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ON THE NONEXISTENCE OF STABLE MINIMAL SUBMANIFOLDS
AND THE LAWSON–SIMONS CONJECTURE

BY

ZE-JUN HU and GUO-XIN WEI (Zhengzhou)

Abstract. Let M be a compact Riemannian manifold with sectional curvature K
M

satisfying 1/5 < K
M
≤ 1 (resp. 2 ≤ K

M
< 10), which can be isometrically immersed as

a hypersurface in the Euclidean space (resp. the unit Euclidean sphere). Then there exist
no stable compact minimal submanifolds in M . This extends Shen and Xu’s result for
1
4 -pinched Riemannian manifolds and also suggests a modified version of the well-known
Lawson–Simons conjecture.

1. Introduction. A minimal submanifold M in a Riemannian manifold
M is a critical point of the volume functional of M . M is said to be stable
if the second variation of the volume is always nonnegative for any nor-
mal deformation of M in M with compact support; otherwise M is called
unstable. It was proved by Simons [11] that there are no compact stable
minimal submanifolds in the Euclidean spheres. In [5], Lawson and Simons
made the following:

Conjecture. Let M be a compact simply-connected Riemannian man-
ifold with sectional curvature KM satisfying 1/4 < KM ≤ 1. Then every
compact minimal submanifold M in M is unstable.

Apparently this conjecture arose in connection with the sphere theorem.
There are several results supporting this conjecture (cf. [1, 3, 5, 8, 10]). In
particular, Aminov [1] proved that if M is homeomorphic to a two-sphere,
then the conjecture is true; Shen and Xu [10] proved that if 0.77 ≤ KM

≤ 1, then the conclusion of the conjecture holds. Note that a Riemannian
manifoldM is called δ-pinched (δ > 0) if the sectional curvature KM satisfies
δ ≤ KM ≤ 1.

We know from [5, 7] that the rank one symmetric spaces CPm, HPm
and CaP2, whose sectional curvatures are 1

4 -pinched, admit stable compact
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minimal submanifolds. Thus the pinched condition for sectional curvature
in the Lawson–Simons conjecture cannot be weakened in general.

For the special case that M is an m-dimensional compact Riemannian
manifold isometrically immersed in an (m+ 1)-dimensional Euclidean space
Em+1, some better results are known (cf. [4, 6, 7, 9–11]). In particular, Shen
and Xu [10] proved that the conjecture is true for 1

4 -pinched M . Note that
from the classical Hadamard theorem, every compact connected hypersuface
M in Em+1 (m ≥ 2) is diffeomorphic to the m-sphere provided that KM > 0
(cf. [2]). The Lawson–Simons conjecture together with this version of the
sphere theorem suggests that the following modified conjecture might be
correct.

Conjecture∗. Let M be a compact connected hypersurface in Em+1

(m ≥ 3) satisfying KM > 0. Then every compact minimal submanifold in
M is unstable.

Since M is compact, we can assume without loss of generality that M
is δ-pinched for some constant δ > 0. Thus, Shen and Xu’s result [10] says
that Conjecture∗ is correct for δ = 1/4. In this paper, we shall give a further
positive answer to Conjecture∗ by establishing Theorem 1∗ (see Section 3),
and as a special case we obtain

Theorem 1. Let M be a compact connected hypersurface in Em+1

(m ≥ 3) with sectional curvature satisfying 1/5 < KM ≤ 1. Then there
exist no compact stable minimal submanifolds in M .

We note that Theorem 1 combined with the argument in the proof of
Proposition 1 of [6] implies the following

Proposition 1. Let M be the m-dimensional (m ≥ 3) ellipsoid in
Em+1:

x2
1

a2
1

+ . . .+
x2
m+1

a2
m+1

= 1, 1 ≤ a1 ≤ . . . ≤ am+1.

If 1 ≤ am+1 <
3
√

5 and a1 ≥ √am+1, then there exist no compact stable
minimal submanifolds in M .

Remark 1. It can be proved in a similar way that the above result re-
mains valid for stable n-currents on M . In fact, we can state the counterpart
of Theorem 1 as follows (for the concept of stable current and related results,
see Lawson–Simons [5]), which is better than the result in [9].

Theorem 1′. Let M be a compact connected hypersurface in Em+1

(m ≥ 3) with sectional curvature satisfying 1/5 < KM ≤ 1. Then there
exist no compact stable n-currents in M for each n with 1 ≤ n ≤ m− 1.

Remark 2. From Simons [11] we know that if M is a hypersurface in
the (m+1)-sphere Sm+1 with constant sectional curvature, then it does not
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admit compact stable minimal submanifolds. Using the same method as in
the proof of Theorem 1, we can strengthen this result by establishing:

Theorem 2∗. For m > n ≥ 2, there is a positive constant σm,n ≥ 3
such that if M is a compact connected hypersurface in the unit sphere Sm+1

with sectional curvature satisfying 2 ≤ KM < 1 + σ2
m,n, then every compact

n-dimensional minimal submanifold in M is unstable.

Acknowledgements. We are greatly indebted to Shen and Xu’s paper
[10] which motivated our work. The first author would like to express his
thanks to Professor U. Simon for his kindly inviting him to visit TU Berlin
during the 2002–2003 academic year. Finally, we express our deep gratitude
to the referee and the editor(s) whose excellent work improved our original
version greatly.

2. Basic formulas and notations. In this paper, we use the following
convention on the ranges of indices:

1 ≤ α, β, γ, . . . ≤ m; 1 ≤ i, j, . . . ≤ n; n+ 1 ≤ r, s, . . . ≤ m.
Let Mn ↪→ Mm be an n-dimensional compact minimal submanifold

isometrically immersed in M . Let N(M) be the normal bundle of M in M
and V be a cross-section in N(M) with compact support. Then the second
variational formula for V is (cf. [10])

I(V, V ) =
�

M

{ n∑

i=1

‖∇⊥eiV ‖2 −
n∑

i,j=1

〈B(ei, ej), V 〉2(2.1)

−
n∑

i=1

〈R(ei, V )V, ei〉
}
dv,

where dv is the volume element of M , ∇⊥ and B are the normal connection
and the second fundamental form of M in M respectively, R is the curvature
tensor of M , and {ei} is a local orthonormal frame field on M .

Now suppose M is isometrically immersed in the space forms Rm+1(c)
(c = 0, 1) as a hypersurface, with Rm+1(0) = Em+1 being the Euclidean
space and Rm+1(1) = Sm+1(1) the unit sphere. Denote by D the canonical
connection of Rm+1(c) and by ∇ the induced connection on M . Then the
second fundamental form h of M in Rm+1(c) is defined as

h(X,Y )em+1 = DXY −∇XY for X,Y ∈ TM,

where em+1 is a unit normal vector field to M in Rm+1(c). The following
proposition is well known (see, e.g., [5, 6]).

Proposition 2. Let M be an m-dimensional compact hypersurface in
Rm+1(c) with second fundamental form h. If M is an n-dimensional compact
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minimal submanifold in M and satisfies

(2.2)
�

M

{
−n(m− n)c+

∑

r,i

[2h(ei, er)2 − h(ei, ei)h(er, er)]
}
dv < 0

for any local orthonormal frame field {ei, er} on M such that {er} is normal
to M , then M is unstable.

At a given point p ∈ M in M , let λα be the principal curvatures of M
corresponding to the principal directions {e∗α} which form an orthonormal
basis of TpM and satisfy h(e∗α, e

∗
β) = λαδαβ . Thus, from the Gauss equation

of M in Rm+1(c) we have

(2.3) Rαβαβ = c+ λαλβ (α 6= β)

at p ∈ M , where Rαβαβ = 〈R(e∗α, e
∗
β)e∗β, e

∗
α〉. Let {ei, er} be an arbitrary

local orthonormal frame around p ∈M . We can write

(2.4) eα =
∑

β

Aβαe
∗
β

for some special orthogonal matrix (Aβα). Then we have

∆ := − n(m− n)c+
∑

r,i

{2h(ei, er)2 − h(ei, ei)h(er, er)}(2.5)

= − n(m− n)c+
∑

α,i,r

(λα)2(Aαi )2(Aαr )2 + F (A,Λ),

where

(2.6) F (A,Λ) =
∑

α6=β
λαλβ

{
2
∑

i,r

Aαi A
β
i A

α
rA

β
r −

∑

i,r

(Aαi )2(Aβr )2
}
.

3. Proof of the results. We first prove Theorem 1. In fact, we will
prove the following stronger version.

Theorem 1∗. For m > n ≥ 2, there is a positive constant σm,n ≤ 1/
√

5
such that if M is a compact connected hypersurface in Em+1 with sectional
curvature satisfying σ2

m,n < KM ≤ 1, then every compact n-dimensional
minimal submanifold in M is unstable.

To prove Theorem 1∗, we adopt an argument similar to that of [10].
Let M be σ2-pinched for some σ > 0 and M be an n-dimensional compact
minimal submanifold in M . Our aim below is to find the least possible
constant σ so that ∆ < 0 on M .

We fix an arbitrary point p ∈ M ↪→ M ; all calculations are carried out
at p. From (2.3) we have

(3.1) σ2 ≤ λαλβ ≤ 1 for α 6= β,
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which implies that all λα are nonzero and have the same sign. Without loss
of generality, we may assume that

(3.2) 0 < λ1 ≤ . . . ≤ λm.
From (3.1) and (3.2), one can see that

λα ≥ σ for α 6= 1; λα ≤ 1 for α 6= m;(3.3)

λm ≤ 1/σ and λ1 ≥ σ2, since m ≥ 3.(3.4)

Since (Aβα) ∈ SO(m), we have
∑

γ

AαγA
β
γ =

∑

i

Aαi A
β
i +

∑

r

AαrA
β
r = δαβ ,(3.5)

(∑

i

Aαi A
β
i

)2
+
(∑

r

AαrA
β
r

)2
+ 2

∑

i,r

Aαi A
β
i A

α
rA

β
r = δαβ .(3.6)

Define

Gα,m = 2
(∑

i

Aαi A
m
i

)2
+ 2
(∑

r

AαrA
m
r

)2
(3.7)

+
∑

r,i

{(Aαi )2(Amr )2 + (Ami )2(Aαr )2},

which is nonnegative. Then, by (3.5) and (3.6), we have
∑

α6=m
Gα,m =

∑

α

Gα,m − 2 + 2
∑

r,i

(Ami )2(Amr )2(3.8)

= n
∑

r

(Amr )2 + (m− n)
∑

i

(Ami )2 + 2
∑

r,i

(Ami )2(Amr )2

≥ min{n,m− n} =: Tm,n ≥ 1.

By (2.6), (3.1) and (3.5)–(3.7), it follows that

F (A,Λ)

=
∑

α6=m
λαλm

∑

r,i

{4Aαi Ami AαrAmr − (Aαi )2(Amr )2 − (Ami )2(Aαr )2}

+
∑

α,β 6=m,α6=β
λαλβ

∑

r,i

{2Aαi Aβi AαrAβr − (Aαi )2(Aβr )2}

= −
∑

α6=m
λαλmGα,m

−
∑

α,β 6=m,α6=β
λαλβ

{(∑

i

Aαi A
β
i

)2
+
(∑

r

AαrA
β
r

)2
+
∑

r,i

(Aαi )2(Aβr )2
}
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≤ −
∑

α6=m
λαλmGα,m

− σ2
∑

α,β 6=m,α6=β

{(∑

i

Aαi A
β
i

)2
+
(∑

r

AαrA
β
r

)2
+
∑

r,i

(Aαi )2(Aβr )2
}
,

and then

(3.9) F (A,Λ)

≤
∑

α6=m
(σ2 − λαλm)Gα,m

− σ2
∑

α6=β

{(∑

i

Aαi A
β
i

)2
+
(∑

r

AαrA
β
r

)2
+
∑

r,i

(Aαi )2(Aβr )2
}

≤ Tm,n(σ2 − λ1λm) + σ2
∑

α6=β

∑

r,i

{2Aαi Aβi AαrAβr − (Aαi )2(Aβr )2}

= Tm,n(σ2 − λ1λm)− σ2
∑

α,r,i

(Aαi )2(Aαr )2

+ σ2
∑

α,β,r,i

{2Aαi Aβi AαrAβr − (Aαi )2(Aβr )2}

= Tm,n(σ2 − λ1λm)− σ2n(m− n)− σ2
∑

α,r,i

(Aαi )2(Aαr )2.

Thus, we obtain an estimate for ∆:

∆ =
∑

α,r,i

(λα)2(Aαi )2(Aαr )2 + F (A,Λ)(3.10)

≤ Tm,n(σ2 − λ1λm)− σ2n(m− n) +
∑

α,r,i

(λ2
α − σ2)(Aαi )2(Aαr )2.

Since (Aβα) ∈ SO(m), by (3.6), we see that, for any α,
∑

r,i

(Aαi )2(Aαr )2 ≤ 1
2

(∑

i

(Aαi )2
)2

+
1
2

(∑

r

(Aαr )2
)2

=
1
2
−
∑

r,i

(Aαi )2(Aαr )2,

i.e.,

(3.11)
∑

r,i

(Aαi )2(Aαr )2 ≤ 1
4
.

According to (3.1)–(3.4), we have four cases: (1) λ1 ≥ σ and σ ≤ λm ≤ 1;
(2) λ1 ≥ σ and 1 < λm ≤ σ−1; (3) λ1 < σ and σ < λm ≤ 1; (4) λ1 < σ and
1 < λm ≤ σ−1.
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Case (1): λ1 ≥ σ and σ ≤ λm ≤ 1. From (3.10) and (3.11), we have

∆ ≤ Tm,n(σ2 − σλm)− σ2n(m− n) +
m

4
(λ2
m − σ2)

=
m

4
λ2
m − Tm,nσλm −

m

4
σ2 − σ2n(m− n) + Tm,nσ

2

=: g1(λm),

where g1(x) = m
4 x

2−Tm,nσx−m4 σ2−σ2n(m−n)+Tm,nσ2 satisfies g′′1 (x) > 0,
g1(σ) = −n(m− n)σ2 < 0 and

g1(1) = −[m/4 + n(m− n)− Tm,n
]
σ2 − Tm,nσ +m/4 :≡ h(σ)

with h(0) = m/4 > 0, h(1) = −n(m− n) < 0 and h′′(x) < 0. Set

(3.12) σ(1)
m,n =

m

2Tm,n +
√

(m− 2Tm,n)2 + 4mn(m− n)
> 0.

An easy verification shows that

σ(1)
m,n <

1√
5

for all m > n ≥ 2,(3.13)

lim
m→∞

σ(1)
m,n =

1√
1 + 4n

for each fixed n ≥ 2,(3.14)

and h(σ(1)
m,n) = 0. Hence g1(1) < 0 for all σ > σ

(1)
m,n. This proves the following

Claim 1. For any σ > σ
(1)
m,n, if λ1 ≥ σ and σ ≤ λm ≤ 1, then ∆ < 0.

Case (2): λ1 ≥ σ and 1 < λm ≤ σ−1. From (3.10) and (3.11), using
λα ≤ λ−1

m for α 6= m, we have

∆ ≤ Tm,n(σ2 − σλm)− σ2n(m− n) +
1
4

(λ2
m − σ2) +

1
4

∑

α6=m
(λ2
α − σ2)

≤ Tm,n(σ2 − σλm)− σ2n(m− n) +
1
4

(λ2
m − σ2) +

m− 1
4

(λ−2
m − σ2)

=:
1

4λ2
m

g2 (λm),

where g2(x) = x4−4Tm,nσx3 +[4Tm,n−4n(m−n)−m]σ2x2 +m−1 satisfies
g2(0) > 0, g2(+∞) = +∞ and has exactly one critical point (minimum) for
x > 0. Note also that

g2(1) = [4Tm,n − 4n(m− n)−m]σ2 − 4Tm,nσ +m = 4h(σ) < 0

for every σ > σ
(1)
m,n, and

g2(σ−1) = σ−4 − 4Tm,nσ−2 + 4Tm,n − 4n(m− n)− 1 < 0
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for every σ > σ
(2)
m,n, where

σ(2)
m,n =

1√
2Tm,n +

√
4T 2

m,n + 4n(m− n) + 1− 4Tm,n

,

which satisfies

σ(2)
m,n ≤

1√
5

for all m > n ≥ 2,(3.15)

lim
m→∞

σ(2)
m,n = 0 for each fixed n ≥ 2.(3.16)

Thus, we have

Claim 2. For any σ > max{σ(1)
m,n, σ

(2)
m,n}, if λ1 ≥ σ and 1 < λm ≤ σ−1,

then ∆ < 0.

Case (3): λ1 < σ and σ < λm ≤ 1. From (3.10) and (3.11), we have

∆ ≤ −σ2n(m− n) +
1
4

∑

α6=1

(α2
α − σ2) ≤ −σ2n(m− n) +

m− 1
4

(1− σ2) < 0

for σ >
√

m−1
m−1+4n(m−n) =: σ(3)

m,n, and

σ(3)
m,n ≤

1√
5

for all m > n ≥ 2,(3.17)

lim
m→∞

σ(3)
m,n =

1√
1 + 4n

for each fixed n ≥ 2.(3.18)

Thus, we have

Claim 3. For any σ > σ
(3)
m,n, if λ1 < σ and σ < λm ≤ 1, then ∆ < 0.

Case (4): λ1 < σ and 1 < λm ≤ σ−1. From (3.10) and (3.11), using
λα ≤ 1/λm (α 6= m) and λ1 ≥ σ2/λ2 ≥ λmσ2, we have

∆ ≤ Tm,n(σ2 − λ1λm)− σ2n(m− n) +
∑

α6=1;r,i

(λ2
α − σ2)(Aαi )2(Aαr )2

≤ Tm,n(σ2 − σ2λ2
m)− σ2n(m− n) +

1
4

(λ2
m − σ2) +

m− 2
4

(
1
λ2
m

− σ2
)

=:
1

4λ2
m

g3(λ2
m),

where g3(x) = (1− 4Tm,nσ2)x2 + [4Tm,n − 4n(m− n)−m+ 1]σ2x+m− 2
satisfies

g3(1) = −[4n(m− n) +m− 1]σ2 +m− 1 < 0 for σ > σ(3)
m,n,

g3(σ−2) = σ−4 − 4Tm,nσ−2 + 4Tm,n − 4n(m− n)− 1 < 0 for σ > σ(2)
m,n.
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Note that if 1 − 4Tm,nσ2 < 0, then g′′3 (x) < 0 and g3(x) has no critical
points for x > 0; if 1− 4Tm,nσ2 > 0, then g′′3 (x) > 0 and g3(x) has exactly
one critical point (minimum) for x > 0. These facts imply that g3(x) < 0
provided that 1 ≤ x ≤ σ−2 and σ > max{σ(2)

m,n, σ
(3)
m,n}. Thus, we have

Claim 4. For any σ > max{σ(2)
m,n, σ

(3)
m,n}, if λ1 < σ and 1 < λm ≤ σ−1,

then ∆ < 0.

Summing up Claims 1–4 and choosing σm,n = max1≤i≤3 σ
(i)
m,n, we com-

plete the proof of Theorem 1∗.

Proof of Theorem 2∗. Suppose 2 ≤ KM ≤ 1 + σ2. Then, from (2.3), for
any α 6= β we have

(3.19) 1 ≤ λαλβ ≤ σ2.

By assuming 0 < λ1 ≤ . . . ≤ λm, we can see that

λα ≥ 1 for α 6= 1; λα ≤ σ for α 6= m;

λm ≤ σ2 and λ1 ≥ 1/σ, since m ≥ 3.

From these and by the same procedure as in deriving (3.10), we can obtain
an estimate for ∆:

(3.20) ∆ ≤ Tm,n(1− λ1λm)− 2n(m− n) +
∑

α,r,i

(λ2
α − 1)(Aαi )2(Aαr )2.

Our aim below is to find the greatest possible σ so that ∆ < 0 at p ∈M .
Now we also have four cases: (i) λ1 ≥ 1 and 1 ≤ λm ≤ σ; (ii) λ1 ≥ 1 and
σ < λm ≤ σ2; (iii) λ1 < 1 and 1 < λm ≤ σ; (iv) λ1 < 1 and σ < λm ≤ σ2.

Case (i): λ1 ≥ 1 and 1 ≤ λm ≤ σ. From (3.11) and (3.20), we have

∆ ≤ Tm,n(1− λm)− 2n(m− n) +
m

4
(λ2
m − 1).

Let σ(1)
m,n = m−1{2Tm,n +

√
8mn(m− n) + (2Tm,n −m)2}. Then ∆ < 0 if

σ < σ
(1)
m,n in this case.

Case (ii): λ1 ≥ 1 and σ < λm ≤ σ2. From (3.11) and (3.20), using
λα ≤ σ2/λm for α 6= m, we have

∆ ≤ Tm,n(1− λm)− 2n(m− n) +
1
4

(λ2
m − 1) +

m− 1
4

(
σ4

λ2
m

− 1
)
.

Let σ
(2)
m,n = 2Tm,n +

√
(2Tm,n − 1)2 + 8n(m− n). Then ∆ < 0 if σ <

min{σ(1)
m,n, σ

(2)
m,n} in this case.
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Case (iii): λ1 < 1 and 1 < λm ≤ σ. From (3.11) and (3.20), we have

∆ ≤ −2n(m− n) +
m− 1

4
(λ2
m − 1).

Let σ(3)
m,n =

√
8n(m−n)+m−1

m−1 . Then ∆ < 0 if σ < σ
(3)
m,n in this case.

Case (iv): λ1 < 1 and σ < λm ≤ σ2. From (3.11) and (3.20), using
λ1 ≥ λ−1

2 ≥ λmσ−2 and λα ≤ σ2λ−1
m for α 6= m, we have

∆ ≤ Tm,n(1− λ1λm)− 2n(m− n) +
∑

α6=1;r,i

(λ2
α − 1)(Aαi )2(Aαr )2

≤ Tm,n
(

1− λ2
m

σ2

)
− 2n(m− n) +

1
4

(λ2
m − 1) +

m− 2
4

(
σ4

λ2
m

− 1
)
.

Then, by the same argument as in case (4), we conclude that if σ <

min{σ(2)
m,n, σ

(3)
m,n}, then ∆ < 0 in this case.

It is easily seen that σ(i)
m,n ≥ 3 for i = 1, 2, 3. Thus we complete the proof

of Theorem 2∗ by choosing σm,n = min1≤i≤3 σ
(i)
m,n.
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