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LINEAR LIFTINGS OF AFFINORS TO WEIL BUNDLES

BY

JACEK DEBECKI (Krakéw)

Abstract. We give a classification of all linear natural operators transforming affi-
nors on each n-dimensional manifold M into affinors on T M , where T4 is the product
preserving bundle functor given by a Weil algebra A, under the condition that n > 2.

We recall that an affinor on a manifold M is a tensor field of type (1,1)
on M, which can be interpreted as a linear endomorphism of the tangent
bundle T'M. We will denote by aff(M) the vector space of all affinors on
M. Let A be a Weil algebra and T4 the Weil functor corresponding to A,
which is a product preserving bundle functor (see [3]). Fix also a positive
integer n.

A lifting of affinors to T4 is, by definition, a system of maps Aas :
aff (M) — aff(TAM) indexed by n-dimensional manifolds and satisfying for
all such manifolds M, N, for every embedding f : M — N and for all
t € aff(M), u € aff(N) the following implication:

Tfot=uoTf = TTAfoAp(t) = Ax(u) o TTAS.

A lifting A is said to be linear if Ay is linear for each n-dimensional
manifold M. Of course, all linear liftings of affinors to T form a vector
space.

We begin by constructing three examples.

ExaMPLE 1. Let C € A. For every n-dimensional manifold we have the
map by : RxTM > (h,v) — hv € TM. Applying the product preserving
functor T4 we obtain T4by : TAR x TATM — TATM. But TR =
A and there is a canonical exchange map between TATM and TT4M.
Hence T4by; can be interpreted as a map A x TTAM — TTAM, and so
TTAM >V — T4y (C,V) € TTAM as an affinor on TAM (this is a
natural affinor constructed in [4]). Likewise, for every ¢ € aff(M) the map
TAt : TATM — TATM can be interpreted as an affinor TTAM — TTAM
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on TAM (T4t is called the complete lifting of t, see [1]). Therefore we can
define B
Cu()(V) = T (C, TAH(V))

for V€ TTAM. A trivial verification shows that C is a linear lifting of
affinors to 7. Clearly, this lifting is the composition of the complete lifting
of affinors to affinors on the Weil bundle and a natural affinor on the Weil
bundle.

EXAMPLE 2. Let L : A — A be an R-linear map. For every n-dimension-
al manifold M and every ¢ € aff (M) we have the trace function trt : M — R,
and so T4trt : TAM — A. Let mpay : TTAM — TAM be the tangent
bundle projection. Define

Lar()(V) = T4bu (LT trt(mran (V). V)

for V € TTAM, where by is as in Example 1. A trivial verification shows
that L is a linear lifting of affinors to T4. It is worth pointing out that
this lifting is nothing but a sum of products of linear liftings of affinors
to functions on the Weil bundle (see [5]) and natural affinors on the Weil
bundle.

EXAMPLE 3. Let D : A x A — A be an R-bilinear map with the prop-
erty that D(P - Q,R) = P-D(Q,R) + D(P,R) - Q for P,Q,R € A. For
every n-dimensional manifold M and every ¢ € aff(M) we have the map
d(TAtrt) : TTAM — A, which is the exterior derivative of T4 trt. Clearly,
for every V € TTAM the map ry : A3 P D(P,d(T4trt)(V)) € Ais a
differentiation of the algebra A. It is well known that every differentiation
of the Weil algebra A determines in a natural way a vector field on T4N
for each manifold N (see [2] for a construction of such natural vector fields).
Denote by 7y ,, the vector field on T*M determined by ry,y . Define

Du(t)(V) = 7ov gy (mpans (V)

for V€ TTAM. A trivial verification shows that D is a linear lifting of
affinors to T4. Observe that this lifting is nothing but a sum of tensor
products of natural vector fields on the Weil bundle and linear liftings of
affinors to 1-forms on the Weil bundle (see [5]).

We are now in a position to formulate our main result.

THEOREM. If n > 2 then for each linear lifting A of affinors to T
there are C' € A, an R-linear map L : A — A and an R-bilinear map
D : Ax A — A with the property that D(P-Q,R) = P-D(Q,R)+D(P,R)-Q
for P,Q, R € A, such that

A=C+L+D.

Moreover, C, L and D are uniquely determined.
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The proof will be based on a general lemma proved by Mikulski (see [5]).
This lemma applied to our problem says that if A and © are two linear
liftings of affinors to T4 and

Agn <£L’1 % ® d$1> = Ogn <:131 % & dxl),
then A = 6.

The proof of our theorem will be divided into several steps, but first we
have to establish a few basic facts and introduce some notation.

We first observe that for every open subset U of R" and every ¢ € aff(R")
we have Ay (t|ry) = Arn (t)|pray. This can be easily proved by taking the
inclusion U — R" for f in the definition of lifting.

Next, TR™ = R™ x R" and if s € aff(R"), then s(x,y) = (z, s;(z)y") for
(z,y) € R™ x R™, where s§. :R™ - R fori,j € {1,...,n} are smooth maps.
Similarly, TA™ = A" x A™. Let end(A) denote the vector space of all R-linear
endomorphisms of A. Thus, if S € aff(A"), then S(X,Y) = (X, S;(X)(Y?))
for (X,Y) € A" x A", where S} : A" — end(A) for i,j € {1,...,n} are
smooth maps. Suppose that f : R™ — R™ is a polynomial map. Since the
addition and multiplication in the algebra A are maps obtained by applying
T# to the addition and multiplication in the field R, it is evident that
TAf(X) = f(X) for X € A" and

rr470xy) = (100, 5500 v)
for (X,Y) e A" x A™.

We will identify each P € A with the map A> Q — P-(Q € A, which is
an element of end(A).

Therefore for every open subset U of R™, for every polynomial map
f:R™ — R™ such that f|y is an embedding and for all ¢,u € aff(R"), if

af afi

(1) O @) = (7)) L)
fori,k € {1,...,n} and = € U, then
2 0L (X) o s (0(X) = e () (F(X)) o 2L (3)

fori,k € {1,...,n} and X € TAU.

Finally, let e € aff(R™) be the affinor from Mikulski’s lemma. In other
words ej(z) = ', e’ (x) = 0 for i # 1 or j # 1.

STEP 1. The maps Agn(e)b : A" — end(A) for p,q € {1,...,n} are
R-linear.

Fix h € R\ {0}. If U = R™ and f(x) = hz, t = he, u = e, then (1)
holds. Hence (2) holds. Taking i = p and k = q we get h?Arn(e)?(X) =
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hAgn(e)h(hX), and so hAgn(e)h(X) = Agn(e)?(hX). By continuity, the
same holds for every h € R. Applying the homogeneous function theorem
(see [3]) we deduce that Ag~(e)? is R-linear.

STEP 2. If p,q€{l,...,n} are such that p#q, q#1, then Arn(e)h=0.

Fix h € R\ {0}. If U = R", f4(z) = ha?, fi(z) = o' for i # q, t = e,
u = e, then (1) holds. Hence (2) holds. Taking ¢« = p and k = ¢ we get
Agn (€)(X) = hAgn(e)h(f(X)). This is still true if A = 0, by continuity.
Hence A« ()b =

STEP 3. There is an R-linear map E : A — end(A) such that Agn (€)1 (X)
= E(X?') for X € A™. For each p € {2,...,n} there is an R-linear map
F?: A — end(A) such that Agn(e)b(X) = FP(X') for X € A™.

Fix h € R\ {0}. If U = R" and f'(z) = ha' for i # 1, fl(z) =z', t =,
u = e, then (1) holds. Hence (2) holds.

Taking i=1 and k = 1 we get Agn(€)i(X) = Agn(e)}(f(X)). This is still
true if h = 0, by continuity.

Taking i,k =p we get hAgn (€)b(X)=hAg=(e)b(f(X)), and so Ag~ (e)5(X)
= Arn(e)n(f(X)). This is still true if h = 0, by continuity.

But if h = 0, then f(X) =0fori # 1, f1(X) = X'. Hence the existence
of ' and F” is obvious. From Step 1 we see that £ and FP are R-linear.

STEP 4. For each p € {2,...,n} there is an R-linear map G? : A —
end(A) such that Agn(e)}(X) = GP(XP) for X € A™.

Fix h € R\ {0}. If U = R™ and fi(x) = ha' for i # p, fP(z) = aP,
t = he, u = e, then (1) holds. Hence (2) holds. Taking i = p and k = 1 we
get hArn (€)7(X) = hAga ()7 (f(X)), and so Agrn (e)7(X) = Arn ()7 (f(X)).
This is still true if A = 0, by continuity. But if h = 0, then f*(X) = 0 for
i # p and fP(X) = XP. Hence the existence of G? is obvious. From Step 1
we see that GP is R-linear.

STEP 5. There are R-linear maps F,G : A — end(A) such that FP = F
and GP = G for allp € {2,...,n}.

Fix p,q € {2,...,n}. f U =R" and fP(z) = 29, f9(z) = 2P, f'(z) = 2’
for i # p and i # q, t = u = e, then (1) holds. Hence (2) holds.

Taking i = p and k = ¢ we get Arn(e)I(X) = Agn(e)h(f(X)), and so
Fi(X') = FP(X1), by Step 3.

Taking ¢ = p and k = 1 we get Arn(e){(X) = Arn(e)](f(X)), and so
G1(X1?) = GP(X1), by Step 4.

Hence the existence of F' and G is obvious.

STEP 6. There are an R-linear map L : A — A and an R-bilinear map
D : Ax A — A with the property that D(P-Q,R) = P-D(Q, R)+D(P,R)-Q
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for P,Q, R € A, such that F(P)(Q) = L(P)-Q for P,Q € A and G(Q)(R) =
D(Q,R) for Q,R € A.

If U ={z € R": 22 >0} and f = g x idgn—2, where g(x!,2?) =
(2!, (2?)?), t = u = e, then (1) becomes

1 o [« o] [z 0]]1 o0
0 222|110 0| |0 0|0 222|°
This clearly holds, hence so does (2). On account of the previous steps, we
have
{ARn(e)%(X) ARn(e)é(X)] _ [E(Xl) 0 ]
Apn (e)(X)  Arn(e)3(X) G(X?) F(XY) ]
Hence from (2) it follows that

o axe] o6 rie] = ey rio]e[b o)

0 2X? G(X?) F(XYH
and so
E(X1) 0 _ (xt 0
[2)(2 0G(X?) 2X?%o0 F(Xl)] - [G((XQ)Q) F(XYo QXQ}
for X € TAU. Therefore
(3) Qo F(P)=F(P)oQ,
(4) 200 G(Q) = G(QY)

for P,Q € A such that 74(Q) > 0, where 74 : TR — R is the bundle
projection.

Replacing U = {z € R" : 22 > 0} by U = {x € R" : 22 < 0} and
g(zt, 2%) = (21, (2%)?) by g(2!,2?) = (2!, —(2?)?) we can obtain (3) and (4)
for P, € A such that 74 (Q) < 0 in the same manner. Thus (3) and (4)
hold for all P,Q € A, by continuity.

Since (3) means that F'(P) is A-linear, it suffices to put L(P) = F(P)(1)
for P € A.

Polarization of (4) yields P-G(Q)(R)+ G(P)(R) - Q = G(P - Q)(R) for
P,Q, R € A. Hence in order to complete Step 6 it suffices to put D(Q, R) =
G(Q)(R) for Q,R € A.

Before the final step it is useful to summarize what we have proved up till
now. Namely, with the notation H = E — F — G we have Agn(e)}(X)(Y7) =
SHH(XY)(YY) + L(XY) - Y+ D(X% Y1), A trivial computation shows that

Lan ()i (X)(Y?) = L(X") - Y7, Dga()i(X)(Y?) = D(X', YY),
Write = = A — L — D. Then Zgn(e)i(X)(Y7) = 6" H(X')(Y"). A trivial
computation shows that for each C € A we have

Cra(e)H(X)(Y7) =5"C - X' -V
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Therefore, by Mikulski’s lemma, the proof will be completed as soon as we
make the following Step 7.

STEP 7. There is C € A such that H(P)(Q)=C-P-Q for P,Q € A.

In this step we will apply (1) and (2) for A = = and f = g X idgn-2,
where g : R? — R%. We will use only affinors s € aff(R") with the property
that if ¢ > 3 or j > 3, then 53» = 0. Such an affinor s will be written as

40 50

Similarly, we will only use affinors S € aff(A™) with S; =0ifi>3orj>3.
Such an affinor S will be written as

[511()() Sé(X)}
StX) SE(X) ]

We have proved

- 2t 0 H(X') 0
® = ([o o)) =["07 o)
where H : A — end(A) is R-linear.
The proof of Step 7 falls naturally into two parts.

PART 1. For each Q € A the map A> P — H(P)(Q) € A is A-linear.
If U =R" and g(z',2%) = (1 + 2!, 2?), t = v + u, where

v — 1 0 u— zt 0
|0 0]’ 10 0}’
then (1) becomes

) 8- )

Since this is indeed true, (2) follows. Hence, by (5),

s [150 o] = Lo v [ Gl Y

el

0 0 0 1
for X € A™. Therefore

o w3

0
¢

10 To o

““lo ol YT |1 ol
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then (1) becomes

e bk
This being true, we have (2). Hence, by (6),
79 2]-m [, 2[5 5[ ¥
_[HQ) 0] _[1 0]_[HQD o
[—H(l) 0] [1 1] [—H(l) 0}

for X € A". Therefore

N R

If U =R" and g(z', 2%) = (2}, 2 + 2?), t = u — v, where
L_[et 0] _[o 0
Lo o)’ et o)
then (1) becomes
L ol[a* o] Ja' o1 O
1 1||—2' o] [0 0|1 1]|°
As this is true, (2) holds. Hence, by (5),

0 2] om0 G
)

for X € A™. Therefore
- 0 0 - 0 0
® s (| o]) = [wge o)

IfU = {x e R": 2! #0} and g(x!,2?) = (2}, x'2?),
_foo] . _To o
Tl 0] Lzt 0]
then (1) becomes

RN R

which is true, implying (2). Hence, by (7) and (8),

e[ty o] = ey o]y )
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and so

[Xl oOH(l) 8] - [H(())(l) 8}

for X € TAU. Therefore Po H(1) = H(P) for P € A such that m (P) # 0.
By continuity, the same holds for every P € A. This proves Part 1.

PART 2. For each P € A the map A> Q — H(P)(Q) € A is A-linear.
If U= {zeR": 2! #0} and g(z!, 2?) = (2}, 2'2?), t = u — v, where

N ,_[0 0
10 0}’ BN
then (1) becomes

oa) e o= 10 o2 )

Since this is the case, (2) follows. Hence, by (5),
1 0

70 D) i = | x| [T O 0]
X1 X1 -

H(XY) 0 Lo H(X") 0]

- _X_20H(X1) 0 O[XZ Xl]: —X—ZoH(Xl) 0

X1 X1 i

for X € TAU. Therefore, by Part 1 and by contunuity,

g = ([ ) =L 3]

If U =R" and g(z!, 2%) = (2%, 21),

then (1) becomes

ol A= [0 sl o]

This being true, we have (2). Hence, by (5),

o= [2 5[5 2

:[H&% gH(f 3]2{8 H&%]
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for X € A™. Therefore
- 0 0 |0 0
) = (lo 2])=[o wie)

If U =R" and g(z!, 2?) = (2}, 2t + 2?),

0 0 0 O
t_[xl O}_‘_[:ﬁ 0]+U—|—u,

L_[o o R
- 0 .fCl ) - 0 .’132 )
then (1) becomes

1 0 0 0 10 0 1 0
1 1| |2t 422 2t+22] |0 2t +22| |1 1|’

which implies (2). Hence, by (8)~(10),
[H((;(l) 8]*[}1&2) 8}+5R7L(”)(X)+[8 H(g@)]
- [—11 ﬂ ° [8 H(X10+X2)] ° H (1)]

o 0 J[1 o] 0 0
T |0 H(X'+X?) 1 1| |HX'+X?%) HX'+X?)
for X € A™. Therefore

where

o (3 )l )

IfU = {x e R": 2! #0} and g(x!,2?) = (2}, x'2?),
t_[o 0} _[0 0]

- 372 :1:1 ) U= 0 .CCI )

then (1) becomes

1 0 0 0} 0 O 1 0
22 2t (2?2 2| |0 2t |22 2|

and thus again (2) holds. Hence, by (9) and (11),

[);2 )?1}"[11&2) H&l)]:[g H(g@)}‘”[; )?

and so

[Xl o IOJ(X2) X'o IO{(Xl)} B [H(Xl(; o X? H(Xlo) o Xl:



188 J. DEBECKI

for X € TAU. Therefore Po H(Q) = H(P)oQ and, by Part 1, Qo H(P) =
H(P)oQ for P,Q € A such that 74 (P) # 0. By continuity, the same holds
for all P,(Q € A. This proves Part 2.

In order to complete Step 7 and the whole proof it suffices to put C =
H(1)(1).

Since the formulation of our theorem seems to be somewhat abstract, we
end off the paper with an example.

ExAMPLE. The simplest Weil functor is the well known tangent func-
tor T', which corresponds to the Weil algebra of dual numbers (see [6]). The
algebra of dual numbers can be represented as the vector space R? endowed
with the multiplication (a,b) - (¢,d) = (ac,ad + bc). We will describe the
coordinate form of liftings from Examples 1-3 in the case of the tangent
bundle. Fix an n-dimensional manifold M and ¢ € aff(M). Then

9
1=150) 5

in local coordinates ¢ on M. Furthermore, we have the local coordinates
(¢,q4) on TM induced by gq.

Set C1 = (1,0), Cy = (0,1). Of course, C1, Co form a basis of R?. An
easy computation shows that

®dq

— . o ottt 9 S P
Cim(t) =t5(q) aq’ 8—j€(Q)q’“ i ®dg’ +t;(q) a4
— , o
Canr(t) = t(0) 5

Set Li(a,b) = (a,0), L3(a,b) = (b,0), Li(a,b) = (0,a), L3(a,b) = (0,b)
for (a,b) € R%. Of course, L1, L?, L}, L3 form a basis of the vector space of
all R-linear maps R? — R2. An easy computation shows that

-~ 0 0
L%M(w:tl( )<ﬁ®dq +6—®dq>

~ oL (9 O

—_— i a
Ly (t) = ti(q )ﬁ@)dq :
6# 6
dq®
%uﬂ@wmmzmmwn@@@mwww@mmw@m
€ R2. It is a simple matter to check that D', D? form a basis of the vector
space of all R-bilinear maps D : R? x R> — R? with the property that

L2,,(t) =
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D(P-Q,R)=P-D(Q,R)+ D(P,R)-Q for P,Q, R € R?. An easy compu-
tation shows that

_ o

Dl — ] -k . J
u(t) = 5504 55 ©da’,
~ ot g 0 ottt . 0 y
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