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SELFINJECTIVE ALGEBRAS OF WILD CANONICAL TYPE

BY

HELMUT LENZING (Paderborn) and ANDRZEJ SKOWRONSKI (Toru)

Abstract. We develop the representation theory of selfinjective algebras which admit
Galois coverings by the repetitive algebras of algebras whose derived category of bounded
complexes of finite-dimensional modules is equivalent to the derived category of coherent
sheaves on a weighted projective line with virtual genus greater than one.

Introduction. In this paper, by an algebra we mean a finite-dimension-
al basic connected algebra (associative, with an identity) over an alge-
braically closed field K. For an algebra A we denote by mod A the category
of finite-dimensional right A-modules and by D : mod A — mod A°P the
standard duality Homg (—, K). If all projective modules in mod A are in-
jective, then A is called selfinjective. The classical examples of selfinjective
algebras are provided by the blocks of group algebras K G of finite groups G,
or more generally by the Hopf algebras. An important class of selfinjective
algebras is formed by the algebras of the form B /G, where B is the repetitive
algebra [19] (locally finite-dimensional, without 1dent1ty)

Qm—l Bm—l
Qm  Bm
Qm+1 Bm+1

%)
I

of an algebra B, where B,,, = B and Q,, = D(B) for all m € Z, all
the remaining entries are zero, the matrices in B have only finitely many
nonzero elements, addition is the usual addition of matrices, multiplica-
tion is induced from the B-bimodule structure of D(B) and the zero map
D(B)®p D(B) — 0, and G is an admissible group of K-linear automor-
phisms of B. The identity maps By, — Bm+1 and @, — Qm+1 induce an
automorphism vz of B , called the Nakayama automorphism of B. Then the
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quotient E/(V@) is the trivial extension B x D(B) of B by D(B). We note

that if B is of finite global dimension then the stable module category mod B
of mod B is equivalent, as a triangulated category, to the derived category
DP(mod B) of bounded complexes over mod B (see [16]).

Selfinjective algebras of the form B /G with B a tilted algebra are called
selfinjective algebras of tilted type, and their module categories mod B /G
have been extensively investigated (see [2], [9], [12], [19], [31], [32], [34],
[37]-[39]). It is also known that the class of selfinjective algebras of tilted
type coincides with the class of selfinjective algebras B /G given by all finite-
dimensional algebras B whose derived category DP(mod B) is equivalent to
the derived category DP(mod H) of a hereditary algebra H (see [31]).

In this paper we are interested in the representation theory of the self-
injective algebras B/G given by finite-dimensional algebras B whose derived
category DP(mod B) is equivalent, as a triangulated category, to the derived
category DP(mod A) of a canonical algebra A. We call such selfinjective
algebras selfinjective algebras of canonical type. The canonical algebras A =
A(p, A), depending on a weight sequence p = (p1,...,p:) and a parameter
sequence A = (A1,...,\¢) of pairwise distinct elements of the projective
line over K, were introduced and studied in [33]. The finite-dimensional
representation theory of A is completely controlled by the category coh X
of coherent sheaves on a nonsingular weighted projective line X = X(p, A),
since the derived categories DP(mod A) and DP(cohX) are equivalent as
triangulated categories [14]. The curve X thus attached to A has (virtual)
genus

gx=1+%((t—2)p—ip>,

i— Pi
where p = lem(p1, ..., pt). The complexity of the classification problem for
coh X, equivalently for mod A, is essentially determined by gx.

For gx < 1, the algebra A is concealed of extended Dynkin type; ac-
cordingly the classification problems for coh X and mod A are equivalent
to the classification of indecomposable finite-dimensional modules over a
tame hereditary algebra [14], [21] or, according to [15], closely related to the
classification problem for indecomposable Cohen—Macaulay modules over a
simple surface singularity. For gx = 1, the algebra A is of tubular type, its
representation theory is known from [33] while the classification problem
for cohX [14], [22] relates to Atiyah’s classification [5] of vector bundles
over an elliptic curve. For gx > 1, the algebra A is wild and its module
category mod A has been investigated in [24]. Moreover, as shown in [21],
for the base field of complex numbers, the category of vector bundles on
X is equivalent to the category of Z-graded Cohen—Macaulay modules over
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the algebra of entire automorphic forms attached to a Fuchsian group of
signature (0; p1,...,p:;0).

The representation theory of selfinjective algebras of canonical type A =
A(p, A) with X = X(p, A) of genus gx < 1 has been established in [2], [6],
[7], [29], [34]. The object of our study in this paper is the class of remaining
selfinjective algebras of canonical type, called selfinjective algebras of wild
canonical type.

1. Preliminaries

1.1. Throughout this paper K will denote a fixed algebraically closed
field. By an algebra we mean an associative finite-dimensional K-algebra,
which we shall assume (without loss of generality) to be basic and connected.
For such an algebra A there exists an isomorphism A = K@ /I where K@ is
the path algebra of the ordinary quiver Q = Q4 of A and I is an admissible
ideal of K@. If the quiver Q4 has no oriented cycles then A is said to be
triangular. For an algebra A, we denote by mod A the category of finite-
dimensional (over K) right A-modules and by ind A its full subcategory of
indecomposable modules. For each vertex ¢ of Q = @ 4, we shall denote by
Sa(7) the simple A-module at i, by P4(i) the projective cover of S4(i), and
by I4(%) the injective envelope of S4(7) in mod A.

1.2. We shall denote by I'4 the Auslander—Reiten quiver of A, and by
74 and 7, the Auslander-Reiten translations D Tr and Tr D, respectively.
We shall identify the vertices of I'4 with the corresponding indecomposable
A-modules. By a component of I'4 we mean a connected component of I'4.
A vertex X of I'y is said to be left stable (respectively right stable) if T/ X is
defined for all integers n > 0 (respectively n < 0). Further, X is said to be
stable if T X is defined for all integers n. Moreover, X is said to be periodic
it X = 74X for some n > 1. For a component C of I'y we denote by C*
the stable part of C obtained from C by removing all the nonstable modules
and the arrows attached to them. A component of I'4 of the form ZA., or
ZAo/(7") is called quasi-serial. Similarly, a component C of I'4 with C® =
ZAo or C° = ZA/(7") is said to be stably quasi-serial. A stable module X
in a stably quasi-serial component C of I'4 is said to be stably quasi-simple
provided it has exactly one immediate predecessor (equivalently, exactly one
immediate successor) in C%. For such a module X, there are infinite sectional
paths

o X ==X - o2l X - 11X =X

and
X=X[1]-X_2]—-... > X[r—1 - X[r] — ...

in C%. Then any module M in C® is of the form 7% [r] X (equivalently, 74 X [r])
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for some ¢ € Z and some r > 1, and r is said to be the stable quasi-length
of 74[r] X, denoted by sql(M). Hence sql([r]X) = r = sql(X|[r]).

If C is quasi-serial then we write ql(M) instead of sql(M) and call it the
quasi-length of M. Moreover, in such a case, a module X in C with ql(X) =1
is said to be quasi-simple. For a module X in a component C of I'4 we denote
by (— X) the full translation subquiver of C formed by all the predecessors
of X in C. Dually, (X —) denotes the full translation subquiver of C formed
by all successors of X in C.

1.3. Let A be a selfinjective algebra, that is, Ay = D(A)4. If A and
D(A) are isomorphic as A-bimodules, the algebra A is said to be sym-
metric. We shall denote by mod A the stable category of mod A. Recall
that the objects of mod A are the objects of mod A without projective di-
rect summands, and for any two objects M and N of mod A the space
of morphisms from M to N in mod A is the quotient Hom (M, N) =
Homu(M,N)/P(M,N), where P(M,N) is the subspace of Hom4 (M, N)
consisting of all morphisms which factor through projective A-modules. We
have two mutually inverse functors 74,7, : mod A = mod A, called the
Auslander—Reiten translations. We shall also consider Heller’s loop and sus-
pension functors {24, {27, : mod A = mod A. If A is symmetric then 74 = Qi
and 7, = (222.

Observe that if C is an infinite component of I'4 then C® is obtained from
C by removing all projective modules in C, and consequently C® is also con-
nected. Moreover, £24(C®) and {2, (C®) are stable parts of some components
in I'4. Following [35] we say that a family C of connected components of
I'y is generalized standard if rad%’(X,Y) = 0 for all indecomposable mod-
ules X and Y from C. Similarly, a family D of connected components of the
stable Auslander—Reiten quiver I} of A is said to be stably generalized stan-
dard if rad¥’(X,Y) = 0 for all indecomposable modules X and Y from D.
Here, by rad%’(X,Y") (respectively, rad¥ (X,Y’)) we mean the intersection
of all positive powers of the radical rad 4(X,Y") (respectively, stable radical
MA(X ’ Y))

2. Derived categories

2.1. Let A = A(p, A) be a canonical algebra and X = X(p, \) be the as-
sociated weighted projective line. By a derived canonical algebra of type A
(or X) we mean an algebra B whose derived category DP(mod B) of bounded
complexes over mod B is equivalent, as a triangulated category, to the de-
rived category DP(mod A) of bounded complexes over mod A, or equivalently
[14] to the derived category DP(coh X) of coherent sheaves over X. A special
case are the concealed-canonical (respectively, almost concealed-canonical)
algebras of type A, or X, defined as the endomorphism algebras of tilting
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bundles (respectively, tilting sheaves) on X, or equivalently as the endomor-
phism algebras of tilting modules T' over the canonical algebra A, where T
is built from indecomposable modules of strictly positive rank (respectively,
modules of nonnegative rank). We recall that mod A, coh X and D (mod A)
have the same Grothendieck group Ko(A) = Ko(X) = Ko(DP(mod A)).
Moreover, the rank is the unique additive function rk : KoX — Z which
is surjective and nonnegative for (classes of) members of cohX. We also
need the degree deg : KoX — Z which is also Z-linear, maps the class [O]
of the structure sheaf to zero and is positive on simple sheaves; for further
information on rank and degree we refer to [14, 24].

The property of being derived canonical (respectively, concealed-canon-
ical) is preserved when passing from B to its opposite algebra, whereas the
corresponding statement holds for an almost concealed-canonical algebra
if and only if it is already concealed-canonical. If A is wild (respectively,
tame) then a derived canonical algebra B of type A is said to be of derived
wild (respectively, derived tame) type. The representation-infinite derived
canonical algebras of derived tame type are completely described in [3],
whereas information on derived canonical algebras of derived wild type is
much less complete. In fact, no classification of concealed-canonical algebras
of wild canonical type is known.

2.2. Following [26] by a quasi-tilted algebra of canonical type A = A(p, A)
we mean an algebra B that can be realized as the endomorphism algebra
of a tilting object for a hereditary abelian K-category H with DP(H) =
DP(mod A). It is known [17] that then B is of global dimension at most
two and every indecomposable (finite-dimensional) B-module has projective
dimension at most one or injective dimension at most one. Clearly, every
quasi-tilted algebra of canonical type is derived canonical. Moreover, the
class of quasi-tilted algebras of canonical type contains the almost concealed-
canonical algebras and their opposites.

The almost concealed-canonical algebras (respectively, quasi-tilted al-
gebras of canonical type) are those algebras which can be obtained from
concealed-canonical algebras by tubular branch extensions (respectively,
semiregular branch enlargements; see [23], [26]). Further, the concealed-
canonical algebras (respectively, almost concealed-canonical algebras, quasi-
tilted algebras of canonical type) are exactly the algebras whose module cat-
egory admits a sincere separating family of stable tubes (respectively, ray
tubes, semiregular tubes) by the corresponding results of [25], [23], [26]. For
details and the representation theory of quasi-tilted algebras of canonical
type we refer to [23], [26], [28], [36].

2.3. In our investigation of selfinjective algebras of wild canonical type
we need a description of the module category of an almost concealed-canon-
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ical algebra of wild type. Let X = X(p, \) be a weighted projective line of
wild type, T a tilting sheaf on X, and B = End(7T) the associated almost
concealed-canonical algebra. Let cohy (T') (respectively, cohd (T')) be the full
subcategory of the category vect X of vector bundles on X (respectively, the
category cohpX of coherent sheaves on X of finite length) consisting of all
F satisfying the condition Ext!(T, F) = 0. Similarly, we denote by coh_ (T’
(respectively, cohy (T')) the full subcategory of vect X (respectively, cohg (7))
consisting of all F' satisfying the condition Hom(T, F') = 0.

Furthermore, let coh> (7") (respectively, coh<(7")) be the additive closure
of cohy (T') Ucohd (T) (respectively, coh_ (T") U cohy (T')). Invoking now [23,
Theorem 5.1] and the identification DP(mod B) = DP(coh X), we conclude
that each indecomposable B-module is in one of the four parts of the mod-
ule category of mod B, denoted respectively by mod B, modarB, mod_ B,
mod, B, corresponding under the above identification to coh T, cohar T,
coh_T[1], cohy T'[1], respectively. Moreover, for an indecomposable module
M we have:

(a
(b
(c
(d

M € mod+ B &tk M > 0,
MEmoij@rkM:()and deg M > 0,
M emod_B < rk M < 0,
M € mody B & rkM =0 and deg M < 0.

N ~— —

Further, in the ordering mod B, modarB, mod_B, mody B there are no
nonzero morphisms from right to left. We denote by mod> B (respectively,
mod< B) the additive closure of mody B Umod] B (respectively, mod_B U
mod, B).

Then the indecomposable projective B-modules lie in mod> B, the in-
decomposable injective modules lie in mod<B, and modar B is the additive
closure of a P;(K)-family of ray tubes, separating mod; B from mod<B.
Further, each component of mod; B (respectively, mod<B) different from
the preprojective (respectively, preinjective) component is of type ZA, or
obtained from ZA., by ray (resp. coray) insertions. Finally, for each com-
ponent C of mod<B different from the preinjective component there is an
indecomposable B-module Z in C such that the 75-cone (Z —) in C is a full
translation subquiver of a component in (vect X)[1], and this establishes a
bijection between the set of connected components of mod_ B and the set of
connected components of vect X (see [28, Theorem 3.4, Corollary 6.6]). We
have a dual description for the module category mod B°P for the opposite
algebra B°P.

2.4. We end this section with some examples of algebras discussed be-
fore. Consider the algebras given by the following bound quivers:
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Blt Bgt B3:

N 2 S
4«75 475 475
Sk bl I
10 11 —12 10 11<’L712 10 11— 12
‘| | ‘|
13 13 13

araz + P02+ 117273 =0, aroe + G182 + 717273 =0, oiaz + G162 + 117273 =0,
ow=0,7%5=0,12=0, ow=0,7=0,1mr=0 ow=0,pyp=0mr=0
and the canonical algebra A of wild type (5,2,7) given by the quiver

(6%} Qs (e %)
O =—— 0 =——0 =—"—20

a5/ \al

o B2 B

77\ / 71

O=—0=—0=—0=—0=—0

Y6 Vs V4 V3 72

bound by ajagazasas + 5162 + 1172737175767 = 0. The algebras By, B,
Bs are suitable branch enlargements of the concealed canonical algebra C'
of type (2,2, 3) formed by the arrows a1, ag, 51, B2, 71, Y2, 73, and with the
relation ayag + (102 + 7172773 = 0. According to [23], [26], Bs is an almost
concealed-canonical algebra of type A, Bs is quasi-tilted of canonical type A
but not almost concealed-canonical, B; is not quasi-tilted of canonical type,
but is derived canonical of type A. In fact, as we will see in 3.2, By, Bs and
B3 have isomorphic repetitive algebras.

3. Selfinjective algebras of wild canonical type

3.1. Let B be an algebra and {e; | 1 < i < n} be a complete set of
primitive orthogonal idempotents of B such that 1 =e; +...+¢e,. Then we
have the associated set {e;,; | m € Z, 1 < i < n} of primitive orthogonal
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idempotents of the repetitive algebra B of B such that em1+ ...+ emn is
the identity of By, and vg(em:) = emt1,; for any m € Z, 1 < i < n. We
may consider B as a locally bounded K-category with the objects e,,; for
(m,i) € Z x {1,...,n} and with morphisms given by

(em,iB,er;B) = € ;Bem;.

Note that the modules Pg(m,i) = em,lﬁ, (m,i) € Z x {1,...,n}, form
a complete set of pairwise nonisomorphic indecomposable projective B-

modules. A group G of K-linear automorphisms of (the category) B is said
to be admissible if G acts freely on the set {ey,; | (m,i) € Z x {1,...,n}}

and has finitely many orbits. Then the orbit algebra B/G (see [13]) is a
(finite-dimensional) selfinjective algebra, and we have a canonical Galois

Hom z(em,i, €r,j) = Homp

covering F? : B — B /G with group G. In particular, the infinite cyclic

group (vg) generated by the Nakayama automorphism vz is admissible,

and E/(ué) is isomorphic to the trivial extension B x D(B) of B by D(B).
Recall that B x D(B) is the symmetric algebra whose additive structure is
that of the vector space B @ D(B) and whose multiplication is defined by
(a, f)(b,g) = (ab,ag + fb) for any a,b € B and f,g € D(B).

3.2. Assume B is a triangular algebra. For a sink ¢ € Q g, the reflection
S;"B of B at i is the quotient of the one-point extension B[Ip(i)] by the
two-sided ideal generated by e; (see [19]). The quiver o;' Qp of S; B is called
the reflection of @ p at i. Observe that the sink ¢ of @ p is replaced in a;r QB
by a source i’. Dually, starting from a source j of Q g, we define the reflection
S; B of B at j as the quotient of the one-point coextension [P5(j)]B by the

two-sided ideal generated by e;. The quiver O';QB of S;B is called the
reflection of Qg at j, and the source j of @ p is replaced in J_Q B by a sink
] For a sink i (respectively, source j) of Q B, we have S, S+B B and

S+B B (respectively, S+S B = B and S B B) A reflection sequence
of sinks of Qp is a Sequence i1,...,5 of Vertlces of Qp such that i, is a
sink of oZ_l e O';;QB forl1 <s< t. Dually, a reflection sequence of sources
of ) is a sequence ji,...,J; of vertices of Qg such that js is a source of
Oj1- O'_QB for1 <s<t.

For example if B1, By, B3 are the algebras con81dered in 2.3, then B, =
51351132 and Bg = SlOBl, and in particular we have 31 Bg B3

3.3. We may now define the main object of our study in this paper.

DEFINITION. A selfinjective algebra A = B /G, where B is a derived
wild derived canonical algebra and G is an admissible torsion-free group of
K-linear automorphisms of E, is said to be a selfinjective algebra of wild
canonical type.
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3.4. Let A = A(p, ) be a wild canonical algebra with p = (p1,...,pt),
X = X(p,A) the weighted projective line attached to A, and B a derived
canonical algebra of type A. Since mod B = mod A = DP(coh X), we infer
that the Auslander—Reiten quiver I's of B is of the form

(%) Iy=\/(T;VRy),

qEZ

where, for each q € Z, 7; is a family 7, 5, A € X, of standard quasi-tubes
whose stable part is a family of stable tubes of tubular type p = (p1,...,pt),
and R, is a family (of cardinality card K') of components whose stable
parts are of the form ZA.. Further, v5(7;) = Ty12, v3(Ry) = Ryr2,
Homz(Ry, 7y) = 0 for any q € Z, and also Homz(7, V Ry, 7, V Ry) = 0 for
any p > q. Moreover, each quasi-tubular family 7, separates \/__ q(’Zf9 VRs)
from R, V \/t>q(72 V R¢). For each ¢ € Z, we denote by P, the fam-
ily of all projective (equivalently, injective) B-modules from 7,4, and de-
fine ’];r =T, N PqL and 7, = 7, N LPq, where qu and qu denote
the right (respectively, left) perpendicular category in the sense of [15].
Clearly, ’]:;r = (’qur)\),\ex and 7,7 = (’Z:L_/\),\ex, with ’Z;FA =T\ N P,ll and
7:1;\ =Ty N J‘Pq.

The following theorem gives a more complete information on the struc-
ture of mod B.

THEOREM. There exist algebras By and B;, q € 7, such that, in the
above notation, the following statements hold:

(i) For each q € Z, B is a convex almost concealed-canonical subcat-
egory of B of canonical type A, and T, 1is the unique family of ray tubes
m FB;.

(ii) For each q € Z, (B;r)Op is almost concealed-canonical of type A, B(j

is a convex subcategory of E, and ’];r is the unique family of coray tubes
m FB;‘

(iii) For each q € Z, By = B = B, vp(By) = B, and vg(By)

+ B q

= Byra- . . . o .
(iv) There exists a reflection sequence of sinks i1,...,0p, rgiy--.,1s,
ULy v vy bty Tptlye--sin Of QBO+, where n is the rank of Ko(By) = Ko(A),
— _ ot +pt pt_ of + p- p—_ ot +  pt

such that By = S; ....5; By, B =5 "'SirHBO , By =5, ...5 11 By

andB;':S’;...SZ_HBf'.
(v) For each q € Z, the supports of indecomposable B-modules from T,

are contained in the convex subcategory Dy ofE given by the objects of B;
and B .
q
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(vi) For each q € Z, the supports of indecomposable B-modules from R,
are contained in the convex subcategory D; of B given by the objects of By

Jr
and B 4.

Proof. Fix q € Z. Since 7y = (74\)xex is a family of standard quasi-
tubes, it follows from [4] that C; = 7, N+P, NPy is a standard family Cg »,
A € X, of stable tubes such that 7, is obtained from C, by a sequence of
admissible operations of types (ad 1), creating the standard family of ray
tubes 7,7 = 7, N qu’ and then by a sequence of admissible operations of
type (ad 2*). Equivalently, 7, is obtained from C, by a sequence of admissible
operations of types (ad 1*), creating the standard family of coray tubes 7:]+ =
T, N qu, and then by a sequence of admissible operations of type (ad 2).

Further, since 7, separates \/,_ (7s V R;) from Ry V V. (Tt V Ry), we
deduce from [25] that the support algebra A, of C, is a concealed-canonical
algebra. Therefore, the support algebra B, of 7.~ is a branch extension of
Ay, and so B is an almost concealed-canonical algebra, by [23], [26]. Du-
ally, the support algebra B; of ’Z;r is a branch coextension of A,, and hence
(B(;r )°P is almost concealed-canonical. Observe also that both B; and B
are convex subcategories of E, and the support algebra D, of 7, is a convex
subcategory formed by the objects of B; and B, . Since v3(7;) = Tg42 for
any q € Z, we may choose the algebras B, and B;r such that v5(B,) = B,y
and vg(B)) = B;+2 for any ¢ € Z.

Denote by (2 the set {1,...,n} of vertices of QBJ. We may write {2 as a
disjoint union 2 = 27, U 2, U N7 UNg,, where 27, = {i € 2| Pz(vz(i))
€ 1o}, and similarly 2z, = {i € 2 | P3(vz(i)) € Ro}, 27, = {i € 2|
P3(vg(i) € Ti}, 2r, = {i € 2| Pg(vg(i)) € Ri}. We order the vertices of
Qr, 2r,, 27, and g, such that 27, = {i1,...,ir}, 2, = {ir+1,...,0s},
.QTl = {i5+1, c. ,it}, Q’R1 = {Z't—i-l’ ey in}, and

Homp(Pg(vi(i)), Py (vg(im))) = 0
for any 1 < m < I < n. Note that this is possible because B is triangular
and Homé(Rg,%) =0, Homg(’fl VR1,7yV Ry =0.

Then 41, ... 090, Grgly---ybsy bstplye--sbt, Gt41,---,0n 1S a reflection se-
quence of sinks of ) BF satisfying the conditions of (iv). For each ¢ € Z,

we then also have B = B, = B;H B, = B;;Q = v5(By ). This shows

that mod B = mod B, and consequently B, = B By for any ¢ € Z. Fi-
nal}y, observe that the support algebra D; of Ry is the convex subcategory
of B formed by the objects of B, and B;H. "

3.5. It follows from the above theorem that in our considerations of
selfinjective algebras of wild canonical type, we may restrict ourselves to the
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selfinjective algebras given by almost concealed-canonical algebras. More-
over, we have the following direct consequence of the above theorem.

LEMMA. Let B and D be almost concealed-canonical algebras of wild
type, and let Ko(B) and Ko(D) have ranks m and n, respectively. Then the
following are equivalent:

(i) B~ D.

(ii) D = Sl-t e SZ B for a reflection sequence of sinks i1,..., i, r < m,
m QB.
’ C(;ii) B S;g . .S;g D for a reflection sequence of sinks ji,...,J, t < n,
m (p.

Clearly if B = D then Ko(B) and Ko(D) are isomorphic, so in the above
corollary we have in fact m = n. We note further that the above corol-
lary also holds for almost concealed-canonical algebras of tame (domestic or
tubular) type, by the corresponding results of [2], [29], [34].

3.6. Let B be an almost concealed-canonical algebra of wild type. We
may identify B with the convex subcategory B, of B. Following [34], B is
said to be exceptional whenever, in the notation of Theorem 3.4, we have
B, = B; . Otherwise B is said to be normal. We note that B is exceptional
if and only if B = Sit . Si+1 B for a reflection sequence of sinks i1, ..., in
@ p with r smaller than the rank of Ky(B). Moreover, if B is exceptional
then the rank of Ko(B) is even.

An example of an exceptional almost concealed-canonical algebra of wild
type is provided by the algebra B = KA/I, where A is the quiver

[e%) 2 o1 o1 7
1 }/2 3 V> 6){ 8
’73\ - ”/’h \771

9 —— 10
72 7]2

4 -

and [ is the ideal in K A generated by a1+ 51 062+7v17273, 011, £1581, M1
Then B is an almost concealed-canonical algebra of wild type (3,3, 5), being
a tubular extension of the canonical algebra C' of tubular type (2,2, 3) given
by the vertices 1,2,3,4,5,6. Moreover, for B = B, we have Bf' = SfrB =
B and By = S5 .S535 B & B. Therefore, B = SIS/ Sy Sy 5] B is
an exceptional almost concealed-canonical algebra. On the other hand, the
convex subcategory B’ of B given by all vertices of @ except 10 is a normal
almost concealed-canonical algebra of wild type (3,3,4), because Ko(B') is
of odd rank.

For B exceptional, we denote by ¢ a fixed extension of B = By 5

B — B to a K-linear automorphism of B.For B normal, we put pz = vg.
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Consider now the decomposition (x)

I's = \/ (74 vV Ry)
qEZ
described above. Then the separation properties of 7, imply that for any
K-linear automorphism f of B, there exists an integer m such that f(7;) =
Tg+m and f(Rq) = Rgqm for any ¢ € Z. If m > 0 (respectively, m > 0),
such an automorphism f is said to be positive (respectively, strictly positive).
Finally, if m = 0, f is said to be rigid. Clearly, ¢ 5 and v are strictly positive

automorphisms of B. Observe that if B is exceptional, then 4,0% = frvg for
some rigid automorphism f of B.

LEMMA. Let G be a torsion-free admissible group of K-linear automor-
phisms of B. Then G is an infinite cyclic group generated by fcp% for some

s > 1 and some rigid automorphism f of B.

Proof. For g € G, let m be the integer such that g(7o) = 7p,,. Applying
induction and the separation properties of the families of quasi-tubes 7g,
q € Z, we deduce that then g(7;) = Z4ym, for all ¢ € Z. Similarly, m; =
—my for h = g~1. Suppose my = 0 for some g € G. Then ¢(7;) = 7, and
9(Ry) = R, for any ¢q € Z. In particular, g acts on the finite set of projective
modules contained in 7y VR, and so some power g" of g fixes an idempotent
em,i of B. Since G is admissible and torsion-free, we get g = 1. Choose g € G
such that my is positive and minimal. Let h € G and mj, = tmy + [ with
0 <1< my. Thena= hg*t € G, mg =1, and hence [ = 0, a = 1. Therefore,
G is infinite cyclic generated by g. If B is normal, then my is even, say
m = 2s, and f = ggoés is a rigid automorphism of B. Similarly, if B is
exceptional and s = my, then f = gg@és is rigid. Consequently, GG is infinite
cyclic generated by fcp% for some s > 1 and some rigid automorphism f

OfE.l

3.7. There are many normal almost concealed-canonical algebras whose
Grothendieck group has even rank. Let p = (p1,...,p:) be a weight sequence
and 0(p) be the discriminant of p defined by

¢

o(p)=(t—2)p— Z 5, where p =lem(py,...,pt).
i=1 1"
Then p is said to be of wild (respectively, tame) type if §(p) > 0 (respectively,
0(p) < 0). Note that the weight sequences p = (2,4,2m + 1), m > 2, are
wild and d(p) = 2m — 3 exhaust all odd natural numbers. Moreover, for any
almost concealed-canonical algebra B of type (2,4,2m+1), Ko(B) has even
rank 2(m+3). We have the following direct consequence of [27, Corollary 3]:
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LEMMA. Let B be an almost concealed-canonical algebra of wild type p
such that 6(p) is odd. Then B is normal.

For further examples of exceptional almost concealed-canonical algebras
of wild type we refer to [27, Sections 2 and 4].

3.8. Let B be an almost concealed-canonical algebra of wild type. Let
G be the infinite cyclic group of K-linear automorphisms of B generated by
a strictly positive automorphism g. Then ¢(7;) = Z44m and g(Rq) = Rg+m
for all ¢ € Z and some fixed m > 1. We know from Theorem 3.4 that B is
locally support-finite [10], that is, for each idempotent e, ; of §, the set of
all idempotents e, ; of B with M em, 7 0 # Me, ; for some indecomposable
finite-dimensional B-module M is finite. Applying [11, Proposition 2.5] we
conclude that the push-down functor FZ : mod B — mod B /G associated to
the Galois covering F'5 : B—B /G is dense and preserves Auslander—Reiten
sequences (see also [13, Theorem 3.6]).

Therefore, I'; e is obtained from I'z by identifying, via F)]\g , T, with
Ty+m and Ry with Ryqpm, for all ¢ € Z. Thus FE/G is of the form

FEB(ToVRy)VFE(TMIVR)V...VFP (T 1V Rm_1).

Moreover, FP ind B — ind B /G is a Galois covering and hence it induces
the following isomorphisms (see [8], [13]):

@HomE(M,gN) = Homg/G(Ff(M),Ff(N)) & @Homg(gM,N)

geG geq
for any M, N € ind B. This allows one to recover all morphisms in mod B /G
from the morphisms in mod B.

3.9. PROPOSITION. Let B be an almost concealed-canonical algebra of
wild type, G = (g) an admissible infinite cyclic group of K-linear automor-
phisms of E, and g(7y) = Ty, for some m > 1. Then the following assertions
are equivalent:

(i) m > 2.

(i) G is generated by an element vz for some positive automorphism
Y of B.

(iii) There exists r, 0 <1 < m—1, such that the family F2(T,)" is stably
generalized standard.

(iv) The families FP(T.)%, 0 < r < m — 1, are stably generalized stan-
dard.

Proof. The equivalence of (i) and (ii) follows from Lemma 3.6. More-
over, mod B = DP(cohX) for a weighted projective line X of wild type.
Because Db(cth) is an abelian hereditary category, for all p,q € Z we
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have Hom (’Z;S, 7;) # 0 if and only if ¢ = p or ¢ = p + 1. Since the functor
Ff : modB — modB/G induces a Galois covering Ef : m@ — mE/G,

the required equivalence of (i)—(iv) follows. =

3.10. COROLLARY. Let B and G be as above. Assume that the families
Ff(’]}), 0 <r <m-—1, consist of stable tubes. Then the following conditions
are equivalent:

(i) m> 2.
(ii) There ezists r, 0 < r < m — 1, such that the family FP(T,) is
generalized standard.
(iii) The families Ff(’]}), 0 <r <m—1, are generalized standard.

Proof. Observe that if p,q € Z, |p — q| > 2, then the tubular families
7, and 7, have different supports, and hence Hom 5(75,7;) = 0. Then the
requlred equlvalences follow from 3.9. m

For examples of wild concealed-canonical algebras B satisfying the hy-
pothesis of 3.10 we refer to 5.4-5.6. On the other hand, each wild canonical
algebra satisfies the assumptions of the next corollary.

3.11. COROLLARY. Let B and G be as in the above proposition. Assume
that one of the families of quasi-tubes Ff(’]}), 0<r<m-—1, contains a
projective module. Then the following conditions are equivalent:

(i) m > 3.

(ii)) G is genemted by an element Yvg for some strictly positive auto-
morphism i of B.

(iii) A nonstable quasi-tube in FP(T,) is generalized standard.

(iv) All quasi-tubes in I'g 5/ are generalized standard.

Proof. 1t follows from our assumptions that 7, contains an indecompos-

able projective B-module €q,i B. Since l/B(eq,Z) = eq+1,i, We have top(eq; B)

= soc(egt1, lB), and hence Hom s (equ eqHzé) # 0. This implies that
Homg(7:, 7r42) # 0, because eq+1zB = vp(eq: B A) belongs to 7,.9. Fur-
ther, we know from 3.4 that Hom(7,,7;) = 0 for any ¢ > p + 3. Finally,
observe that, in the above notat10n n > 3 if and only if g is of the form
g = Yvg for some strictly positive automorphism v of B. Therefore, since
Ff :ind B — ind B /G is a Galois covering, the required equivalence of
(i)—(iv) follows. m

3.12. Let B be an almost concealed-canonical algebra of wild type, G =
(¢9) an admissible infinite cyclic group of K-linear automorphisms of B, and
assume ¢(7y) = 7y, for some m > 2. Then it follows from Lemma 3.6 that
g = ¢’ = vz for some rigid automorphism f of B and some positive auto-

morphism v of B. Then the Auslander-Reiten quiver I'y of the selfinjective
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algebra A = B/@ consists of m > 2 P;(K)-families FB3(To),...,FP(Tn-1)
of quasi-tubes and infinitely many components with stable part ZA ., dis-
tributed in the families F?(Ro), ..., FZ(Rmm—1). Moreover, it follows from
Proposition 3.9 that F?(7,7) and FP(T,"), 0 < ¢ < m — 1, are general-
ized standard families of modules in mod A. Consider the two-sided ideals
If = anmna(FP(T1)) and I = anna(FP(7,7)), 0 < ¢ < m — 1, of A
Since 7, (respectively, ’Z;Jr) is a faithful family of ray (respectively, coray)
tubes of the almost concealed-canonical algebra B, (respectively, of the dual
B of an almost concealed-canonical algebra) we infer that B = A/If
and B = A/I; for any 0 < g < m — 1. Therefore, the algebras B
and B;r, 0 < g < m — 1, are natural factors of the selfinjective algebra
A= B/G.

We note that the corresponding claim is not true for an exceptional al-
most concealed-canonical algebra B and A = B/(pz). Indeed, let B be the
exceptional almost concealed-canonical algebra of type (3,3,5) considered
in 3.6. Then A = E/(cpg) is the bound quiver algebra KQ/I, where @ is
the quiver

2 3
1
V3 a!
7N,

and [ is the ideal of K@ generated by ajas + 8182 + y17273, asa, B201,
Yoysaraay1ye. Observe that the factor algebras of A are not quasi-tilted
algebras of canonical type. This motivates the following definition.

DEFINITION. A selfinjective algebra A = B /(Yvg), where B is almost
concealed-canonical of wild type and v is a positive automorphism of B, is
said to be a proper selfinjective algebra of wild canonical type.

Clearly, each selfinjective algebra of wild canonical type given by a nor-
mal almost concealed-canonical algebra is proper.

3.13. We end this section with the following characterization of proper
symmetric algebras of wild canonical type.

THEOREM. An algebra A is a proper symmetric algebra of wild canonical
type if and only if A is isomorphic to the trivial extension B x D(B) of an
almost concealed-canonical algebra B of wild type.

Proof. This follows from the above definitions and [30, Theorem 2]. m
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We note that the selfinjective algebra A = é/(goé) of wild type (3,3,5)
constructed in 3.12 is symmetric but clearly is not a trivial extension of a
quasi-tilted algebra of canonical type.

4. Cones of ZA,-components

4.1. Let B be an almost concealed-canonical algebra of wild type A =
A(p,N), and X = X(p,A) the associated weighted projective line. We use
the notation introduced in Sections 2 and 3 and identify B with the convex
subcategory Bj of B. The following theorem describes the structure of
components in I'z with stable part ZA.

THEOREM. For a fized integer q, the following statements hold:

(i) For each component C from R, there exist indecomposable modules
M~ and M* in C such that C— = (M~ —) is a right stable cone of C
consisting of modules from mod_ B, Ct = (— M) is a left stable cone of
C consisting of modules from mod_ B;_H, and for X € C~ and 'Y € CT we

have =X =7__ X and 73 =71 Y.
B By B Bl

(ii) For each component D in mod_ B, different from the preinjective
component, there exists an indecomposable module Y in D and a component
C in Ry such that the cone D~ = (Y —) of D is a right stable full translation
subquiver of C which is closed under successors.

(iii) For each component £ of mod 4 B;H different from the preprojective
component, there exists an indecomposable module Z in £ and a component
C in Ry such that the cone ET = (— Z) of € is a left stable full translation

subquiver of C which is closed under predecessors.

Proof. First we note that B, and B;H are factor algebras of B. From

Theorem 3.4(vi) we know that the support of any indecomposable B-module
in R, is contained in the convex subcategory D; of B given by the objects
of B, and B;Zrl. Moreover, we have B;H = Sjt e Sjt B, for a reflection
sequence ji,...,J: of sinks in @) By Let Py,..., P be all indecomposable

projective B-modules in Rg4. Then the socles of Pi,..., P; are the simple

B-modules given by those vertices ji,...,j:, and the tops of Py,..., P are

the simple B-modules given by the vertices of a;{ .. O‘;E Qp- = Qg+ which
q q+1

are not vertices of ) By

Let C be a component from R,. In order to prove claim (i) for C it is
sufficient to find indecomposable B-modules M and N in C such that C~
(M —) is right stable, C* = (— N) is left stable, and Hom (U, P))

= 07
Homg(F;, V) = 0 for all modules U € Ct,VelC ,andany 1 <i < t.
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Observe also that since C* = N A for a quiver A of the form
O0—=1—...=r—r+l«—r+2«—...

for some r > 0, we have Homz(U, P;) = 0 for any U € C* if and only if
Hom 5 (7' N, P;) = 0 for any [ € N. Similarly, C~ = (-N)X for a quiver X
of the form

O—1l—...—5—5+1—=s54+2—...
for some s > 0, and hence Homz(P;, V') = 0 for any V' € C~ if and only if
HomB(Pi,TEA;l M) =0 for any [ € N.

We know that m_odE & m_od/T >~ DP(coh X), and the full subcategory of
mod B given by all nonprojective objects of R, is equivalent to the category
of indecomposable vector bundles over X. Applying now [24, Proposition
10.1] we conclude that there are indecomposable modules M and N in C such
that Ho_mé(ré N,rad P;) = 0 and Hom 5 (P;/soc P, Tél M) =0foranyl € N
and 1 < ¢ < t. Moreover, since the stable part C® of C is of the form ZA ., we

may choose M and N such that C* = (— N) is left stable and C~ = (M —)
is right stable. Further, since TIAN [ € N, are nonprojective and T}% M,

[ € N, are noninjective, we have Hom 5 (TAN P) = Homé(Té N,rad F;)
and Hom 7 (PZ,TJM) HomE(PZ-/socPZ,TEIM).

Suppose now that there is a nonzero morphism f : 7’% N — P; for some
l € N and some 1 <17 < ¢. Since Ho_mB(TJl§ N,rad P;) =0, f factors through
a projective B-module P. But T}% N and rad P; belong to R, and hence
P is a direct sum of modules Py, ..., P;. Observe that if f = f”f" with
Vi Té N — P and f” : P — rad P;, then the image of f’ is contained in
rad P. Since Hom 5 (T]l§ N,rad P) = 0, we conclude that f’ factors through a
direct sum of modules from the family P, ..., P;.

Therefore, for any positive number r, we may find a sequence of mor-
phisms

P, —>P —...—=F —>P

11 12 Tr+1
such that iy,...,4.41 € {1,...,t}, hi,...,h, are nonisomorphisms and
hy...h1 # 0. This leads to a contradiction because the radical of the
algebra Endg(Py © ... © P;) is nilpotent. Consequently, we have proved

that Homé(TéN,Pi) = 0 for any [ € N and 1 < ¢ < t. The proof that
HomE(PZ-,Tél N) =0 for any [ € N and 1 < i < ¢t is similar. Hence, for
Mt =N, M~ = M, claim (i) follows.

For (ii), take a component D of FB; contained in mod_ B, and differ-
ent from the preinjective component. Let I, ..., Iy be the largest B, -sub-

modules of the indecomposable projective-injective B-modules P,...,P
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of Ry, respectively. Note that I1,...,I; are indecomposable injective B, -
modules lying in mod_ B, . The support algebra D; of Ry, given by the ob-
jects of B, and B;Zrl, is an iterated one-point extension of B, using modules
whose largest B, -submodules are Iy, ..., I;. Moreover, under the identifica-

tion mod B; = DP(coh X), mod B, is a full subcategory of vect X[1], and
therefore, for all modules U, V' from mod- B, we have Hom(U, 7" V) =0
for r > 0, again by [24, Proposition 10.1].

Further, according to 2.3, the component D contains an indecomposable
module Z such that the cone (Z —) of D is a full translation subquiver
of a component of vect X[1]. Hence for any module W in D there is [ € N
such that T;l_ W € (Z —), and consequently 7_° (T;_ W) = T}gs(T;l_ W)
for any s > OfI Combining the above information Wé con(é:lude that thereqis an
indecomposable B, -module Y in D such that Dt = (Y —) is a right stable
subquiver of D (even contained in vect X[1]) such that Hom By (1;,X)=0
for any X € D and any 1 < j < t. Therefore, applying [33, (2.5.6)] we
conclude that DT is a full translation subquiver of a connected component
Cin Ry.

The proof of (iii) is dual to the proof of (ii). m

4.2. Let B be an almost concealed-canonical algebra of wild type and
G an infinite cyclic group of K-linear automorphisms of B such that A =
B/G is a proper selfinjective algebra of wild canonical type. Then I'4 has a
canonical decomposition

Ty=FP(T)VFEE(Ro)V...VFZ (Tyi1)VFZ (Rim_1)

with m > 2, induced by the decomposition of I'g (see 3.4 and 3.8). We also
note that then B, and B;H, 0<qg<m-1,with By =B and B}, = B,
are factor algebras of A.

THEOREM. For a fixred q, 0 < ¢ < m — 1, the following statements
hold:

(i) For each component C of Ff(Rq), there exist indecomposable mod-
ules X~ and Xt in C such that C- = (X~ —) is a right stable cone of C
consisting of modules from mod_ B, Ct = (— X7) is a left stable cone of
C consisting of modules from mod B;Zrl, and forU € C~ and V € CT we
have 7, U = TBq_ Uand oV = TB;+1 V.

(ii) For each component D of mod_ B, different from the preinjective
component, there exists an indecomposable module Y in D and a component
C in FP(R,) such that the cone D~ = (Y —) of D is a right stable full
translation subquiver of C which is closed under successors.
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(iii) For each component £ of mod B;H different from the preprojective
component, there exists an indecomposable module Z in £ and a component
C in FE(R,) such that the cone ET = (— Z) of € is a left stable full
translation subquiver of C which is closed under predecessors.

Proof. This follows from the above theorem and the facts that F)]\g :
ind B — ind A4 is a Galois covering (see 3.8) and B, B;Zrl, 0<g<m-—1,
are factor algebras of A. m

4.3. COROLLARY. For a fized q, 0 < q < m—1, the following statements
hold.

(i) If M and N are indecomposable modules in FZ(Ry) and N is non-
projective, then
Homy (M, 73 N)#0  for r> 0.

(ii) If M and N are indecomposable modules in FZ(Ry), then
Homu(M,7," N) =0  for r> 0.

Proof. Let C1 and Ca be components in F' f (Rq) containing M and N, re-
spectively. Observe that for any projective A-module P and an indecompos-
able nonprojective A-module X we have Hom 4 (P, X) = Hom(P/soc P, X)
and P/soc P is not projective. Therefore, we may assume that M is not
projective.

(i) Assume N is not projective. Theorem 4.2(i) implies that there exist
indecomposable A-modules X; € C; and X, € C3 such that Cf = (— X7)
is a left stable cone of C; consisting of modules from mod B;Zrl, Cy =

(— XJ7) is a left stable cone of Cy consisting of modules from mod B;H,

and TB;EHVl =74 V1, TB;+1V2 = 14 V5 for all modules V7 € Cf and V5 € C;.
Moreover, by the dual to Theorem 3.4 of [28], there are indecomposable
modules Y7 € Ci” and Y3 € CJ such that D = (— Y1) is a full translation
subquiver of a component of vect X and D = (— Y3) is a full translation
subquiver of a component of vect X. Clearly, there is a positive integer s
such that TIZM € Df and TZN € D; for all ¢ > s. Applying now [24,
Proposition 1.10] we obtain Hom (M, 7} N) = Hom (75 M, 7 (7§ N)) =
Hom (74 M, (73 N)) # 0 for r > 0.

(ii) We may assume that N is not injective. It follows from Theo-
rem 4.2(i) that there exists an indecomposable A-module X, € Cy such
that C; = (X, —) is a right stable cone of Cy consisting of modules from
mod_ B, and Tl;q_U = 7, U for any module U € C;. Applying again [28,
Theorem 4.3] we conclude that there is an indecomposable module Y3 € C5
such that D, = (Y2 —) is a full translation subquiver of a component of

vect X[1], and 7y W =7, W = 7 W for any module W € D, . Take a po-
q
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sitive integer s such that Tgt W e Dy forall t > s. Invoking [24, Proposition
1.10] again, we infer that Hom (M, 7, (7,°N)) = Hom(M, 7 '(7,°N)) = 0
fort>0. m

5. Distribution of simple and projective modules

5.1. In this section we are interested in the distribution of simple and
projective modules in the Auslander—Reiten components of selfinjective al-
gebras of wild canonical type. We shall use the notation introduced in Sec-
tion 3. For an almost concealed-canonical algebra B and an admissible infi-
nite cyclic group G of K-linear automorphisms of B, the Auslander—Reiten
quiver I’y of the selfinjective algebra A = B/G is the orbit quiver I'3/G
of the Auslander—Reiten quiver I's, and therefore it is sufficient to investi-
gate the distribution of simple and projective modules in the components
of I B

PROPOSITION. Let B be an almost concealed-canonical algebra. Then:

(i) For each q € Z, Ry contains at least one simple and at least one
projective module.
(ii) 7, contains a simple module if and only if T,—1 and Ty4q contain
projective modules.
(iii) 74 contains a projective module if and only if Ty—1 and Ty1 contain
stmple modules.

Proof. Since the trivial extension B/ (vg) = B x D(B) = A is symmet-

ric, 74 = !2124, and for the push-down functor F/{B : mod B — mod A asso-

ciated to the Galois covering FB : B — E/(ué) we have 24 FP = FP 05,
2, FF =~ FP (25, we deduce that N5(17) = T4, 25(Ry) = R4,
_Qé(’]'qs) = 1}, and 23(Rg,,) for any ¢ € Z. Moreover, for any in-

decomposable projective B-module P we have an Auslander-Reiten se-
quence
0 —rad P — P ®rad P/soc P — P/soc P — 0

and §25(P/soc P) = soc P, 23 (rad P) = top P. Then (ii) and (iii) fol-
low.

For (i) it is enough to show that each R, contains a projective mod-
ule. Suppose there exists p € Z such that R, does not contain a projective
module, and so R, consists of regular components of type ZA,,. Then it
follows from 3.4 that all components of mod_ B, different from the prein-
jective component are regular. Therefore, all injective modules of the almost
concealed-canonical algebra B, lie in its unique preinjective component. But
then B, is a tilted algebra Endy (T') where H is a hereditary algebra and T
is a tilting H-module without nonzero preinjective direct summands. This
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leads to a contradiction because B, is of wild canonical type. This finishes
the proof. =

5.2. Let A = A(p,A) be a canonical algebra of wild type; we identify A
with the convex subcategory A, of A. Then we have /15r =A=A;,. Let
n be the rank of Ko(A). Then it follows that each 72, m € Z, does not
contain a projective module but contains exactly n — 2 simple modules, and
consequently each of 73,41, m € Z, does not contain simple modules but
contains n — 2 projective modules. Moreover, each of the families R, ¢ € Z,
contains exactly one simple and one projective module.

5.3. We shall now exhibit an almost concealed-canonical algebra B such
that all parts 7, and R, of I'5 contain both a simple and a projective module.
Consider the algebra B given by the quiver

Q2
2 ) 9

A

103 B2 g B

’Y‘?x /Yl

4 7

Y2

bound by ajasas + 513203 + 717273 = 0 and 01 = 0. Then B is the one-
point extension of the canonical algebra A of tubular type (3, 3,3), given by
the vertices 1,2,...,8, by an indecomposable A-module lying on the mouth
of a stable tube of rank 3, and consequently B is almost concealed-canonical
of wild type (3,3, 4). Identifying B with B, inside B, we conclude that the
family 7y contains exactly one projective E—module, namely Pz(9). Hence,
each of the families 75,,, m € Z, contains exactly one projective module,
and consequently each of the families 75,,11, m € Z, contains exactly one
simple module. Moreover, Pz(8) lies in Ro, Pz(1) lies in R_1, and Pz(2),
P5(3),..., Pg(7) liein 7_;. Clearly, all parts 7, and R, ¢ € Z, of I'5 contain
both simple and projective modules.

5.4. We now discuss the existence of almost concealed-canonical alge-
bras of wild type such that all families 7, ¢ € Z, of I'y are without pro-
jective (equivalently, simple) modules. Obviously, this never happens for an
almost concealed-canonical but non-concealed-canonical algebra. An equiv-
alent problem is to find a concealed-canonical algebra of wild type whose
unique family of stable tubes does not contain a simple module. The follow-
ing facts proved in [20, Theorem 3, Corollary 4] show that we have plenty
of such algebras.

THEOREM. Let A = A(p, ) be a wild canonical algebra and m a positive
integer. Then there exist infinitely many pairwise nonisomorphic connected
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wild hereditary algebras C and quasi-simple reqular C-modules M such that
the one-point extensions C[M] are concealed-canonical algebras of type A
whose family T of stable tubes has this property: for any indecomposable
module X in T, each simple C[M]-module occurs with multiplicity at least
m as a composition factor of X.

5.5. COROLLARY. For each wild canonical algebra A = A(p, ) there
exist infinitely many pairwise nonisomorphic concealed-canonical algebras
of type A without simple modules in the tubes.

Invoking 3.5 we conclude that for each wild canonical algebra A = A(p, \)
there exist infinitely many pairwise nonisomorphic repetitive algebras B of
canonical type A without simple modules in the families 7;, ¢ € Z, of I';.

5.6. We now present a concrete example of a concealed-canonical al-
gebra of wild type without simple modules in the tubes. Let ¢ > 3 and
let 1 = A3, A4,..., A+ be pairwise distinct nonzero elements of k. Then the
algebra B given by the quiver

1

Y1

T3
. T4 b / 2
o =
T \ "
and bound by the relations
yjri =0 for j #£1,2,14,

nri =Ny fori=3,....¢,
YoTi = Y2 Ty fori,j7 =3,...,t,

is concealed-canonical. In more detail, B is isomorphic to the endomor-
phism algebra of a tilting bundle 7" on the weighted projective line X =
X(2,2,...,2;A) with ¢ points of weight two and the parameter sequence
A = (As,...,\t). Moreover, the ranks of the simple B-modules S(a), S(b),
S(1),...,S5(t) are given by the sequence 1, 1, —1,...,—1. In particular, B
has a family of standard stable tubes.

With the notations from [14] or [24] we define K as the kernel term of
the exact sequence

0 - K Ll @0 om0y o



SELFINJECTIVE ALGEBRAS 267

in coh X. Then it is not difficult to check that K is an exceptional bundle,
and moreover the direct sum of O, K, O(Zy),...,O(#) is a tilting bundle
on X with endomorphism ring isomorphic to B. The remaining claims now
follow easily.

For the construction of further examples of this kind, a special type of
reflections, introduced by Hiibner [18] for the class of concealed-canonical
algebras, is very useful. These reflections allow one, for instance, to con-
struct such examples for each canonical algebra which is minimal wild. In
particular, the preceding example is obtained from the canonical algebra by
just one Hiibner reflection.

5.7. Observe that for a canonical algebra A of wild type, the simple
periodic A-modules lie on the mouth of the stable tubes. This implies that
for any indecomposable projective B-module P with rad P (equivalently,
P/soc P) periodic, rad P and P/soc P lie on the mouth of a stable tube of
FS We shall now exhibit almost concealed-canonical algebras B for which

there are simple periodic modules in B of large stable quasi-length, that is,
lying far from the mouth of the stable tubes of FE. Let Ry, n > 0, be the
algebra given by the quiver

o 2 4 2n—2
Oy 6& cy o2 03 AN 027 \02:
1 U2n
° o 1 3 2n—1 2n+1
B2
a2\ g, /72

©)

bound by ajas + 816203 + 7172 = 0 and o179 = 0. Then, for n > 3, R,
is an almost concealed-canonical algebra of wild type (2, 3,2n + 2), being
the corresponding tubular extension of the canonical algebra Ry. Fix n > 3
and put B = R,,. Then, identifying B with B inside §, we conclude that
the family 7y contains a quasi-tube depicted on the next page and hence
sql(S(2r +1)) = (2n+2) — (2r + 1) and sql(rad P(2r)) = (2n + 2) — 2r for
r=0,1,...,n. In particular, sql S(1) = 2n + 1 and sql(rad P(2)) = 2n. We
also note that Ko(B) is of rank 2n + 6.

5.8. Finally, we shall discuss the distribution of simple modules and
projective modules in the components of I'; with stable part ZA. In order
to state the result we need an invariant introduced in [24, Section 10]. We say
that B, or the corresponding canonical algebra A = A(p, ), p = (p1,.--,pt),
has Dynkin label A € {Dy,Eg,E7,Eg} if the extended Dynkin diagram Alis
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a subtree of the star [pi,...,p;] with ¢ arms of length p; (1 < ¢ < ¢), and
moreover, the number of vertices of A is minimal. For instance, the weight
types (2,2,2,3), (3,3,4), (2,4,5) and (2,3,7) lead to Dynkin labels Dy, Eg,
E7 and Eg, respectively.

PROPOSITION. Let A be a selfinjective algebra of wild canonical type
A= A(p,A), S a simple A-module lying in a component of I'y whose stable
part is ZA~, and P the projective cover of S. Then sql(S) = sql(rad P) is
bounded by 2,3,4 or 6 according as the Dynkin label of A (or A) equals Dy,
Eg, E; or Eg, respectively.
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Proof. Let n = sql(S). Note that S corresponds to an object from a
ZAo-component C of DP(mod A) having quasi-length n and trivial endo-
morphism ring. An argument of [40] yields an exceptional object in C of
quasi-length n — 1. The claim now follows from [24, Corollary 10.5]. =

We note that for any positive integer n > 3 there exists a selfinjective
algebra A of wild tilted type whose Auslander—Reiten quiver I'4 admits a
component C with stable part ZA , and containing a simple module of stable
quasi-length n — 2 (see [12, 5.7]).

6. Growth numbers of modules

6.1. Let A be an algebra and Pi,..., P, a complete set of pairwise
nonisomorphic indecomposable projective A-modules. The Cartan matriz
Cy of A is the n x n integral matrix whose (i, j)-entry is dim g Hom 4 (P}, Pj).
Assume now that gl.dim A < oo. Then Cj4 is invertible over Z and Czt
defines a bilinear form (—,—)4 on Ko(A) given by (z,y) = 2C,'y’ for
z,y € Kg(A). Then we have an integral quadratic form y 4 on Kg(A), called
the Euler form of A, given by xA(z) = (z,z)4 for any = € Kg(A). The

bilinear form (—, —) 4 has a well-known homological interpretation [33]:
(dim X, dimY) = ) *(—1)" dimg Ext}y(X,Y)
i>0
for all modules X and Y from mod A. The matrix &4 = —CZtCA is
called the Cozxeter matriz of A. If I,..., I, are the injective envelopes of
the tops 51,...,S, of the projective modules P, ..., P,, respectively, then
(dim P;))®@4 = —dimI; for any 1 < i < n. The characteristic polynomial

PA(T) = det(®4 — T1) of A is called the Cozeter polynomial of A. The
roots of P4(T) form the set Spec(®4) of eigenvalues of @4, called the spec-
trum of @ 4. Moreover, p4 = max{|A| | A € Spec(®4)} is called the spectral
radius of A. The radical rad x4 of x4 is equal to {z € Ko(A) | 284 = z}
(see [33]).

6.2. Let A = A(p,A) be a wild canonical algebra with the weight se-
quence p = (p1,...,p:) and parameter sequence A = (Aq,...,At). Then it is
well known [24] that the Coxeter polynomial of A is of the form

t

PAT) = (T -1)*]]

=1

T — 1
T-1"

and consequently o4 = 1. Moreover, the radical of x4 has rank one.

6.3. For an algebra A and an indecomposable A-module M we may
define the left growth number oy (M) = limsup,,_,, {/dimg 7% M and sim-

ilarly the right growth number o,(M) = limsup,_ . Vdimg 77" M. If
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04(M) = ¢} (M) we denote this number by pa(M) and call it the growth
number of the module M. Observe that if M is 74-periodic then p4 (M) = 1.
We have the following facts on the growth number of indecomposable mod-
ules over wild canonical algebras, proved in [24, Theorem 6.1].

THEOREM. Let A = A(p, ) be a wild canonical algebra and Agy be the
path algebra of the wild star obtained by removing the unique source from
the quiver Q4. Then:

(i) For each stable nonperiodic indecomposable A-module M  from
mody A, there exist positive integers a;\“/[ and ay; such that
dimg 71 M
lim S TATE aj\%, lim ————— =a,,.
n—oo n n—oo 9/10
In particular, QX(M) =1< 04, = 04 (M).
(ii) For each stable monperiodic indecomposable A-module M  from
mod_ A, there exist positive integers b1\+/1 and by, such that
dimg 7} M

lim = bX/[v lim
n—00 Q?lo n—00 n

In particular, QX(M) =04y > 1 =0,(M).

6.4. It follows from the above theorem that for any stable nonperiodic
indecomposable module M over a wild canonical algebra A, the growth
number does not exist. The following theorem shows that the situation is
different for selfinjective algebras of wild canonical type.

THEOREM. Let A be a selfinjective algebra of wild canonical type and let
M be a nonprojective indecomposable A-module. Then pa(M) = 1.

Proof. Let A = B /G for an almost concealed-canonical algebra B of
wild type and G a torsion-free admissible group of K-linear automorphisms
of B. Since the push-down functor FB . mod B — mod B/G = mod A is
dense and preserves projective modules, we have M = F)’\B (N) for some non-
projective indecomposable B-module N. Moreover, Ff (t5X) =74 F/{B (X),
F)\B(Té X) =1, FP(X), and dimg FZ(X) = dimg X for any indecompos-

able B-module X. Therefore, it is enough to prove that

limsup »/dimg Tg N =1=limsup {/dimg Té" N.
n—oo n—oo

Clearly, we may assume that IV is nonperiodic, say N belongs to a compo-
nent C of R, for some ¢ € Z.

It follows from Theorem 4.1 that there exists a positive integer s such
that the cone C* = (— 2N ) of C is left stable and consists of modules
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from mod B;H, the cone C~ = (TésN —) of C is right stable and con-

sists of modules from mod_ B, , and 7AU = 7o+ U, 7,V = 7__V for all
q Bl A By

modules U € CT and V € C~. Further, there exist indecomposable mod-
ules Y € CT and Z € C~ such that the left stable cone DT = (— Y) of
C™T is a full translation subquiver of a component of vect X, the right stable
cone D~ = (Z —) of C is a full translation subquiver of a component of
vect X[1], and 7AW = x W, 7, X = 7o X for any W € D" and X € D™,
where X = X(p, ) is the corresponding weighted projective line. Finally,
applying [24, Theorem 6.3] and its dual, we conclude that there exist in-
decomposable modules M+ = TN € Dt and M~ = TETN € D, for
some positive integer r > s, such that the left stable cone £T = (— M™T)
is a full translation subquiver of a component of mod; A(p, ), the right
stable cone £~ = (M~ —) is a full translation subquiver of a component
of mod_ A(p, ), and 74V = 7pp 0V, T, U = TapnU for any V € €1 and
U € £ . Therefore, it follows from 6.3 that there is a positive integer a
such that dimg 7{' N < am and dimg 7, N < am for m > 0. Clearly, this
implies o} (N) =1 = ¢ (N), and hence p4(M) =1. =

We note that for any indecomposable nonprojective module M over a
selfinjective algebra A of wild tilted type A we have g4 (M) = oy > 1,
where pp is the spectral radius of H = KA (see [12, Theorem 7.3]).

7. Complexity of modules and Ext-algebras. The aim of this sec-
tion is to discuss the complexity of indecomposable modules and the Ext-
algebras of indecomposable modules over symmetric algebras of wild canon-
ical type.

7.1. We say that an N-graded K-vector space V = @, . Vi has poly-
nomial growth if there are a nonnegative integer ¢ and a nonzero constant
p such that dimg V,, < un~1 for n > 0. If these exist, then the smallest
such c is denoted by v(V') and called the rate of growth of V. If V is not of
polynomial growth we set (V') = oc.

7.2. Let A be an algebra, M an A-module, and consider a minimal
projective resolution

() . Py —-P,—...>PL—>FP—M-—0

of M in mod A. If v(€P,,cx Pn) < oo then following [1] we set ca(M) =
Y(D,en Pr) and call it the complexity of M.

7.3. Let A be a selfinjective algebra, M an A-module, and let

Ext’y (M, M) = @) Ext’} (M, M)
neN
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be the Ext-algebra of M endowed with the Yoneda multiplication. Assume
caA(M) exists. Then y(Ext’ (M, M)) exists as well and is bounded by c4 (M)
(see [12, 9.3]).

Indeed, observe that Ext’(M,M) = Hom,(£2%(M), M). Applying
Hom(—, M) to the minimal projective resolution () of M we get the in-
equalities

dimpg Ext’y (M, M) < dimg Hom 4 (2% (M), M) < dimgx Hom4 (P, M).
Further,
dim g Homy (P, M) < (dimg P,)(dimg M) < (dimg M)unc*

for ¢ = ca(M), a constant p, and n > 0, and hence y(Ext* (M, M)) <
ca(M). Note also that if M is an A-module with % M = M for some r > 1,
then c4(M) = 1. Obviously, ca(M) = 0 if and only if M is projective.

THEOREM. Let A be a symmetric algebra of wild canonical type, and M
an indecomposable A-module. Then v(Exty (M, M)) = ca(M) < 2. More-
over, cA(M) = 2 if M is nonperiodic and nonprojective.

Proof. 1t follows from the above remarks that v(Ext (M, M)) < ca(M).
Moreover, it is clear that v(Ext% (M, M)) = ca(M) = 0 if M is projective
and y(Ext%(M,M)) = ca(M) = 1 if M is periodic. Assume M is non-
periodic and nonprojective. We shall prove that c4(M) < 2. Since A is
symmetric we have 74 = £2%. Consider a minimal projective resolution

=P —-PFP—...oP—>FP—-M-—0
of M in mod A. Then dimg P, = dimg 24 M + dimg QZHM. Put N =
%M. For n = 2m, we get dimg Pop1 = dimg 70 M + dimg TA”HN,
and for n = 2m + 1, dimg Poypq1 = dimg 74'N + dimg 7){' M. Further, it
follows from 6.4 and its proof that there is a positive integer a such that
dimg 7{'M < am and dimg 70' N < am for m > 0. This implies that
ca(M) < 2. It remains to show that v (Ext% (M, M)) > 1. Observe that
Ext?™ (M, M) = Ext!y (%™, M) = Ext! (77 M, M)
=~ D Hom 4 (M, 77+ M)

and dimg D Hom 4 (M, 77" M) = dimx Hom(M, 74" M) is unbounded by
[24, Theorem 4.1]. Therefore, v(Ext% (M, M)) > 1, and this finishes the
proof. m

We note that if A is a symmetric algebra of wild tilted type and M a
nonprojective indecomposable A-module then the complexity ¢4 (M) does
not exist (see [12, Theorem 9.4]).

7.4. We are now interested in the structure of algebras Ext’ (M, M) for
indecomposable modules over a symmetric algebra A of wild canonical type.
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Let A be a selfinjective algebra and M an indecomposable nonprojective
A-module. For each n > 1 we have isomorphisms

Hom 4 (£ M, M) = Ext’j (M, M) = Hom 4 (M, £2," M).
We shall also consider the subalgebra

Ext% (M, M) = €D Ext}"(M, M)
meN
of Ext* (M, M) called the even part of Ext* (M, M). We also recall from 3.12
that the class of proper symmetric algebras of wild canonical type coincides
with the class of trivial extensions B x D(B) of almost concealed-canonical
algebras of wild type.

THEOREM. Let A be a proper symmetric algebra of wild canonical type,
and M an indecomposable nonprojective nonperiodic A-module. Then:

(i) ExtY (M, M) is a finite-dimensional K -algebra.
(ii) Ext3™ (M, M) - Exty ™ (M, M) = 0 for m,r > 0.
In particular, rad Ext® (M, M) is nilpotent.
Proof. 1t follows from Corollary 4.3 that
Ext3" (M, M) = Hom (M, 2, M) = Hom, (M, 7™ M) =0

for m > 0, and then the claim follows. =
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