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Abstract. We describe the structure of all selfinjective artin algebras having at least
three nonperiodic generalized standard Auslander–Reiten components. In particular, all
selfinjective artin algebras having a generalized standard Auslander–Reiten component of
Euclidean type are described.

Throughout the paper, by an algebra is meant a basic, connected, artin
algebra (associative, with an identity) over a fixed commutative artinian
ring k. For an algebra A, we denote by modA the category of finitely gen-
erated right A-modules, and by D : modA→ modAop the standard duality
Homk(−, E), where E is a minimal injective cogenerator in mod k. An al-
gebra A is called selfinjective if A ∼= D(A) in modA, that is, the projective
A-modules are injective. If A is a selfinjective algebra, then the left and the
right socles of A coincide, and we denote them by socA. Two selfinjective al-
gebras A and Λ are said to be socle equivalent if the factor algebras A/socA
and Λ/socΛ are isomorphic.

An important class of selfinjective algebras is formed by the algebras of
the form B̂/G where B̂ is the repetitive algebra (see [9]) (locally bounded,
without identity)

B̂ =
⊕

r∈Z
(Br ⊕ (DB)r)

of an algebra B, where Br = B and (DB)r = DB for all r ∈ Z, the
multiplication in B̂ is defined by

(ar, fr)r · (br, gr)r = (arbr, argr + frbr+1)r
for ar, br ∈ Br, fr, gr ∈ (DB)r, and G is an admissible group of auto-
morphisms of B̂. More precisely, for a fixed set E = {ei | 1 ≤ i ≤ m} of
primitive orthogonal idempotents of B with 1B = e1 + . . . + em, consider
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the canonical set Ê = {ej,r | 1 ≤ j ≤ m, r ∈ Z} of primitive orthogonal
idempotents of B̂ such that ej,rB̂ = (ejB)r ⊕ (ejDB)r for 1 ≤ j ≤ m and
r ∈ Z. By an automorphism of B̂ we mean a k-algebra automorphism of
B̂ which fixes Ê . A group G of automorphisms of B̂ is said to be admis-
sible if the induced action of G on Ê is free and has finitely many orbits.
Then the orbit algebra B̂/G is a selfinjective algebra and the G-orbits in
Ê form a canonical set of primitive orthogonal idempotents of B̂/G whose
sum is the identity of B̂/G (see [7]). We denote by νB̂ the Nakayama auto-
morphism of B̂ whose restriction to each copy Br ⊕ (DB)r is the identity
map Br ⊕ (DB)r → Br+1 ⊕ (DB)r+1. Then the infinite cyclic group (νB̂)
generated by νB̂ is admissible and B̂/(νB̂) is the trivial extension BnD(B)
of B by DB. An automorphism ϕ of B̂ is said to be positive (respectively,
rigid) when ϕ(Br) ⊆

∑
i≥r(Bi ⊕ (DB)i) (respectively, ϕ(Br) = Br) for any

r ∈ Z. Moreover, ϕ is said to be strictly positive if it is positive but not rigid.
We refer to [12] for more information on the automorphisms of repetitive
algebras, and to [29] for general background on selfinjective algebras.

For an algebra A, we denote by ΓA the Auslander–Reiten quiver of A, and
by τA and τ−A the Auslander–Reiten translationsDTr and TrD, respectively.
We shall identify the vertices of ΓA with the corresponding indecomposable
A-modules. By a component of ΓA we mean a connected component of the
translation quiver ΓA. A component C of ΓA is called regular if C contains
neither a projective module nor an injective module. A subquiver Γ of ΓA
is said to be right stable (respectively, left stable) if τ−A (respectively, τA) is
defined on all modules in Γ . A component C of ΓA is called nonperiodic if C
does not contain τA-periodic modules, that is, modules X with X = τmA X for
some m ≥ 1. Following [21], a subquiver D of ΓA is said to be generalized
standard if rad∞A (X,Y ) = 0 for all modules X and Y in D. Recall that
rad∞A (X,Y ) is the intersection of all finite powers radmA (X,Y ), for m ≥ 1, of
the radical radA(X,Y ) of HomA(X,Y ). Finally, the annihilator rA(Σ) of a
subquiver Σ of ΓA is the intersection of the (right) annihilators rA(X) of all
modules X in Σ. Clearly, rA(Σ) is a two-sided ideal of A. If rA(Σ) = 0 then
Σ is said to be faithful . We refer to [2] for background on the Auslander–
Reiten theory.

In this paper we are interested in the structure of selfinjective algebras
whose Auslander–Reiten quiver contains nonperiodic generalized standard
components. There has been work connecting tilting theory (see [8], [16],
[17]) with selfinjective algebras via trivial extension algebras (see [1], [14],
[19], [27]). Recently, a more general class of selfinjective algebras of tilted
type has attracted much attention (see [6], [13], [17], [21]–[25]). Let B be a
tilted algebra of type ∆ (see [8]) which is not a Dynkin quiver. Then the
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Auslander–Reiten quiver ΓB̂ of B̂ is of the form

ΓB̂ =
∨

p∈Z
(Xp ∨Rp)

where, for each p ∈ Z, Xp is a component with the stable part of the form
Z∆, Rp is a family of components whose stable parts are tubes (if ∆ is
Euclidean) or of type ZA∞ (if ∆ is wild), and νB̂(Xp) = Xp+2 and νB̂(Rp) =
Rp+2 for the induced action of νB̂ on ΓB̂ (see [1], [6], [19]). Further, an
automorphism ϕ of B̂ is positive (respectively, strictly positive) if and only
if there exists q ≥ 0 (respectively, q > 0) such that ϕ(Xp) = Xp+q and
ϕ(Rp) = Rp+q for all p ∈ Z. In fact, it is known that any admissible group
G of automorphisms of B̂ is an infinite cyclic group generated by a strictly
positive automorphism g of B̂ (see [6, Lemma 3.6]). Further, the push-down
functor FBλ : mod B̂ → mod B̂/G, associated to the Galois covering FB :
B̂ → B̂/G, is dense and preserves the Auslander–Reiten sequences (see [6,
3.7]). Therefore, if g(X0) = Xm with m ≥ 1, then ΓB̂/G is obtained from ΓB̂
by identifying, via FBλ , Xp with Xp+m and Rp with Rp+m, for all p ∈ Z.
Thus ΓB̂/G is of the form

FBλ (X0) ∨ FBλ (R0) ∨ FBλ (X1) ∨ FBλ (R1) ∨ . . . ∨ FBλ (Xm−1) ∨ FBλ (Rm−1).

Moreover, we have m ≥ 2 (respectively, m ≥ 3) if and only if G is generated
by an automorphism of the form ϕνB̂ for some positive (respectively, strictly
positive) automorphism ϕ of B̂ (see [6, Proposition 3.8 and Corollary 3.9]).
Finally, for m ≥ 3, all nonperiodic components FB

λ (Xr), 0 ≤ r ≤ m − 1,
are generalized standard (see [6, Corollaries 3.9 and 3.10]). We also mention
that, for an arbitrary tilted algebra B = EndH(T ) of type ∆, there exist
tilted algebras B1 = EndH(T1) and B2 = EndH(T2) of type ∆, given by tilt-
ing H-modules T1 and T2 without nonzero preprojective or nonzero preinjec-
tive direct summands, respectively, such that B̂1 ∼= B̂ ∼= B̂2 (see [1] and [13]).

Theorem 1. Let A be a selfinjective algebra. Then the Auslander–Reiten
quiver ΓA of A admits at least three nonperiodic generalized standard com-
ponents if and only if A is isomorphic to an algebra B̂/(ϕνB̂), where B is a
tilted algebra not of Dynkin type and ϕ is a strictly positive automorphism
of B̂.

Proof. The sufficiency part follows from the results stated above. For
the necessity, assume that ΓA admits at least three nonperiodic general-
ized standard components. We know from [21, Theorem 2.3] that all such
components have only finitely many τA-orbits. Let C be a nonperiodic gen-
eralized standard component of ΓA. Then it follows from the dual of [11,
Theorem 3.4] that C admits a right stable full translation subquiver D of
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the form (−N)∆, for some (finite) valued quiver ∆ without oriented cycles,
which is closed under successors in C. Let M be the direct sum of modules
lying on ∆, I the annihilator rA(D) of D in A, and B = A/I. Then D
is a faithful full translation subquiver of the Auslander–Reiten quiver ΓB
closed under successors (in ΓB), and M is a faithful B-module (see [20,
Lemma 3]). Since C is a generalized standard component of ΓA, D is a gen-
eralized standard subquiver of ΓB, and we infer from [22, Proposition 5.3]
that M is a tilting B-module, H = EndB(M) is a hereditary algebra of
type ∆, and hence B is a tilted algebra of the form B ∼= EndH(T ), for the
tilting H-module T = DM (see [20, Theorem 3]). In fact, D is a full transla-
tion subquiver of the connecting component CT of ΓB determined by T , and
hence T has no nonzero preprojective direct summands (because D does not
contain injective modules) (see [17]).

We may choose a complete set {ei | 1 ≤ i ≤ n} of primitive orthogonal
idempotents of A such that 1 = e1 + . . .+ en and {ei | 1 ≤ i ≤ m}, for some
m ≤ n, is the set of all idempotents ei with i ∈ {1, . . . , n} which are not
in I. Then the idempotent e = e1 + . . .+ em is uniquely determined by I up
to an inner automorphism, and is called a residual identity of B = A/I (see
[22]). We proved in [22, Theorem 5.1] that IeI = 0 and Ie is an injective
cogenerator in modB. Clearly, the ordinary quiver QB of B has no oriented
cycles, since B is a tilted algebra (see [8]). Therefore, applying [24, Theo-
rem 4.1], we conclude that A is socle equivalent to an algebra Λ = B̂/(ψνB̂)
for a positive automorphism ψ of B̂. Since the factor algebras A/socA and
Λ/socΛ are isomorphic, the Auslander–Reiten quivers ΓA/socA and ΓΛ/socΛ
are also isomorphic, and hence there is a canonical correspondence between
the components of ΓA and ΓΛ. In fact, it follows from [24, Proposition 5.1(ii)]
that there is a bijection between the nonperiodic generalized standard com-
ponents of ΓA and ΓΛ.

Invoking now our assumption on A, we conclude that ΓΛ admits at least
three nonperiodic generalized standard components, and consequently ψ is a
strictly positive automorphism of B̂. But then, for the Nakayama automor-
phism ν of A, we have ei 6= eν(i) for all i ∈ {1, . . . , n} (see [25, Lemma 4.1]).
Applying now [25, Proposition 2.5] we conclude that the canonical algebra
epimorphism eAe→ eAe/eIe splits. Finally, applying [24, Theorem 3.8], we
infer that A is isomorphic to an algebra of the form B̂/(ϕνB̂) for a positive
automorphism ϕ of B̂, which is in fact strictly positive, because the number
of nonperiodic generalized standard components in ΓA is at least three. This
finishes the proof.

In the above proof we have faced the situation when two selfinjective
algebras of the forms A = B̂/(ϕνB̂) and Λ = B̂/(ψνB̂), for a tilted algebra
B (not of Dynkin type) and strictly positive automorphisms ϕ and ψ of B̂,
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are socle equivalent. We point out that A and Λ can be nonisomorphic, as
the following example shows.

Example 2. Let Q be a finite connected quiver with sink-source orien-
tation, and k a field. Fix a source x in Q and consider the quiver ∆ obtained

from Q by adding two arrows x α→ y and x
β→ z, where y 6= z are not ver-

tices of Q. Then ∆ has again a sink-source orientation, and consequently
the path algebra B = K∆ of ∆ is a radical square zero hereditary algebra.
Let σ be the automorphism of the algebra B induced by the automorphism
of ∆ exchanging the arrows α and β, and keeping the other arrows of ∆
unchanged. Then σ induces an automorphism % of B̂ whose restriction to
each part Br is σ [12, Lemma 3.1]. Fix m ≥ 1, take the strictly positive
automorphisms ϕm = νm

B̂
and ψm = %νm

B̂
of B̂, and consider the algebras

A(m) = B̂/(ϕmνB̂) and Λ(m) = B̂/(ψmνB̂). Then A(m) is a selfinjective
algebra whose Nakayama permutation (see [29] for definition) has order m,
Λ(m) is a selfinjective algebra whose Nakayama permutation has order 2m,
and consequently A(m) and Λ(m) are nonisomorphic. On the other hand,
the socle factors A(m)/socA(m) and Λ(m)/socΛ(m) are radical square zero
algebras having the same ordinary (Gabriel) quiver, and hence they are iso-
morphic. Therefore, A(m) and Λ(m) are socle equivalent.

Following [3, 8.2] an algebra A is said to be strictly wild if there are mod-
ules X and Y in modA whose endomorphism rings EndA(X) and EndA(Y )
are division rings, HomA(X,Y ) = 0 = HomA(Y,X) and the inequality
dimEndA(Y ) Ext1

A(X,Y ) · dim Ext1
A(X,Y )EndA(X) ≥ 5 holds. If k is a field,

then it follows from [15, 5.4] (see also [3, Lemma 8.2]) that A is strictly wild
if and only if there is a field extension K of k and a K〈x, y〉-A-bimodule
M which is finitely generated projective over K〈x, y〉 and such that the
tensor product functor − ⊗K〈x,y〉 M : ModK〈x, y〉 → ModA is fully faith-
ful. Here, K〈x, y〉 denotes the free associative K-algebra in two generators,
and ModK〈x, y〉 and ModA the categories of all K〈x, y〉-modules and all
A-modules, respectively. Moreover, an algebra A is said to be wild (see [3,
7.4]) if there exists a field extension K of k and a K〈x, y〉-A-bimodule M ,
finitely generated and projective as K〈x, y〉-module, such that the functor
− ⊗K〈x,y〉 M : ModK〈x, y〉 → ModA preserves indecomposability and iso-
morphism classes of modules. It is known that a wild hereditary algebra is
strictly wild (see [3, Theorem 8.4]) but in general a wild algebra need not
be strictly wild.

Theorem 3. Let A be a selfinjective algebra. Then the following state-
ments are equivalent :

(i) A is not strictly wild and ΓA admits a nonperiodic generalized stan-
dard component.
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(ii) A is not wild and ΓA admits a nonperiodic generalized standard
component.

(iii) ΓA admits a nonperiodic component and all nonperiodic components
of ΓA are generalized standard.

(iv) ΓA admits a generalized standard component of Euclidean type.
(v) A is isomorphic to an algebra B̂/(ϕνB̂), where B is a tilted algebra

of Euclidean type and ϕ is a strictly positive automorphism of B̂.

Proof. It follows from the proof of Theorem 1 that if ΓA admits a non-
periodic generalized standard component C then A is socle equivalent to
an algebra Λ = B̂/(ψνB̂), where B is a tilted algebra B = EndH(T ), for
a hereditary algebra H of type ∆ not being a Dynkin quiver and a tilting
H-module T without nonzero preprojective (equivalently, preinjective) di-
rect summands, and ψ is a positive automorphism of B̂. Further, we know
from [21, Corollary 3.3] and [18] that C is regular if and only if ∆ is a
wild quiver with at least three vertices and T is a regular tilting H-module.
Moreover, it follows from [6, Corollary 3.9] that if ΓΛ admits a nonregular
nonperiodic generalized standard component then ψ is strictly positive, and
hence all nonperiodic components of ΓΛ are generalized standard. Finally,
it follows from [3, Theorem 8.4] and [26, Theorem 7.5] (see also [10, The-
orem 6.2]) that if ∆ is wild then B is strictly wild, and consequently Λ is
strictly wild.

Assume (i) holds. Then it follows from the above statements that ∆ is
a Euclidean quiver, and consequently all nonperiodic components of ΓΛ are
nonregular. Since, by the assumption (i), ΓΛ admits at least one nonperiodic
generalized standard component, we then infer that ψ is strictly positive,
and consequently ΓΛ admits at least three nonperiodic generalized standard
components. Invoking now Theorem 1 we deduce that A is isomorphic to
an algebra B̂/(ϕνB̂) for a strictly positive automorphism ϕ of B̂. Hence (v)
holds. Further, the equivalence (iv)⇔(v) and the implication (v)⇒(iii) are
also direct consequences of the above discussion. Moreover, the implication
(ii)⇒(i) follows from the well known fact that every strictly wild algebra is
wild (see [3, Lemma 8.2]).

Assume (iii) holds. It has been shown in [21, Theorem 2.3] that every
generalized standard component of an Auslander–Reiten quiver contains at
most finitely many nonperiodic orbits. On the other hand, if ∆ is wild then
ΓΛ admits nonperiodic components with stable parts of the form ZA∞,
and consequently admits nonperiodic components which are not generalized
standard. Therefore, ∆ is a Euclidean quiver, and as above A ∼= B̂/(ϕνB̂)
for a strictly positive automorphism ϕ of B̂. Hence the implication (iii)⇒(v)
holds. Moreover, it follows from the structure of the module categories of
selfinjective algebras of Euclidean type (see [1], [4], [19]) that A ∼= B̂/(ϕνB̂)
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is not wild, and consequently the implication (iii)⇒(ii) also holds. This
finishes the proof.

In [24, Theorem 5.5] we proved that a selfinjective algebra A is socle
equivalent to an algebra B̂/(ϕνB̂), where B is a tilted algebra not of Dynkin
type and ϕ is a positive automorphism of B̂, if and only if ΓA admits a
nonperiodic generalized standard right stable (respectively, left stable) full
translation subquiver which is closed under successors (respectively, prede-
cessors) in ΓA. We exhibit below a class of algebras showing that in general
we cannot replace “socle equivalent” by “isomorphic” without assuming that
ϕ is strictly positive.

Let K be a finite field extension of a field k of characteristic 2 such
that the Hochschild cohomology group H2(K,K) is nonzero, where K is
considered as a k-algebra (see [5], [22], [28] for existence of such extensions).
Take a 2-cocycle α : K×K → K corresponding to a nonsplittable extension
0 → K → L → K → 0. Now let Q = (Q0, Q1) be a finite quiver without
oriented cycles and double arrows and H = KQ be the path algebra of Q
over K. For each vertex i of Q, choose a primitive idempotent ei of H, and
for each path from i to j in Q, choose an element hji = ejhjiei of H. Then
DH = HomK(KQ,K) ∼= Homk(KQ, k) has a dual basis e∗i , h

∗
ji over K. Let

H̃ = H ⊕DH be the direct sum of K-spaces. Define multiplication on H̃ in
the following way:

(a, u)(b, v) =
(
ab, av + ub+

∑

i∈Q0

α(ai, bi)e∗i
)

for a, b ∈ H, u, v ∈ DH, where ai and bi are elements of K such that

a =
∑

aiei +
∑

rjihji, b =
∑

biei +
∑

sjihji,

for rji, sji ∈ K, are the basis presentations of a and b. Thus we have an
algebra extension

0→ DH → H̃
%→ H → 0

with the canonical morphism % and the embedding DH → H̃. Moreover,
H̃ is selfinjective, and even weakly symmetric (see [28]). The elements ẽi =
(ei − α(1, 1)e∗i ) ∈ H̃, i ∈ Q0, form a complete set of primitive orthogonal
idempotents of H̃. We have proved in [22, Proposition 6.1] that for each
i ∈ Q0 there exists a commutative diagram

0 // ẽi(DH)ẽi //

ψ1

��

eiH̃ei
ei%ei //

ψ

��

eiHei //

ψ0

��

0

0 // K // L // K // 0

with ψ0, ψ1, ψ being algebra isomorphisms. Since the elements e∗i , i ∈ Q0,
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belong to the socle of H̃, we find that H̃ is socle equivalent to the trivial
extension H n DH = Ĥ/(νĤ). On the other hand, we have the following
fact.

Proposition 4. The algebra H̃ is not isomorphic to an algebra of the
form B̂/(ϕνB̂), where B is a k-algebra and ϕ is a positive automorphism
of B̂.

The proposition follows directly from the above diagram of nonsplittable
extensions and the following general fact.

Proposition 5. Let k be a field , Λ a k-algebra and A a Hochschild
extension of Λ by DΛ. Assume that :

(i) A is isomorphic to an algebra of the form B̂/(ϕνB̂), where B is a
k-algebra and ϕ is a positive automorphism of B̂.

(ii) There exists a primitive idempotent e of A such that eΛe is a simple
k-algebra.

Then eAe ∼= eΛenD(eΛe).

Proof. SinceA is weakly symmetric [28], it follows from [12, Theorem 2.2]
that A ∼= B̂/(ϕνB̂) ∼= B n (DB)σ, where σ is an algebra automorphism of
B of the identity permutation type (see [12, Section 2] for definition). Let
e1, . . . , en be a complete set of primitive orthogonal idempotents of A with
1 = e1 +. . .+en. Let f : A→ Bn(DB)σ be an algebra isomorphism, and let
f(ei) = (e′i, ui), e

′
i ∈ B, ui ∈ DB, for 1 ≤ i ≤ n. Then {f(ei) | 1 ≤ i ≤ n} and

{(e′i, 0) | 1 ≤ i ≤ n} are two complete sets of orthogonal primitive idempo-
tents of Bn (DB)σ. Since there is an algebra automorphism mapping f(ei)
to (e′i, 0) for all i, renumbering the vertices if necessary, we may assume
that f(ei) = (e′i, 0) for all i. For simplicity of notation, we put ei = (e′i, 0),
1 ≤ i ≤ n. Since the permutation type of the automorphism σ is identity,
the restriction of σ to eiBei defines an automorphism σi of eiBei, and we
have an isomorphism ei(Bn(DB)σ)ei ∼= (eiBei)nD(eiBei)σi . Invoking [12,
Theorem 2.2] again, we conclude that, for the primitive idempotent e of A,
there exist i with 1 ≤ i ≤ n and an algebra isomorphism

eAe ∼= eiBei nD(eiBei)σi ∼= B̂i/(ϕiνB̂i)

for Bi = eiBei and a positive automorphism ϕi of B̂i. Since eAe is by our
assumption a simple k-algebra, applying [12, Proposition 2.4], we conclude
that eAe ∼= eΛenD(eΛe).
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