisław Gołąb

Abstract. Solutions of the P. J. Ryan problem as well as investigations of curva-
ture properties of Cartan hypersurfaces and Ricci-pseudosymmetric hypersurfaces lead to
curvature identities holding on every hypersurface M isometrically immersed in a semi-
Riemannian space form. These identities, under some assumptions, give rises to new gen-
eralized Einstein metric conditions on M . We investigate hypersurfaces satisfying such
curvature conditions.

1. Some generalized Einstein metric conditions. In [14, Theorem
3.1] a curvature property of pseudosymmetry type of Einstein manifolds was
found. It was shown that on any semi-Riemannian Einstein manifold (M,g),
n ≥ 4, the following identity holds:

R · C − C ·R =
κ

(n− 1)n
Q(g,R) =

κ

(n− 1)n
Q(g, C).

For precise definitions of the symbols used we refer to Sections 2 and 3 of the
present paper. The above theorem gives rise to a family of curvature con-
ditions of pseudosymmetry type ([14]). In particular, curvature properties
of non-Einstein and non-conformally flat semi-Riemannian manifolds of di-
mension ≥ 4 satisfying at every point the condition: the tensors R ·C−C ·R
and Q(g, C) are linearly dependent, were investigated in [14]. This condition
is equivalent on UC = {x ∈M | C 6= 0 at x} to

R · C − C ·R = L1Q(g, C),(1)
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where L1 is some function on UC . In [14, Theorem 4.1] it was shown that if
(M,g), n ≥ 4, is a semi-Riemannian manifold satisfying (1) then on US ∩UC
we have R · R = L1Q(g,R) and C · R = 0, where US =

{
x ∈ M

∣∣S − κ
n g

6= 0 at x
}

.
Curvature properties of semi-Riemannian manifolds satisfying at every

point the condition: the tensors R · C − C · R and Q(g,R) are linearly
dependent, were investigated in [12]. This condition is equivalent on UR ={
x ∈M

∣∣R− κ
(n−1)n G 6= 0 at x

}
to

R ·C − C ·R = L2Q(g,R),(2)

where L2 is some function on UR. In [12, Theorem 4.2] it was shown that if
(M,g), n ≥ 4, is a semi-Riemannian manifold satisfying (2) then R ·R = 0
on US ∩ UC .

The study of semi-Riemannian manifolds satisfying at every point the
condition: the tensors R ·C−C ·R and Q(S,R) are linearly dependent, was
initiated in [22]. This condition is equivalent on U3 = {x∈M | Q(S,R) 6= 0
at x} to

R · C − C ·R = L3Q(S,R),(3)

where L3 is some function on U3. In [22] it was shown that if (M,g), n ≥ 4,
is a Ricci-semisymmetric (R · S = 0) semi-Riemannian manifold satisfying
(3) then at every point of US ∩ UC ⊂ M at which L3 does not vanish we
have

R ·C − C ·R =
1

n− 2
Q(S,R).(4)

In Section 5 we consider hypersurfaces of semi-Euclidean spaces En+1
s with

signature (s, n+ 1− s), n ≥ 4, satisfying (4).
We can also investigate semi-Riemannian manifolds satisfying at every

point the condition: the tensors R ·C−C ·R and Q(S,C) are linearly depen-
dent. This condition is equivalent on U4 = {x ∈M | Q(S,C) 6= 0 at x} to

R · C − C ·R = L4Q(S,C),(5)

where L4 is some function on U4. In this paper we present results on hyper-
surfaces of En+1

s , n ≥ 4, satisfying (5). Semi-Riemannian manifolds satisfy-
ing (5) will be investigated in subsequent papers.

(1)–(5) as well as other conditions of this kind are called generalized
Einstein metric conditions ([12], [14]) and also curvature conditions of pseu-
dosymmetry type. Recently, a review of results on semi-Riemannian mani-
folds satisfying such conditions was given in [3] (see also [6] and [24]).

Let M be a hypersurface in a semi-Riemannian space of constant cur-
vature Nn+1

s (c) with signature (s, n + 1 − s), n ≥ 4. We denote by UH the
set of all points of M at which the tensor H2 is not a linear combination of
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the metric tensor g and the second fundamental tensor H of M . It is known
that UH ⊂ US ∩ UC .

Let now M be a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4.

The following results pertain to (4).

Theorem 1.1. Let M be a Ricci-semisymmetric hypersurface in En+1
s ,

n ≥ 4.

(i) ([13, Lemma 3.1]) On UH ⊂M we have H3 = tr(H)H2 + λH and

R · C − C ·R =
1

n− 2
Q(S,R)− 1

n− 2

(
ελ+

κ

n− 1

)
Q(g,R),(6)

where λ is some function on UH .
(ii) ([15, Theorem 5.1]) In addition, if M is a quasi-Einstein hypersur-

face then on UH , (6) reduces to (4).

Curvature properties of Ricci-pseudosymmetric hypersurfaces in semi-
Riemannian spaces of constant curvature Nn+1

s (c), n ≥ 4, were investigated
in [4], [8], [9], [18] and [19], among others. From Proposition 3.2 and Theo-
rem 3.1 of [4] it follows that for every Ricci-pseudosymmetric hypersurface
M in Nn+1

s (c), n ≥ 4, on the set UH ⊂M we have

R · S =
τ

n(n+ 1)
Q(g, S),(7)

where τ is the scalar curvature of the ambient space. In [21] a curvature
characterization of pseudosymmetry type of Ricci-pseudosymmetric hyper-
surfaces M in Nn+1

s (c), n ≥ 4, was found. Namely, we have

Theorem 1.2 ([21, Proposition 5.1(iii) and Theorem 6.1]). Let M be a
hypersurface in Nn+1

s (c), n ≥ 4. On UH ⊂M , (7) is equivalent to

R · C = Q(S,R)− (n− 2)τ
n(n+ 1)

Q(g,R)− (n− 3)τ
(n− 2)n(n+ 1)

Q(S,G).(8)

Cartan hypersurfaces are Ricci-pseudosymmetric ([18], [19]). In [8] fur-
ther curvature properties of pseudosymmetry type for Cartan hypersurfaces
of dimension ≥ 6 were found.

Theorem 1.3 ([8, Theorem 4.3]). On every Cartan hypersurface M in
Sn+1(c), n = 6, 12 or 24, we have: (7), (8),

C ·R =
n− 3
n− 2

Q(S,R)− (n− 3)τ
(n− 1)(n+ 1)

Q(g,R)

− (n− 3)τ
(n− 2)n(n+ 1)

Q(S,G),

R · C − C ·R =
1

n− 2
Q(S,R)− 2τ

(n− 1)n(n+ 1)
Q(g,R).(9)
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In Section 3 we consider an extension of the standard Kulkarni–Nomizu
product E∧F of two (0, 2)-tensorsE and F . Namely, we define the Kulkarni–
Nomizu product Q(E, T ) of a (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2
(see [8]). We present some properties of this product. We use these properties
to prove (see Theorem 3.1) that on any hypersurface M in Nn+1

s (c), n ≥ 4,
the following identities hold:

R · C = Q(S,R)− (n− 2)τ
n(n+ 1)

Q(g,R)(10)

− (n− 3)τ
(n− 2)n(n+ 1)

Q(S,G) +
1

n− 2
g ∧Q(H,A),

C ·R =
n− 3
n− 2

Q(S,R)− (n2 − 3n+ 3)τ
(n− 2)n(n+ 1)

Q(g,R)(11)

− (n− 3)τ
(n− 2)n(n+ 1)

Q(S,G) +
1

n− 2
H ∧Q(g,A) ,

R · C − C ·R =
1

n− 2
Q(S,R) +

(n− 1)τ
(n− 2)n(n+ 1)

Q(g,R)(12)

+
1

n− 2
(g ∧Q(H,A)−H ∧Q(g,A)) ,

where τ , g and H are the scalar curvature of Nn+1
s (c), the metric tensor of

M and the second fundamental tensor of M , respectively. The (0, 2)-tensor
A is defined by

A = H3 − tr(H)H2 +
εκ

n− 1
H.(13)

We mention that from Theorem 5.1 of [15] it follows that A vanishes on
the subset UH of any quasi-Einstein Ricci-semisymmetric hypersurface M
in En+1

s , n ≥ 4. In Section 5 we prove that (4) holds on the subset UH of a
hypersurface M in En+1

s , n ≥ 4, if and only if A = 0 on UH . We also present
examples of hypersurfaces with nonzero A.

From Proposition 5.2 of [21] it follows that if on the subset UH of a
hypersurface M in Nn+1

s (c), n ≥ 4, we have
∑

(X1,X2), (X3,X4), (X,Y )

(R · C)(X1,X2,X3,X4;X,Y ) = 0,(14)

then

A =
(
λ+

εκ

n− 1

)
H + %g,

% =
1
n

(
tr(A)−

(
λ+

εκ

n− 1

)
tr(H)

)
,(15)

on UH , where λ is some function on UH . In Section 4 we prove (see Propo-
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sition 4.1) that the following conditions: (14),
∑

(X1,X2), (X3,X4), (X,Y )

(R · C − C ·R)(X1,X2,X3,X4;X,Y ) = 0,(16)

∑

(X1,X2), (X3,X4), (X,Y )

(C ·R)(X1,X2,X3,X4;X,Y ) = 0(17)

are equivalent on any semi-Riemannian manifold of dimension ≥ 4. Thus on
the subset UH of a hypersurface M in Nn+1

s (c), n ≥ 4, each of the condition
(14), (16), (17) implies (15) on UH (see Theorem 4.1).

2. Preliminaries. Throughout this paper all manifolds are assumed to
be connected paracompact of class C∞. Let (M,g) be an n-dimensional,
n ≥ 3, semi-Riemannian manifold. We denote by ∇, R, C, S and κ the
Levi-Civita connection, the Riemann–Christoffel curvature tensor, the Weyl
conformal curvature tensor, the Ricci tensor and the scalar curvature of
(M,g), respectively. The Ricci operator S is defined by g(SX,Y ) = S(X,Y ),
where X,Y ∈ Ξ(M), Ξ(M) being the Lie algebra of vector fields on M .
We define the endomorphisms X ∧A Y , R(X,Y ) and C(X,Y ) of Ξ(M) by
(X ∧A Y )Z = A(Y,Z)X − A(X,Z)Y , R(X,Y )Z = [∇X ,∇Y ]Z − ∇[X,Y ]Z
and

C(X,Y )Z = R(X,Y )Z − 1
n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z,

where X,Y,Z ∈ Ξ(M) and A is a symmetric (0, 2)-tensor. Now the
Riemann–Christoffel curvature tensor R, the Weyl conformal curvature
tensor C and the (0, 4)-tensor G of (M,g) are defined by

R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4),

C(X1,X2,X3,X4) = g(C(X1,X2)X3,X4),

G(X1,X2,X3,X4) = g((X1 ∧g X2)X3,X4),

where X,Y,Z,X1,X2, . . . ∈ Ξ(M). Let B(X,Y ) be a skew-symmetric endo-
morphism of Ξ(M) and let B be the (0, 4)-tensor associated with B(X,Y ) by

B(X1,X2,X3,X4) = g(B(X1,X2)X3,X4).(18)

B is said to be a generalized curvature tensor if

B(X1,X2,X3,X4) +B(X2,X3,X1,X4) +B(X3,X1,X2,X4) = 0,

B(X1,X2,X3,X4) = B(X3,X4,X1,X2).

Clearly, R, C and G are generalized curvature tensors.
Let B(X,Y ) be a skew-symmetric endomorphism of Ξ(M) and let B

be the tensor defined by (18). We extend the endomorphism B(X,Y ) to a
derivation B(X,Y )· of the algebra of tensor fields on M , assuming that it
commutes with contractions and B(X,Y ) · f = 0 for any smooth function



154 R. DESZCZ ET AL.

on M . Now for a (0, k)-tensor field T , k ≥ 1, we can define the (0, k + 2)-
tensor B · T by

(B · T )(X1, . . . ,Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . ,Xk;X,Y )

= −T (B(X,Y )X1,X2, . . . ,Xk)− . . .− T (X1, . . . ,Xk−1,B(X,Y )Xk).

In addition, if A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-
tensor Q(A, T ) by

Q(A, T )(X1, . . . ,Xk;X,Y ) = (X ∧A Y · T )(X1, . . . ,Xk;X,Y )

= −T ((X ∧A Y )X1,X2, . . . ,Xk)− . . .− T (X1, . . . ,Xk−1, (X ∧A Y )Xk).

In particular, in this manner, we obtain the (0, 6)-tensors B ·B and Q(A,B).
Setting in the above formulas B = R or C, T = R, C or S, A = g or S, we
get the tensors R · R, R · C, C · R, R · S, C · S, Q(g,R), Q(S,R), Q(g, C)
and Q(g, S).

Let M , n = dimM ≥ 3, be a connected hypersurface isometrically im-
mersed in a semi-Riemannian manifold (N, gN). We denote by g the metric
tensor of M induced from gN . Further, we denote by ∇ and ∇N the Levi-
Civita connections corresponding to g and gN , respectively. Let ξ be a local
unit normal vector field on M in N and let ε = gN (ξ, ξ) = ±1. We can
write the Gauss formula and the Weingarten formula of (M,g) in (N, gN)
in the forms ∇NXY = ∇XY + εH(X,Y )ξ and ∇Xξ = −AX, respectively,
where X,Y are vector fields tangent to M , H is the second fundamen-
tal tensor of (M,g) in (N, gN), A is the shape operator and Hk(X,Y ) =
g(AkX,Y ), k ≥ 1, H1 = H and A1 = A. We denote by R and RN the
Riemann–Christoffel curvature tensors of (M,g) and (N, gN), respectively.
The Gauss equation of (M,g) in (N, gN) has the form R(X1, . . . ,X4) =
RN (X1, . . . ,X4)+ ε

2 (H∧H)(X1, . . . ,X4), where X1, . . . ,X4 are vector fields
tangent to M .

Let the equations xr = xr(yk) be the local parametric expression of
(M,g) in (N, gN), where yk and xr are the local coordinates of M and N ,
respectively, and h, i, j, k ∈ {1, . . . , n} and p, r, t, u ∈ {1, . . . , n+1}. Now the
Gauss equation yields

Rhijk = RNprtuB
p
hB

r
iB

t
jB

u
k + ε(HhkHij −HhjHik),(19)

where B r
k = ∂xr/∂yk, RNrstu, Rhijk and Hhk are the local components of

the tensors RN , R and H, respectively. If M is a hypersurface in Nn+1
s (c),

n ≥ 4, then (19) becomes

Rhijk = ε(HhkHij −HhjHik) +
τ

n(n+ 1)
Ghijk,(20)

where τ is the scalar curvature of the ambient space and Ghijk are the local
components of the tensor G. Contracting (20) with gij and gkh, respectively,
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we obtain

Shk = ε(tr(H)Hhk −H2
hk) +

(n− 1)τ
n(n+ 1)

ghk(21)

and

κ = ε((tr(H))2 − tr(H2)) +
(n− 1)τ
n+ 1

,

respectively, where tr(H) = ghkHhk, tr(H2) = ghkH2
hk and Shk are the local

components of the Ricci tensor S of M . Using (21) and Theorem 4.1 of
[17] we can deduce that UH ⊂ US ∩ UC ⊂ M . It is known that at every
point of a hypersurface M in Nn+1

s (c), n ≥ 4, the following condition of
pseudosymmetry type holds ([6, Section 5.5], [17]): the tensors R·R−Q(S,R)
and Q(g, C) are linearly dependent. Precisely, on M we have

R ·R−Q(S,R) = − (n− 2)τ
n(n+ 1)

Q(g, C).(22)

Evidently, if the ambient space is En+1
s then (22) reduces to R ·R = Q(S,R).

3. The basic identities. For symmetric (0, 2)-tensors E and F we
define their Kulkarni–Nomizu product E ∧ F by

(E ∧ F )(X1,X2,X3,X4) = E(X1,X4)F (X2,X3) + E(X2,X3)F (X1,X4)

− E(X1,X3)F (X2,X4)− E(X2,X4)F (X1,X3).

The tensor E ∧ F is also a generalized curvature tensor. For a symmetric
(0, 2)-tensor E we define the (0, 4)-tensor E by E = 1

2 E ∧E. In particular,
g = G = 1

2 g ∧ g. We note that the Weyl tensor C can be represented in the
form

C = R− 1
n− 2

g ∧ S +
κ

(n− 2)(n− 1)
G.(23)

We also have (see e.g. [9, Section 3])

Q(E,E ∧ F ) = −Q(F,E).(24)

Lemma 3.1. Let E be a symmetric (0, 2)-tensor at a point x of a semi-
Riemannian manifold (M,g), n ≥ 3.

(i) ([2, Lemma 2.2]) If

E = αg + βu⊗ u, α, β ∈ R u ∈ T ∗xM,(25)

then at x we have
E2 = α̃E + β̃g, α̃, β̃ ∈ R.(26)

(ii) ([20, Lemma 3.1]) Let UE be the set of all points of M at which E
is not proportional to g. If , at some x ∈ UE ,

E ∧E = 2αg ∧ E + 2βG, α, β ∈ R,(27)

then at x we have (25) with α2 = −β.
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According to [8], for a symmetric (0, 2)-tensor E and a (0, k)-tensor T ,
k ≥ 2, we define their Kulkarni–Nomizu product E ∧ T by

(E ∧ T )(X1,X2,X3,X4;Y3, . . . , Yk)

= E(X1,X4)T (X2,X3, Y3, . . . , Yk) + E(X2,X3)T (X1,X4, Y3, . . . , Yk)

− E(X1,X3)T (X2,X4, Y3, . . . , Yk)− E(X2,X4)T (X1,X3, Y3, . . . , Yk).

Using the above definitions we can prove the following

Lemma 3.2 ([21]). Let E1, E2 and F be symmetric (0, 2)-tensors at a
point x of a semi-Riemannian manifold (M,g), n ≥ 3. Then at x we have

E1 ∧Q(E2, F ) + E2 ∧Q(E1, F ) = −Q(F,E1 ∧E2).

If E = E1 = E2 then ([8])

E ∧Q(E,F ) = −Q(F,E).(28)

As an immediate consequence of (24) and (28) we have

E ∧Q(E,F ) = Q(E,E ∧ F ).(29)

By making use of (15), Propositions 5.1 and 5.2 of [21] imply

Proposition 3.1. Let M be a hypersurface in Nn+1
s (c), n ≥ 4.

(i) R · S = Q(A,H) + τ
n(n+1) Q(g, S) on M .

(ii) If , in addition, M is a Ricci-pseudosymmetric manifold then (7)
holds on UH .

(iii) On M ,

R ·C = Q(S,R)− 1
n− 2

g ∧Q(A,H)(30)

+
τ

n(n+ 1)

(
1

n− 2
Q(S,G)− (n− 2)Q(g, C)

)
.

(iv) In particular , if M is a Ricci-pseudosymmetric hypersurface in En+1
s ,

n ≥ 4, then R · C = Q(S,R) on UH .
(v) Let M be a hypersurface in En+1

s , n ≥ 4, satisfying (14). Then on
UH we have (15) and

R · S = −µ
n
Q(g,H), R · C = Q(S,R)− µ

(n− 2)n
Q(H,G),

where λ is some function on UH and µ = tr(H) tr(H2)− tr(H3) + λ tr(H).

Theorem 3.1. The identities (10)–(12) hold on every hypersurface M in
Nn+1
s (c), n ≥ 4. In particular , on every hypersurface M in En+1

s , n ≥ 4, we
have

R · C − C ·R =
1

n− 2
Q(S,R)(31)

+
1

n− 2
(g ∧Q(H,A)−H ∧Q(g,A)).
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Proof. Applying the relations (23) and (24) in (30) we get (10) easily.
From (20), by transvection with Hh

l = grhHlr, we obtain

Hr
l Rrijk = ε(HijH

2
lk −HikH

2
lj) +

τ

n(n+ 1)
(gijHlk − gikHlj),

which implies

R ·H = εQ(H,H2) +
τ

n(n+ 1)
Q(g,H).(32)

Further, from (20) we also get

R− 1
n− 2

(
g ∧ S +

κ

n− 1
G

)

= εH − 1
n− 2

g ∧ S +
(

κ

(n− 2)(n− 1)
+

τ

n(n+ 1)

)
G,

which, by making use of (21) and (23), turns into

C = εH +
ε

n− 2
g ∧ (H2 − tr(H)H)(33)

+
1

n− 2

(
κ

n− 1
− τ

n+ 1

)
G.

(33), by suitable transvection and application of (13) and the definitions of
R · T and Q(E, T ), leads to

C ·H =
n− 3
n− 2

εQ(H,H2) +
ε

n− 2
Q(g,A)(34)

− τ

(n− 2)(n+ 1)
Q(g,H).

But (34), in view of (32), yields (see Theorem 3.4 of [2])

C ·H =
n− 3
n− 2

R ·H +
ε

n− 2
Q(g,A)− (2n− 3)τ

(n− 2)n(n+ 1)
Q(g,H).

Using this, (20), (22) and (28) we find

C ·R = εH ∧ (C ·H) =
(n− 3)ε
n− 2

H ∧ (R ·H)(35)

+
1

n− 2
H ∧Q(g,A)− (2n− 3)ετ

(n− 2)n(n+ 1)
H ∧Q(g,H)

=
(n− 3)ε
n− 2

(R ·H) +
1

n− 2
H ∧Q(g,A)

− (2n− 3)ετ
(n− 2)n(n+ 1)

Q(g,H)

=
n− 3
n− 2

(R ·R) +
1

n−2
H ∧Q(g,A)− (2n− 3)τ

(n−2)n(n+1)
Q(g,R)
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=
n− 3
n− 2

Q(S,R)− (n− 3)τ
n(n+ 1)

Q(g, C) +
1

n− 2
H ∧Q(g,A)

− (2n− 3)τ
(n− 2)n(n+ 1)

Q(g,R).

From this, by making use of (23) and (24), we get (11). Further, (35) together
with (30) yields

R · C − C ·R =
1

n− 2
Q(S,R)− τ

n(n+ 1)
Q(g, C)

+
1

n− 2
(g ∧Q(H,A)−H ∧Q(g,A))

+
τ

(n− 2)n(n+ 1)
Q(S,G) +

(2n− 3)τ
(n− 2)n(n+ 1)

Q(g,R).

Applying now (23) and (24) we get (12). Finally, we note that (31) is an
immediate consequence of (12). Our theorem is thus proved.

Theorem 3.2. Let M be a hypersurface in Nn+1
s (c), n ≥ 4. If (15) is

satisfied on UH ⊂M then on this set we have

R · C − C ·R =
1

n− 2
Q(S,R) +

(n− 1)τ
(n− 2)n(n+ 1)

Q(g,R)(36)

+
1

n− 2

(
%Q(H,G)− ε

(
λ+

εκ

n− 1

)
Q(g,R)

)
.

Proof. This is a consequence of Theorem 3.1 and (20) and (28).

4. Some curvature conditions. Let (M,g) be covered by a system of
charts {W ; xk}. We denote by gij , Rhijk, Sij , Ghijk = ghkgij − ghjgik and

Chijk = Rhijk +
κ

(n− 2)(n− 1)
Ghijk(37)

− 1
n− 2

(ghkSij − ghjSik + gijShk − gikShj)

the local components of the tensors g, R, S, G and C, respectively. Further,
we denote by S2

ij = SirS
r
j and S j

i = gjrSir the local components of the
tensor S2 defined by S2(X,Y ) = S(SX,Y ), and of the Ricci operator S,
respectively. Let (R ·C)hijklm and (C ·R)hijklm denote the local components
of R · C and C ·R, respectively. We have

(R ·C)hijklm=grs(CrijkRshlm+ChrjkRsilm+ChirkRsjlm+ChijrRsklm),(38)

(C ·R)hijklm =grs(RrijkCshlm+RhrjkCsilm+RhirkCsjlm+RhijrCsklm),(39)

respectively. Applying (37) in (38) and (39) we get
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(R ·C)hijklm = (R ·R)hijklm(40)

− 1
n− 2

(gij(Vhklm + Vkhlm) + ghk(Vijlm + Vjilm)

− gik(Vhjlm + Vjhlm)− ghj(Viklm + Vkilm),

(C ·R)hijklm = (R ·R)hijklm −
1

n− 2
Q(S,R)hijklm(41)

+
κ

(n− 1)(n− 2)
Q(g,R)hijklm

− 1
n− 2

(ghlVmijk − ghmVlijk − gilVmhjk + gimVlhjk

+ gjlVmkhi − gjmVlkhi − gklVmjhi + gkmVljhi),

Vmijk = S s
mRsijk,(42)

where (R · R)hijklm, Q(S,R)hijklm, Q(g,R)hijklm and Q(g, C)hijklm are the
local components of the respective tensors. Using (40) and (41) we obtain
([13, Section 2])

(43) (n− 2)(R · C − C ·R)hijklm = Q(S,R)hijklm

− κ

n− 1
Q(g,R)hijklm + ghlVmijk − ghmVlijk − gilVmhjk

+ gimVlhjk + gjlVmkhi − gjmVlkhi − gklVmjhi + gkmVljhi

− gij(Vhklm + Vkhlm)− ghk(Vijlm + Vjilm)

+ gik(Vhjlm + Vjhlm) + ghj(Viklm + Vkilm).

Lemma 4.1 ([5, Lemma 1.1(iii)]). Let B be a generalized curvature ten-
sor on a semi-Riemannian manifold (M,g), n ≥ 3. The tensor Q(g,B)
vanishes at a point x ∈M if and only if B = κ(B)

(n−1)n G at x.

Lemma 4.2 (cf. [10, Lemma 3.4]). Let (M,g), n ≥ 3, be a semi-Rieman-
nian manifold. Let E be a nonzero symmetric (0, 2)-tensor at a point x ∈M
and let B be a generalized curvature tensor such that Q(E,B) = 0 at x.
Moreover , let Y be a vector at x such that the scalar % = a(Y ) is nonzero,
where a is the covector defined by a(X) = E(X,Y ), X ∈ TxM . Then at x
we have two possibilities:

(i) the tensor E is of rank one (precisely , E = 1
% a⊗ a), or

(ii) the tensor E − 1
% a⊗ a is nonzero and B = γ

2 E ∧E, γ ∈ R.

Using the above lemma and Lemmas 3.1 and 3.2 we can prove

Lemma 4.3. Let (M,g), n ≥ 3, be a semi-Riemannian manifold. Let E
be a nonzero symmetric (0, 2)-tensor at a point x ∈ M . If at x we have
Q(E − αg, g ∧ E) = 0, α ∈ R, then (26) holds at x.
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Let Q(E,B)hijklm be the local components of Q(E,B). We have ([5,
Lemma 1.1(i)])

Q(E,B)hijklm +Q(E,B)jklmhi +Q(E,B)lmhijk = 0.(44)

On M we also have the well known Walker identity

(R ·R)hijklm + (R ·R)jklmhi + (R ·R)lmhijk = 0.(45)

Proposition 4.1. Let (M,g), n ≥ 4, be a semi-Riemannian manifold.
The equalities (14), (16) and (17) are equivalent on M .

Proof. We set

Phijklm =
1

n− 2
((gij(Vhklm + Vkhlm) + ghk(Vijlm + Vjilm)

− gik(Vhjlm + Vjhlm)− ghj(Viklm + Vkilm)

+ gkl(Vmjhi + Vjmhi) + gjm(Vklhi + Vlkhi)

− gkm(Vjlhi + Vljhi)− gjl(Vkmhi + Vmkhi)

+ gmh(Vlijk + Viljk) + gli(Vmhjk + Vhmjk)

− gmi(Vlhjk + Vhljk)− glh(Vmijk + Vimjk)),

where Vhijk are defined by (42). Symmetrizing (41) with respect to the pairs
(h, i), (j, k) and (l,m) and applying (44) and (45) we obtain

(C ·R)hijklm + (C ·R)jklmhi + (C ·R)lmhijk = Phijklm.

In the same way, using (40), we have

(R · C)hijklm + (R · C)jklmhi + (R · C)lmhijk = −Phijklm.
From the last two relations we get

(R · C − C ·R)hijklm + (R · C − C ·R)jklmhi
+ (R ·C − C ·R)lmhijk = −2Phijklm.

Now our assertion is obvious.

Proposition 5.2 of [21] and Proposition 4.1 yield

Theorem 4.1. If on the subset UH in a hypersurface M of Nn+1
s (c),

n ≥ 4, one of the conditions (14), (16) or (17) is satisfied then (15) holds
on UH .

Using (44), (45), Proposition 4.1 and Theorem 4.1 we immediately get

Corollary 4.1. If on the subset UH in a hypersurface M of Nn+1
s (c),

n ≥ 4, one of the tensors R ·C, C ·R or R ·C−R ·C is a linear combination
of R · R and of a finite sum of tensors of the form Q(E,B), where E is
a symmetric (0, 2)-tensor and B a generalized curvature tensor , then (15)
holds on UH .
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Theorem 4.2. Let M be a hypersurface in Nn+1
s (c), n ≥ 4. If at every

point of M the following two tensors are linearly dependent :
(i) R · C − C ·R and Q(g, C), or

(ii) R · C − C ·R and Q(g,R), or
(iii) R · C − C ·R and Q(S,R), or
(iv) R · C − C ·R and Q(S,C),

then (15) and (36) hold on UH ⊂M .

Proof. In case (i), resp. (ii), on UH ⊂M we have (1), resp. (2). Now, in
view of Corollary 4.1, (15) holds on UH .

Consider case (iii) and let x ∈ UH . Assume that Q(S,R) vanishes at x.
Then (22) becomes R ·R = − (n−2)τ

n(n+1) Q(g, C), whence R · S = 0. Thus

R · C = R ·R− 1
n− 2

g ∧ (R · S) = − (n− 2)τ
n(n+ 1)

Q(g, C).

Applying Corollary 4.1 we get (15). Clearly, if Q(S,R) is nonzero at a point
x then x ∈ UH . Thus (3) holds at x. Now Corollary 4.1 again implies (15).

Finally, consider case (iv) and let x ∈ UH . If Q(S,C) is nonzero at x then
(5) holds at x and Corollary 4.1 implies (15). Assume now that Q(S,C) = 0
at x. In view of Theorem 3.1 of [11], we get R ·R = κ

n−1 Q(g,R). This yields
R · S = κ

n−1 Q(g, S). Using (23) and (29) we find

R · C = R ·R− 1
n− 2

g ∧ (R · S)

=
κ

n− 1

(
Q(g,R)− 1

n− 2
g ∧Q(g, S)

)

=
κ

n− 1

(
Q(g,R)− 1

n− 2
Q(g, g ∧ S)

)

=
κ

n− 1

(
Q(g,R)− 1

n− 2
g ∧ S

)

=
κ

n− 1

(
Q(g,R)− 1

n− 2
g ∧ S +

κ

n− 1
G

)
=

κ

n− 1
Q(g, C) .

Now, in view of Corollary 4.1, we obtain (15) on UH . Finally, from Theo-
rem 3.2 it follows that (36) holds on UH . This completes the proof.

Proposition 4.2. Let (M,g), n ≥ 4, be a semi-Riemannian manifold.
If at a point x ∈ US ∩ UC its curvature tensor R is of the form

R = φS + µg ∧ S + ηG, φ, µ, η ∈ R,(46)

then at x we have

(47) R · C − C ·R =
1

n− 2
Q(S,R) +

(
(n− 1)µ− 1

(n− 2)φ
+

κ

n− 1

)
Q(g,R)

+
µ((n− 1)µ− 1)− (n− 1)φη

(n− 2)φ
Q(S,G),
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(48) R · C − C ·R =
(

1
φ

(
µ− 1

n− 2

)
+

κ

n− 1

)
Q(g,R)

+
(
µ

φ

(
µ− 1

n− 2

)
− η
)
Q(S,G).

Proof. As shown in [12], (46) implies

Vmijk = (α+ µ)(SmkSij − SmjSik) +
(
αµ

φ
+ η

)
(Smkgij − Smjgik)(49)

+ β(gmkSij − gmjSik) +
βµ

φ
Gmijk,

where α = φκ− 1 + (n− 2)µ, β = µκ+ (n− 1)η and

R · S = (n− 2)
(
µ

φ

(
µ− 1

n− 2

)
− η
)
Q(g, S).(50)

Substituting (49) and (50) into (43) we get

(n− 2)(R · C − C ·R) = Q(S,R)− κ

n− 1
Q(g,R)(51)

+ (α+ µ)Q(g, S)−
(
αµ

φ
+ η

)
Q(S,G)

− (n− 2)
(
µ

φ

(
µ− 1

n−2

)
−η
)
g ∧Q(g, S).

But (46) implies

Q(g, S) =
1
φ
Q(g,R)− µ

φ
Q(g, g ∧ S) =

1
φ
Q(g,R) +

µ

φ
Q(S,G).(52)

Substituting (52) and the identity g ∧ Q(g, S) = −Q(S,G) (see (28)) into
(51), we get (47). Using now (24), (46) and (52) we obtain

Q(S,R) = Q(S, φS + µg ∧ S + ηG)

= µQ(S, g ∧ S) + ηQ(S,G)

= −µQ(g, S) + ηQ(S,G)

= −µ
φ
Q(g,R)− µ2

φ
Q(S,G) + ηQ(S,G)

= −µ
φ
Q(g,R) +

(
η − µ2

φ

)
Q(S,G).

Thus, in view of the above equality, (47) takes the form (48). This completes
the proof.
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Remark 4.1. (i) (cf. [12, Proposition 4.2]) Under the assumptions of the
above proposition, if additionally µ

(
µ− 1

n−2

)
= ηφ at x, then at this point

we have

R · C − C ·R =
(

1
φ

(
µ− 1

n− 2

)
+

κ

n− 1

)
Q(g,R).

(ii) An example of a warped product manifold satisfying (46) is given
in [23].

5. Hypersurfaces with H3 = tr(H)H2 − εκ
n−1 H. Let M be a hyper-

surface in a semi-Riemannian space of constant curvature Nn+1
s (c), n ≥ 4.

We now present examples of hypersurfaces satisfying (15).

Example 5.1. (i) From Theorem 5.1 of [15] it follows that on the subset
UH of a quasi-Einstein hypersurface M in En+1

s , n ≥ 4, R ·S = 0 if and only
if A = 0. Evidently, the last relation can be written on UH in the form (15),
where λ = − εκ

n−1 . Examples of such hypersurfaces are given in [1] and [7].
(ii) ([7, Example 4.3]) Let M be a hypersurface in a Euclidean space

En+1, n ≥ 4, having three principal curvatures: 0,
√
γ and −√γ with mul-

tiplicities n+2p
3 , n−p

3 and n−p
3 , respectively, where n − p = 3, 6, 12 or 24,

p ≥ 1, and γ is a positive function on M . The hypersurface M is a non-
quasi-Einstein Ricci-semisymmetric manifold. Moreover, if n− p = 6, 12 or
24 then M is a non-semisymmetric manifold. It is easy to check that on M
we have:

tr(H) = 0, S = −H2, κ = −2(n− p)γ
3

,

H3 = tr(H)H2 + γH = − 3κ
2(n− p) H.

Now the relation H3 = λH, where λ = − 3κ
2(n−p) , yields (15).

(iii) Let M be the Cartan hypersurface of dimension n = 6, 12 or 24. It
is known that on M the following relations hold (see e.g. [8, Section 4]):

H3 =
3τ

n(n+ 1)
H, tr(H) = 0, κ =

(n− 3)τ
n+ 1

, ε = 1.(53)

Applying (53) to (13) we obtain A =
(
λ + κ

n(n+1)

)
H and λ = 3τ

n(n+1) . In

addition, using the above relations we find A = (n2−3)τ
(n−1)n(n+1) H. Substituting

this into (12) and using (28) we find (9) easily.
(iv) Examples of hypersurfaces in Nn+1

s (c), n ≥ 4, satisfying an equation
of the form A = αH + βg, where α and β are some functions on M , will be
given in [16].
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Theorem 5.1. Let M be a hypersurface in Nn+1
s (c), n ≥ 4. On UH ⊂M

the condition A = 0 is equivalent to

R · C − C ·R =
1

n− 2
Q(S,R) +

(n− 1)τ
(n− 2)n(n+ 1)

Q(g,R).(54)

Proof. Clearly, A = 0, by (12), implies (54). Now assume that (54) holds
on UH . Then (12) reduces to g∧Q(H,A)−H∧Q(g,A) = 0, which in virtue
of (15) and (29) can be written in the form

%g ∧Q(H, g)−
(
λ+

εκ

n− 1

)
H ∧Q(g,H)

= −%g ∧Q(g,H) +
(
λ+

εκ

n− 1

)
H ∧Q(H, g)

= −%Q(g, g ∧H) +
(
λ+

εκ

n− 1

)
Q(H, g ∧H) = 0.

Thus we have

Q

((
λ+

εκ

n− 1

)
H − %g, g ∧H

)
= 0.(55)

Let x ∈ UH . We prove that A =
(
λ + εκ

n−1

)
H − %g vanishes at x. First we

assert that

λ+
εκ

n− 1
= 0.(56)

Suppose not; then we can write (55) in the form Q(H−αg, g∧H) = 0, α ∈ R.
Applying Lemmas 3.2 and 4.2 we deduce that x ∈M −UH , a contradiction.
Thus we have (56), and (55) now reduces to %Q(g, g ∧ H) = 0. Supposing
that % 6= 0 we get Q(g, g ∧ H) = 0 and, by (28), Q(H,G) = 0. Applying
Lemmas 3.1 and 4.2 we deduce that x ∈ M − UH , a contradiction. So we
have % = 0 and A = 0. Our theorem is thus proved.

Corollary 5.1. Let M be a hypersurface in En+1
s , n ≥ 4. The condi-

tions A = 0 and (4) are equivalent on UH ⊂M .
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[22] M. Hotloś, On a certain curvature condition of pseudosymmetry type, to appear.
[23] D. Kowalczyk, On the Schwarzschild type spacetimes, Dept. Math. Agricultural

Univ. Wrocław, Ser. A, Theory and Methods, Report No. 83, 2000.



166 R. DESZCZ ET AL.

[24] L. Verstraelen, Comments on pseudo-symmetry in the sense of Ryszard Deszcz , in:
Geometry and Topology of Submanifolds, VI, World Sci., River Edge, NJ, 1994,
199–209.

Ryszard Deszcz and Małgorzata Głogowska
Department of Mathematics
Agricultural University of Wrocław
Grunwaldzka 53
50-357 Wrocław, Poland
E-mail: rysz@ozi.ar.wroc.pl

mglog@ozi.ar.wroc.pl

Marian Hotloś
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