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LINEAR LIFTINGS OF AFFINORS TO WEIL BUNDLES

BY

JACEK DĘBECKI (Kraków)

Abstract. We give a classification of all linear natural operators transforming affi-
nors on each n-dimensional manifold M into affinors on TAM, where TA is the product
preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.

We recall that an affinor on a manifold M is a tensor field of type (1, 1)
on M , which can be interpreted as a linear endomorphism of the tangent
bundle TM . We will denote by aff(M) the vector space of all affinors on
M . Let A be a Weil algebra and TA the Weil functor corresponding to A,
which is a product preserving bundle functor (see [3]). Fix also a positive
integer n.

A lifting of affinors to TA is, by definition, a system of maps ΛM :
aff(M)→ aff(TAM) indexed by n-dimensional manifolds and satisfying for
all such manifolds M , N , for every embedding f : M → N and for all
t ∈ aff(M), u ∈ aff(N) the following implication:

Tf ◦ t = u ◦ Tf ⇒ TTAf ◦ ΛM (t) = ΛN (u) ◦ TTAf.
A lifting Λ is said to be linear if ΛM is linear for each n-dimensional

manifold M . Of course, all linear liftings of affinors to TA form a vector
space.

We begin by constructing three examples.

Example 1. Let C ∈ A. For every n-dimensional manifold we have the
map bM : R × TM 3 (h, v) 7→ hv ∈ TM . Applying the product preserving
functor TA we obtain TAbM : TAR × TATM → TATM . But TAR =
A and there is a canonical exchange map between TATM and TTAM .
Hence TAbM can be interpreted as a map A × TTAM → TTAM , and so
TTAM 3 V 7→ TAbM (C, V ) ∈ TTAM as an affinor on TAM (this is a
natural affinor constructed in [4]). Likewise, for every t ∈ aff(M) the map
TAt : TATM → TATM can be interpreted as an affinor TTAM → TTAM
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on TAM (TAt is called the complete lifting of t, see [1]). Therefore we can
define

C̃M (t)(V ) = TAbM (C, TAt(V ))

for V ∈ TTAM . A trivial verification shows that C̃ is a linear lifting of
affinors to TA. Clearly, this lifting is the composition of the complete lifting
of affinors to affinors on the Weil bundle and a natural affinor on the Weil
bundle.

Example 2. Let L : A→ A be an R-linear map. For every n-dimension-
al manifoldM and every t ∈ aff(M) we have the trace function tr t : M → R,
and so TA tr t : TAM → A. Let πTAM : TTAM → TAM be the tangent
bundle projection. Define

L̃M (t)(V ) = TAbM (L(TA tr t(πTAM (V ))), V )

for V ∈ TTAM , where bM is as in Example 1. A trivial verification shows
that L̃ is a linear lifting of affinors to TA. It is worth pointing out that
this lifting is nothing but a sum of products of linear liftings of affinors
to functions on the Weil bundle (see [5]) and natural affinors on the Weil
bundle.

Example 3. Let D : A × A → A be an R-bilinear map with the prop-
erty that D(P · Q,R) = P · D(Q,R) + D(P,R) · Q for P,Q,R ∈ A. For
every n-dimensional manifold M and every t ∈ aff(M) we have the map
d(TA tr t) : TTAM → A, which is the exterior derivative of TA tr t. Clearly,
for every V ∈ TTAM the map rt,V : A 3 P 7→ D(P, d(TA tr t)(V )) ∈ A is a
differentiation of the algebra A. It is well known that every differentiation
of the Weil algebra A determines in a natural way a vector field on TAN
for each manifold N (see [2] for a construction of such natural vector fields).
Denote by r̃t,V M the vector field on TAM determined by rt,V . Define

D̃M (t)(V ) = r̃t,V M (πTAM (V ))

for V ∈ TTAM . A trivial verification shows that D̃ is a linear lifting of
affinors to TA. Observe that this lifting is nothing but a sum of tensor
products of natural vector fields on the Weil bundle and linear liftings of
affinors to 1-forms on the Weil bundle (see [5]).

We are now in a position to formulate our main result.

Theorem. If n ≥ 2 then for each linear lifting Λ of affinors to TA

there are C ∈ A, an R-linear map L : A → A and an R-bilinear map
D : A×A→ A with the property that D(P ·Q,R) = P ·D(Q,R)+D(P,R)·Q
for P,Q,R ∈ A, such that

Λ = C̃ + L̃+ D̃.

Moreover , C, L and D are uniquely determined.
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The proof will be based on a general lemma proved by Mikulski (see [5]).
This lemma applied to our problem says that if ∆ and Θ are two linear
liftings of affinors to TA and

∆Rn

(
x1 ∂

∂x1 ⊗ dx
1
)

= ΘRn

(
x1 ∂

∂x1 ⊗ dx
1
)
,

then ∆ = Θ.
The proof of our theorem will be divided into several steps, but first we

have to establish a few basic facts and introduce some notation.
We first observe that for every open subset U of Rn and every t ∈ aff(Rn)

we have ΛU (t|TU) = ΛRn(t)|TTAU . This can be easily proved by taking the
inclusion U → Rn for f in the definition of lifting.

Next, TRn = Rn × Rn and if s ∈ aff(Rn), then s(x, y) = (x, si(x)yi) for
(x, y) ∈ Rn × Rn, where sij : Rn → R for i, j ∈ {1, . . . , n} are smooth maps.
Similarly, TAn = An×An. Let end(A) denote the vector space of all R-linear
endomorphisms of A. Thus, if S ∈ aff(An), then S(X,Y ) = (X,Si(X)(Y i))
for (X,Y ) ∈ An × An, where Sij : An → end(A) for i, j ∈ {1, . . . , n} are
smooth maps. Suppose that f : Rn → Rn is a polynomial map. Since the
addition and multiplication in the algebra A are maps obtained by applying
TA to the addition and multiplication in the field R, it is evident that
TAf(X) = f(X) for X ∈ An and

TTAf(X,Y ) =
(
f(X),

∂f

∂xi
(X) · Y i

)

for (X,Y ) ∈ An × An.
We will identify each P ∈ A with the map A 3 Q 7→ P ·Q ∈ A, which is

an element of end(A).
Therefore for every open subset U of Rn, for every polynomial map

f : Rn → Rn such that f |U is an embedding and for all t, u ∈ aff(Rn), if

(1)
∂f i

∂xj
(x)tjk(x) = uij(f(x))

∂f j

∂xk
(x)

for i, k ∈ {1, . . . , n} and x ∈ U , then

(2)
∂f i

∂xj
(X) ◦ ΛRn(t)jk(X) = ΛRn(u)ij(f(X)) ◦ ∂f

j

∂xk
(X)

for i, k ∈ {1, . . . , n} and X ∈ TAU .
Finally, let e ∈ aff(Rn) be the affinor from Mikulski’s lemma. In other

words e1
1(x) = x1, eij(x) = 0 for i 6= 1 or j 6= 1.

Step 1. The maps ΛRn(e)pq : An → end(A) for p, q ∈ {1, . . . , n} are
R-linear.

Fix h ∈ R \ {0}. If U = Rn and f(x) = hx, t = he, u = e, then (1)
holds. Hence (2) holds. Taking i = p and k = q we get h2ΛRn(e)pq(X) =
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hΛRn(e)pq(hX), and so hΛRn(e)pq(X) = ΛRn(e)pq(hX). By continuity, the
same holds for every h ∈ R. Applying the homogeneous function theorem
(see [3]) we deduce that ΛRn(e)pq is R-linear.

Step 2. If p, q∈{1, . . . , n} are such that p 6=q, q 6=1, then ΛRn(e)pq=0.

Fix h ∈ R \ {0}. If U = Rn, f q(x) = hxq, f i(x) = xi for i 6= q, t = e,
u = e, then (1) holds. Hence (2) holds. Taking i = p and k = q we get
ΛRn(e)pq(X) = hΛRn(e)pq(f(X)). This is still true if h = 0, by continuity.
Hence ΛRn(e)pq = 0.

Step 3. There is an R-linear map E : A→ end(A) such that ΛRn(e)1
1(X)

= E(X1) for X ∈ An. For each p ∈ {2, . . . , n} there is an R-linear map
F p : A→ end(A) such that ΛRn(e)pp(X) = F p(X1) for X ∈ An.

Fix h ∈ R \ {0}. If U = Rn and f i(x) = hxi for i 6= 1, f1(x) = x1, t = e,
u = e, then (1) holds. Hence (2) holds.

Taking i=1 and k = 1 we get ΛRn(e)1
1(X) = ΛRn(e)1

1(f(X)). This is still
true if h = 0, by continuity.

Taking i,k=p we get hΛRn(e)pp(X)=hΛRn(e)pp(f(X)), and so ΛRn(e)pp(X)
= ΛRn(e)pp(f(X)). This is still true if h = 0, by continuity.

But if h = 0, then f i(X) = 0 for i 6= 1, f1(X) = X1. Hence the existence
of E and F p is obvious. From Step 1 we see that E and F p are R-linear.

Step 4. For each p ∈ {2, . . . , n} there is an R-linear map Gp : A →
end(A) such that ΛRn(e)p1(X) = Gp(Xp) for X ∈ An.

Fix h ∈ R \ {0}. If U = Rn and f i(x) = hxi for i 6= p, fp(x) = xp,
t = he, u = e, then (1) holds. Hence (2) holds. Taking i = p and k = 1 we
get hΛRn(e)p1(X) = hΛRn(e)p1(f(X)), and so ΛRn(e)p1(X) = ΛRn(e)p1(f(X)).
This is still true if h = 0, by continuity. But if h = 0, then f i(X) = 0 for
i 6= p and fp(X) = Xp. Hence the existence of Gp is obvious. From Step 1
we see that Gp is R-linear.

Step 5. There are R-linear maps F,G : A→ end(A) such that F p = F
and Gp = G for all p ∈ {2, . . . , n}.

Fix p, q ∈ {2, . . . , n}. If U = Rn and fp(x) = xq, f q(x) = xp, f i(x) = xi

for i 6= p and i 6= q, t = u = e, then (1) holds. Hence (2) holds.
Taking i = p and k = q we get ΛRn(e)qq(X) = ΛRn(e)pp(f(X)), and so

F q(X1) = F p(X1), by Step 3.
Taking i = p and k = 1 we get ΛRn(e)q1(X) = ΛRn(e)p1(f(X)), and so

Gq(Xq) = Gp(Xq), by Step 4.
Hence the existence of F and G is obvious.

Step 6. There are an R-linear map L : A → A and an R-bilinear map
D : A×A→ A with the property that D(P ·Q,R) = P ·D(Q,R)+D(P,R)·Q
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for P,Q,R ∈ A, such that F (P )(Q) = L(P )·Q for P,Q ∈ A and G(Q)(R) =
D(Q,R) for Q,R ∈ A.

If U = {x ∈ Rn : x2 > 0} and f = g × idRn−2 , where g(x1, x2) =
(x1, (x2)2), t = u = e, then (1) becomes

[
1 0
0 2x2

] [
x1 0
0 0

]
=
[
x1 0
0 0

] [
1 0
0 2x2

]
.

This clearly holds, hence so does (2). On account of the previous steps, we
have [

ΛRn(e)1
1(X) ΛRn(e)1

2(X)
ΛRn(e)2

1(X) ΛRn(e)2
2(X)

]
=
[
E(X1) 0
G(X2) F (X1)

]
.

Hence from (2) it follows that
[

1 0
0 2X2

]
◦
[
E(X1) 0
G(X2) F (X1)

]
=
[

E(X1) 0
G((X2)2) F (X1)

]
◦
[

1 0
0 2X2

]
,

and so[
E(X1) 0

2X2 ◦G(X2) 2X2 ◦ F (X1)

]
=
[

E(X1) 0
G((X2)2) F (X1) ◦ 2X2

]

for X ∈ TAU . Therefore

Q ◦ F (P ) = F (P ) ◦Q,(3)

2Q ◦G(Q) = G(Q2)(4)

for P,Q ∈ A such that πAR (Q) > 0, where πAR : TAR → R is the bundle
projection.

Replacing U = {x ∈ Rn : x2 > 0} by U = {x ∈ Rn : x2 < 0} and
g(x1, x2) = (x1, (x2)2) by g(x1, x2) = (x1,−(x2)2) we can obtain (3) and (4)
for P,Q ∈ A such that πAR (Q) < 0 in the same manner. Thus (3) and (4)
hold for all P,Q ∈ A, by continuity.

Since (3) means that F (P ) is A-linear, it suffices to put L(P ) = F (P )(1)
for P ∈ A.

Polarization of (4) yields P ·G(Q)(R) +G(P )(R) ·Q = G(P ·Q)(R) for
P,Q,R ∈ A. Hence in order to complete Step 6 it suffices to put D(Q,R) =
G(Q)(R) for Q,R ∈ A.

Before the final step it is useful to summarize what we have proved up till
now. Namely, with the notation H = E−F −G we have ΛRn(e)ij(X)(Y j) =
δi1H(X1)(Y 1) +L(X1) · Y i +D(Xi, Y 1). A trivial computation shows that

L̃Rn(e)ij(X)(Y j) = L(X1) · Y i, D̃Rn(e)ij(X)(Y j) = D(Xi, Y 1).

Write Ξ = Λ − L̃ − D̃. Then ΞRn(e)ij(X)(Y j) = δi1H(X1)(Y 1). A trivial
computation shows that for each C ∈ A we have

C̃Rn(e)ij(X)(Y j) = δi1C ·X1 · Y 1.



184 J. DĘBECKI

Therefore, by Mikulski’s lemma, the proof will be completed as soon as we
make the following Step 7.

Step 7. There is C ∈ A such that H(P )(Q) = C · P ·Q for P,Q ∈ A.

In this step we will apply (1) and (2) for Λ = Ξ and f = g × idRn−2 ,
where g : R2 → R2. We will use only affinors s ∈ aff(Rn) with the property
that if i ≥ 3 or j ≥ 3, then sij = 0. Such an affinor s will be written as

[
s1

1(x) s1
2(x)

s2
1(x) s2

2(x)

]
.

Similarly, we will only use affinors S ∈ aff(An) with Sij = 0 if i ≥ 3 or j ≥ 3.
Such an affinor S will be written as[

S1
1(X) S1

2(X)
S2

1(X) S2
2(X)

]
.

We have proved

(5) ΞRn

([
x1 0
0 0

])
=
[
H(X1) 0

0 0

]
,

where H : A→ end(A) is R-linear.
The proof of Step 7 falls naturally into two parts.

Part 1. For each Q ∈ A the map A 3 P 7→ H(P )(Q) ∈ A is A-linear.

If U = Rn and g(x1, x2) = (1 + x1, x2), t = v + u, where

v =
[

1 0
0 0

]
, u =

[
x1 0
0 0

]
,

then (1) becomes
[

1 0
0 1

] [
1 + x1 0

0 0

]
=
[

1 + x1 0
0 0

] [
1 0
0 1

]
.

Since this is indeed true, (2) follows. Hence, by (5),

ΞRn(v)(X) +
[
H(X1) 0

0 0

]
=
[

1 0
0 1

]
◦
[
H(1 +X1) 0

0 0

]
◦
[

1 0
0 1

]

=
[
H(1 +X1) 0

0 0

]
◦
[

1 0
0 1

]
=
[
H(1 +X1) 0

0 0

]

for X ∈ An. Therefore

(6) ΞRn

([
1 0
0 0

])
=
[
H(1) 0

0 0

]
.

If U = Rn and g(x1, x2) = (x1, x1 + x2), t = u− v, where

u =
[

1 0
0 0

]
, v =

[
0 0
1 0

]
,



LIFTINGS OF AFFINORS 185

then (1) becomes
[

1 0
1 1

] [
1 0
−1 0

]
=
[

1 0
0 0

] [
1 0
1 1

]
.

This being true, we have (2). Hence, by (6),
[
H(1) 0

0 0

]
− ΞRn(v)(X) =

[
1 0
−1 1

]
◦
[
H(1) 0

0 0

]
◦
[

1 0
1 1

]

=
[
H(1) 0
−H(1) 0

]
◦
[

1 0
1 1

]
=
[
H(1) 0
−H(1) 0

]

for X ∈ An. Therefore

(7) ΞRn

([
0 0
1 0

])
=
[

0 0
H(1) 0

]
.

If U = Rn and g(x1, x2) = (x1, x1 + x2), t = u− v, where

u =
[
x1 0
0 0

]
, v =

[
0 0
x1 0

]
,

then (1) becomes
[

1 0
1 1

] [
x1 0
−x1 0

]
=
[
x1 0
0 0

] [
1 0
1 1

]
.

As this is true, (2) holds. Hence, by (5),
[
H(X1) 0

0 0

]
− ΛRn(v)(X) =

[
1 0
−1 1

]
◦
[
H(X1) 0

0 0

]
◦
[

1 0
1 1

]

=
[
H(X1) 0
−H(X1) 0

]
◦
[

1 0
1 1

]
=
[
H(X1) 0
−H(X1) 0

]

for X ∈ An. Therefore

(8) ΞRn

([
0 0
x1 0

])
=
[

0 0
H(X1) 0

]
.

If U = {x ∈ Rn : x1 6= 0} and g(x1, x2) = (x1, x1x2),

t =
[

0 0
1 0

]
, u =

[
0 0
x1 0

]
,

then (1) becomes
[

1 0
x2 x1

] [
0 0
1 0

]
=
[

0 0
x1 0

] [
1 0
x2 x1

]
,

which is true, implying (2). Hence, by (7) and (8),
[

1 0
X2 X1

]
◦
[

0 0
H(1) 0

]
=
[

0 0
H(X1) 0

]
◦
[

1 0
X2 X1

]
,
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and so [
0 0

X1 ◦H(1) 0

]
=
[

0 0
H(X1) 0

]

for X ∈ TAU . Therefore P ◦H(1) = H(P ) for P ∈ A such that πAR (P ) 6= 0.
By continuity, the same holds for every P ∈ A. This proves Part 1.

Part 2. For each P ∈ A the map A 3 Q 7→ H(P )(Q) ∈ A is A-linear.

If U = {x ∈ Rn : x1 6= 0} and g(x1, x2) = (x1, x1x2), t = u− v, where

u =
[
x1 0
0 0

]
, v =

[
0 0
x2 0

]
,

then (1) becomes
[

1 0
x2 x1

] [
x1 0
−x2 0

]
=
[
x1 0
0 0

] [
1 0
x2 x1

]
.

Since this is the case, (2) follows. Hence, by (5),

[
H(X1) 0

0 0

]
− ΛRn(v)(X) =




1 0
−X2

X1

1
X1


 ◦

[
H(X1) 0

0 0

]
◦
[

1 0
X2 X1

]

=




H(X1) 0

−X
2

X1 ◦H(X1) 0


 ◦

[
1 0
X2 X1

]
=




H(X1) 0

−X
2

X1 ◦H(X1) 0




for X ∈ TAU . Therefore, by Part 1 and by contunuity,

(9) ΞRn

([
0 0
x2 0

])
=
[

0 0
H(X2) 0

]
.

If U = Rn and g(x1, x2) = (x2, x1),

t =
[

0 0
0 x2

]
, u =

[
x1 0
0 0

]
,

then (1) becomes
[

0 1
1 0

] [
0 0
0 x2

]
=
[
x2 0
0 0

] [
0 1
1 0

]
.

This being true, we have (2). Hence, by (5),

ΛRn(t)(X) =
[

0 1
1 0

]
◦
[
H(X2) 0

0 0

]
◦
[

0 1
1 0

]

=
[

0 0
H(X2) 0

]
◦
[

0 1
1 0

]
=
[

0 0
0 H(X2)

]
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for X ∈ An. Therefore

(10) ΞRn

([
0 0
0 x2

])
=
[

0 0
0 H(X2)

]
.

If U = Rn and g(x1, x2) = (x1, x1 + x2),

t =
[

0 0
x1 0

]
+
[

0 0
x2 0

]
+ v + u,

where

v =
[

0 0
0 x1

]
, u =

[
0 0
0 x2

]
,

then (1) becomes
[

1 0
1 1

] [
0 0

x1 + x2 x1 + x2

]
=
[

0 0
0 x1 + x2

] [
1 0
1 1

]
,

which implies (2). Hence, by (8)–(10),
[

0 0
H(X1) 0

]
+
[

0 0
H(X2) 0

]
+ ΞRn(v)(X) +

[
0 0
0 H(X2)

]

=
[

1 0
−1 1

]
◦
[

0 0
0 H(X1 +X2)

]
◦
[

1 0
1 1

]

=
[

0 0
0 H(X1 +X2)

]
◦
[

1 0
1 1

]
=
[

0 0
H(X1 +X2) H(X1 +X2)

]

for X ∈ An. Therefore

(11) ΞRn

([
0 0
0 x1

])
=
[

0 0
0 H(X1)

]
.

If U = {x ∈ Rn : x1 6= 0} and g(x1, x2) = (x1, x1x2),

t =
[

0 0
x2 x1

]
, u =

[
0 0
0 x1

]
,

then (1) becomes
[

1 0
x2 x1

] [
0 0
x2 x1

]
=
[

0 0
0 x1

] [
1 0
x2 x1

]
,

and thus again (2) holds. Hence, by (9) and (11),
[

1 0
X2 X1

]
◦
[

0 0
H(X2) H(X1)

]
=
[

0 0
0 H(X1)

]
◦
[

1 0
X2 X1

]
,

and so[
0 0

X1 ◦H(X2) X1 ◦H(X1)

]
=
[

0 0
H(X1) ◦X2 H(X1) ◦X1

]
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for X ∈ TAU . Therefore P ◦H(Q) = H(P ) ◦Q and, by Part 1, Q ◦H(P ) =
H(P ) ◦Q for P,Q ∈ A such that πAR (P ) 6= 0. By continuity, the same holds
for all P,Q ∈ A. This proves Part 2.

In order to complete Step 7 and the whole proof it suffices to put C =
H(1)(1).

Since the formulation of our theorem seems to be somewhat abstract, we
end off the paper with an example.

Example. The simplest Weil functor is the well known tangent func-
tor T , which corresponds to the Weil algebra of dual numbers (see [6]). The
algebra of dual numbers can be represented as the vector space R2 endowed
with the multiplication (a, b) · (c, d) = (ac, ad + bc). We will describe the
coordinate form of liftings from Examples 1–3 in the case of the tangent
bundle. Fix an n-dimensional manifold M and t ∈ aff(M). Then

t = tij(q)
∂

∂qi
⊗ dqj

in local coordinates q on M . Furthermore, we have the local coordinates
(q, q̇) on TM induced by q.

Set C1 = (1, 0), C2 = (0, 1). Of course, C1, C2 form a basis of R2. An
easy computation shows that

C̃1M (t) = tij(q)
∂

∂qi
⊗ dqj +

∂tij
∂qk

(q)q̇k
∂

∂q̇i
⊗ dqj + tij(q)

∂

∂q̇i
⊗ dq̇j ,

C̃2M (t) = tij(q)
∂

∂q̇i
⊗ dqj .

Set L1
1(a, b) = (a, 0), L2

1(a, b) = (b, 0), L1
2(a, b) = (0, a), L2

2(a, b) = (0, b)
for (a, b) ∈ R2. Of course, L1

1, L2
1, L1

2, L2
2 form a basis of the vector space of

all R-linear maps R2 → R2. An easy computation shows that

L̃1
1M (t) = tii(q)

(
∂

∂qj
⊗ dqj +

∂

∂q̇j
⊗ dq̇j

)
,

L̃2
1M (t) =

∂tii
∂qj

(q)q̇j
(

∂

∂qk
⊗ dqk +

∂

∂q̇k
⊗ dq̇k

)
,

L̃1
2M (t) = tii(q)

∂

∂q̇j
⊗ dqj ,

L̃2
2M (t) =

∂tii
∂qj

(q)q̇j
∂

∂q̇k
⊗ dqk.

Set D1((a, b), (c, d)) = (0, bc), D2((a, b), (c, d)) = (0, bd) for (a, b), (c, d)
∈ R2. It is a simple matter to check that D1, D2 form a basis of the vector
space of all R-bilinear maps D : R2 × R2 → R2 with the property that
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D(P ·Q,R) = P ·D(Q,R) +D(P,R) ·Q for P,Q,R ∈ R2. An easy compu-
tation shows that

D̃1
M (t) =

∂tii
∂qj

(q)q̇k
∂

∂q̇k
⊗ dqj ,

D̃2
M (t) =

∂2tii
∂qj∂qk

(q)q̇kq̇l
∂

∂q̇l
⊗ dqj +

∂tii
∂qj

(q)q̇k
∂

∂q̇k
⊗ dq̇j .
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