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SELFINJECTIVE ALGEBRAS OF WILD CANONICAL TYPE

BY

HELMUT LENZING (Paderborn) and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract. We develop the representation theory of selfinjective algebras which admit
Galois coverings by the repetitive algebras of algebras whose derived category of bounded
complexes of finite-dimensional modules is equivalent to the derived category of coherent
sheaves on a weighted projective line with virtual genus greater than one.

Introduction. In this paper, by an algebra we mean a finite-dimension-
al basic connected algebra (associative, with an identity) over an alge-
braically closed field K. For an algebra Λ we denote by modΛ the category
of finite-dimensional right Λ-modules and by D : modΛ → modΛop the
standard duality HomK(−,K). If all projective modules in modΛ are in-
jective, then Λ is called selfinjective. The classical examples of selfinjective
algebras are provided by the blocks of group algebras KG of finite groups G,
or more generally by the Hopf algebras. An important class of selfinjective
algebras is formed by the algebras of the form B̂/G, where B̂ is the repetitive
algebra [19] (locally finite-dimensional, without identity)

B̂ =




. . .
. . .

Qm−1 Bm−1

Qm Bm

Qm+1 Bm+1

. . .
. . .




of an algebra B, where Bm = B and Qm = D(B) for all m ∈ Z, all

the remaining entries are zero, the matrices in B̂ have only finitely many
nonzero elements, addition is the usual addition of matrices, multiplica-
tion is induced from the B-bimodule structure of D(B) and the zero map
D(B)⊗B D(B)→ 0, and G is an admissible group of K-linear automor-

phisms of B̂. The identity maps Bm → Bm+1 and Qm → Qm+1 induce an

automorphism ν
B̂

of B̂, called the Nakayama automorphism of B̂. Then the
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quotient B̂/(ν
B̂

) is the trivial extension B nD(B) of B by D(B). We note

that if B is of finite global dimension then the stable module category mod B̂
of mod B̂ is equivalent, as a triangulated category, to the derived category
Db(modB) of bounded complexes over modB (see [16]).

Selfinjective algebras of the form B̂/G with B a tilted algebra are called

selfinjective algebras of tilted type, and their module categories mod B̂/G
have been extensively investigated (see [2], [9], [12], [19], [31], [32], [34],
[37]–[39]). It is also known that the class of selfinjective algebras of tilted

type coincides with the class of selfinjective algebras B̂/G given by all finite-
dimensional algebras B whose derived category Db(modB) is equivalent to
the derived category Db(modH) of a hereditary algebra H (see [31]).

In this paper we are interested in the representation theory of the self-
injective algebras B̂/G given by finite-dimensional algebras B whose derived
category Db(modB) is equivalent, as a triangulated category, to the derived
category Db(modΛ) of a canonical algebra Λ. We call such selfinjective
algebras selfinjective algebras of canonical type. The canonical algebras Λ =
Λ(p, λ), depending on a weight sequence p = (p1, . . . , pt) and a parameter
sequence λ = (λ1, . . . , λt) of pairwise distinct elements of the projective
line over K, were introduced and studied in [33]. The finite-dimensional
representation theory of Λ is completely controlled by the category cohX
of coherent sheaves on a nonsingular weighted projective line X = X(p, λ),
since the derived categories Db(modΛ) and Db(cohX) are equivalent as
triangulated categories [14]. The curve X thus attached to Λ has (virtual)
genus

gX = 1 +
1

2

(
(t− 2)p−

t∑

i=1

p

pi

)
,

where p = lcm(p1, . . . , pt). The complexity of the classification problem for
cohX, equivalently for modΛ, is essentially determined by gX.

For gX < 1, the algebra Λ is concealed of extended Dynkin type; ac-
cordingly the classification problems for cohX and modΛ are equivalent
to the classification of indecomposable finite-dimensional modules over a
tame hereditary algebra [14], [21] or, according to [15], closely related to the
classification problem for indecomposable Cohen–Macaulay modules over a
simple surface singularity. For gX = 1, the algebra Λ is of tubular type, its
representation theory is known from [33] while the classification problem
for cohX [14], [22] relates to Atiyah’s classification [5] of vector bundles
over an elliptic curve. For gX > 1, the algebra Λ is wild and its module
category modΛ has been investigated in [24]. Moreover, as shown in [21],
for the base field of complex numbers, the category of vector bundles on
X is equivalent to the category of Z-graded Cohen–Macaulay modules over
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the algebra of entire automorphic forms attached to a Fuchsian group of
signature (0; p1, . . . , pt; 0).

The representation theory of selfinjective algebras of canonical type Λ =
Λ(p, λ) with X = X(p, λ) of genus gX ≤ 1 has been established in [2], [6],
[7], [29], [34]. The object of our study in this paper is the class of remaining
selfinjective algebras of canonical type, called selfinjective algebras of wild
canonical type.

1. Preliminaries

1.1. Throughout this paper K will denote a fixed algebraically closed
field. By an algebra we mean an associative finite-dimensional K-algebra,
which we shall assume (without loss of generality) to be basic and connected.
For such an algebra A there exists an isomorphism A ∼= KQ/I where KQ is
the path algebra of the ordinary quiver Q = QA of A and I is an admissible
ideal of KQ. If the quiver QA has no oriented cycles then A is said to be
triangular. For an algebra A, we denote by modA the category of finite-
dimensional (over K) right A-modules and by indA its full subcategory of
indecomposable modules. For each vertex i of Q = QA, we shall denote by
SA(i) the simple A-module at i, by PA(i) the projective cover of SA(i), and
by IA(i) the injective envelope of SA(i) in modA.

1.2. We shall denote by ΓA the Auslander–Reiten quiver of A, and by
τA and τ−A the Auslander–Reiten translations DTr and TrD, respectively.
We shall identify the vertices of ΓA with the corresponding indecomposable
A-modules. By a component of ΓA we mean a connected component of ΓA.
A vertex X of ΓA is said to be left stable (respectively right stable) if τnAX is
defined for all integers n ≥ 0 (respectively n ≤ 0). Further, X is said to be
stable if τnAX is defined for all integers n. Moreover, X is said to be periodic
if X ∼= τnAX for some n ≥ 1. For a component C of ΓA we denote by Cs

the stable part of C obtained from C by removing all the nonstable modules
and the arrows attached to them. A component of ΓA of the form ZA∞ or
ZA∞/(τ r) is called quasi-serial. Similarly, a component C of ΓA with Cs ∼=
ZA∞ or Cs ∼= ZA∞/(τ r) is said to be stably quasi-serial. A stable module X
in a stably quasi-serial component C of ΓA is said to be stably quasi-simple
provided it has exactly one immediate predecessor (equivalently, exactly one
immediate successor) in Cs. For such a module X, there are infinite sectional
paths

. . .→ [r]X → [r − 1]X → . . .→ [2]X → [1]X = X

and

X = X[1]→ X[2]→ . . .→ X[r − 1]→ X[r]→ . . .

in Cs. Then any module M in Cs is of the form τ iA [r]X (equivalently, τ iAX[r])
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for some i ∈ Z and some r ≥ 1, and r is said to be the stable quasi-length
of τ iA[r]X, denoted by sql(M). Hence sql([r]X) = r = sql(X[r]).

If C is quasi-serial then we write ql(M) instead of sql(M) and call it the
quasi-length of M . Moreover, in such a case, a module X in C with ql(X) = 1
is said to be quasi-simple. For a module X in a component C of ΓA we denote
by (→ X) the full translation subquiver of C formed by all the predecessors
of X in C. Dually, (X →) denotes the full translation subquiver of C formed
by all successors of X in C.

1.3. Let A be a selfinjective algebra, that is, AA ∼= D(A)A. If A and
D(A) are isomorphic as A-bimodules, the algebra A is said to be sym-
metric. We shall denote by modA the stable category of modA. Recall
that the objects of modA are the objects of modA without projective di-
rect summands, and for any two objects M and N of modA the space
of morphisms from M to N in modA is the quotient HomA(M,N) =
HomA(M,N)/P (M,N), where P (M,N) is the subspace of HomA(M,N)
consisting of all morphisms which factor through projective A-modules. We
have two mutually inverse functors τA, τ

−
A : modA

∼→ modA, called the
Auslander–Reiten translations. We shall also consider Heller’s loop and sus-
pension functors ΩA, Ω

−
A : modA

∼→ modA. If A is symmetric then τA = Ω2
A

and τ−A = Ω−2
A .

Observe that if C is an infinite component of ΓA then Cs is obtained from
C by removing all projective modules in C, and consequently Cs is also con-
nected. Moreover, ΩA(Cs) and Ω−A (Cs) are stable parts of some components
in ΓA. Following [35] we say that a family C of connected components of
ΓA is generalized standard if rad∞A (X,Y ) = 0 for all indecomposable mod-
ules X and Y from C. Similarly, a family D of connected components of the
stable Auslander–Reiten quiver Γ s

A of A is said to be stably generalized stan-
dard if rad∞A (X,Y ) = 0 for all indecomposable modules X and Y from D.
Here, by rad∞A (X,Y ) (respectively, rad∞A (X,Y )) we mean the intersection
of all positive powers of the radical radA(X,Y ) (respectively, stable radical
radA(X,Y )).

2. Derived categories

2.1. Let Λ = Λ(p, λ) be a canonical algebra and X = X(p, λ) be the as-
sociated weighted projective line. By a derived canonical algebra of type Λ
(or X) we mean an algebra B whose derived category Db(modB) of bounded
complexes over modB is equivalent, as a triangulated category, to the de-
rived category Db(modΛ) of bounded complexes over modΛ, or equivalently
[14] to the derived category Db(cohX) of coherent sheaves over X. A special
case are the concealed-canonical (respectively, almost concealed-canonical)
algebras of type Λ, or X, defined as the endomorphism algebras of tilting
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bundles (respectively, tilting sheaves) on X, or equivalently as the endomor-
phism algebras of tilting modules T over the canonical algebra Λ, where T
is built from indecomposable modules of strictly positive rank (respectively,
modules of nonnegative rank). We recall that modΛ, cohX and Db(modΛ)
have the same Grothendieck group K0(Λ) = K0(X) = K0(Db(modΛ)).
Moreover, the rank is the unique additive function rk : K0X → Z which
is surjective and nonnegative for (classes of) members of cohX. We also
need the degree deg : K0X → Z which is also Z-linear, maps the class [O]
of the structure sheaf to zero and is positive on simple sheaves; for further
information on rank and degree we refer to [14, 24].

The property of being derived canonical (respectively, concealed-canon-
ical) is preserved when passing from B to its opposite algebra, whereas the
corresponding statement holds for an almost concealed-canonical algebra
if and only if it is already concealed-canonical. If Λ is wild (respectively,
tame) then a derived canonical algebra B of type Λ is said to be of derived
wild (respectively, derived tame) type. The representation-infinite derived
canonical algebras of derived tame type are completely described in [3],
whereas information on derived canonical algebras of derived wild type is
much less complete. In fact, no classification of concealed-canonical algebras
of wild canonical type is known.

2.2. Following [26] by a quasi-tilted algebra of canonical type Λ = Λ(p, λ)
we mean an algebra B that can be realized as the endomorphism algebra
of a tilting object for a hereditary abelian K-category H with Db(H) ∼=
Db(modΛ). It is known [17] that then B is of global dimension at most
two and every indecomposable (finite-dimensional) B-module has projective
dimension at most one or injective dimension at most one. Clearly, every
quasi-tilted algebra of canonical type is derived canonical. Moreover, the
class of quasi-tilted algebras of canonical type contains the almost concealed-
canonical algebras and their opposites.

The almost concealed-canonical algebras (respectively, quasi-tilted al-
gebras of canonical type) are those algebras which can be obtained from
concealed-canonical algebras by tubular branch extensions (respectively,
semiregular branch enlargements; see [23], [26]). Further, the concealed-
canonical algebras (respectively, almost concealed-canonical algebras, quasi-
tilted algebras of canonical type) are exactly the algebras whose module cat-
egory admits a sincere separating family of stable tubes (respectively, ray
tubes, semiregular tubes) by the corresponding results of [25], [23], [26]. For
details and the representation theory of quasi-tilted algebras of canonical
type we refer to [23], [26], [28], [36].

2.3. In our investigation of selfinjective algebras of wild canonical type
we need a description of the module category of an almost concealed-canon-
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ical algebra of wild type. Let X = X(p, λ) be a weighted projective line of
wild type, T a tilting sheaf on X, and B = End(T ) the associated almost
concealed-canonical algebra. Let coh+(T ) (respectively, coh+

0 (T )) be the full
subcategory of the category vectX of vector bundles on X (respectively, the
category coh0X of coherent sheaves on X of finite length) consisting of all
F satisfying the condition Ext1(T, F ) = 0. Similarly, we denote by coh−(T )
(respectively, coh−0 (T )) the full subcategory of vectX (respectively, coh0(T ))
consisting of all F satisfying the condition Hom(T, F ) = 0.

Furthermore, let coh≥(T ) (respectively, coh≤(T )) be the additive closure
of coh+(T )∪ coh+

0 (T ) (respectively, coh−(T )∪ coh−0 (T )). Invoking now [23,
Theorem 5.1] and the identification Db(modB) = Db(cohX), we conclude
that each indecomposable B-module is in one of the four parts of the mod-
ule category of modB, denoted respectively by mod+B, mod+

0 B, mod−B,
mod−0 B, corresponding under the above identification to coh+T , coh+

0 T ,
coh−T [1], coh−0 T [1], respectively. Moreover, for an indecomposable module
M we have:

(a) M ∈ mod+B ⇔ rkM > 0,
(b) M ∈ mod+

0 B ⇔ rkM = 0 and deg M > 0,
(c) M ∈ mod−B ⇔ rkM < 0,
(d) M ∈ mod−0 B ⇔ rkM = 0 and deg M < 0.

Further, in the ordering mod+B, mod+
0 B, mod−B, mod−0 B there are no

nonzero morphisms from right to left. We denote by mod≥B (respectively,
mod≤B) the additive closure of mod+B ∪mod+

0 B (respectively, mod−B ∪
mod−0 B).

Then the indecomposable projective B-modules lie in mod≥B, the in-
decomposable injective modules lie in mod≤B, and mod+

0 B is the additive
closure of a P1(K)-family of ray tubes, separating mod+B from mod≤B.
Further, each component of mod+B (respectively, mod≤B) different from
the preprojective (respectively, preinjective) component is of type ZA∞ or
obtained from ZA∞ by ray (resp. coray) insertions. Finally, for each com-
ponent C of mod≤B different from the preinjective component there is an
indecomposable B-module Z in C such that the τ−B -cone (Z →) in C is a full
translation subquiver of a component in (vectX)[1], and this establishes a
bijection between the set of connected components of mod−B and the set of
connected components of vectX (see [28, Theorem 3.4, Corollary 6.6]). We
have a dual description for the module category modBop for the opposite
algebra Bop.

2.4. We end this section with some examples of algebras discussed be-
fore. Consider the algebras given by the following bound quivers:
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B1 : B2 : B3 :

7

8 9

1 3

2

6

54

10 11 12

13

% ω

σ

α2 α1

β1β2 γ1γ3

ψ

ϕ

ξ η
γ2

7

8

7

1 3

2

6

54

9

10 11 12

13

% ω

σ

α2 α1

β1β2
γ1γ3

ξ
γ2

ν

θ

ι

7

8 9

1 3

2

6

54

10 11 12

13

% ω

σ

α2 α1

β1β2
γ1γ3

ψ

ϕ

η
γ2

µ

α1α2 + β1β2 + γ1γ2γ3 = 0, α1α2 + β1β2 + γ1γ2γ3 = 0, α1α2 + β1β2 + γ1γ2γ3 = 0,

%ω = 0, γ2ξ = 0, ηγ2 = 0, %ω = 0, γ2ξ = 0, γ1ν = 0, %ω = 0, µγ3 = 0, ηγ2 = 0

and the canonical algebra Λ of wild type (5, 2, 7) given by the quiver

α5

α4 α3 α2

α1

β1β2

γ1

γ2γ3γ4γ5γ6

γ7

bound by α1α2α3α4α5 + β1β2 + γ1γ2γ3γ4γ5γ6γ7 = 0. The algebras B1, B2,
B3 are suitable branch enlargements of the concealed canonical algebra C
of type (2, 2, 3) formed by the arrows α1, α2, β1, β2, γ1, γ2, γ3, and with the
relation α1α2 + β1β2 + γ1γ2γ3 = 0. According to [23], [26], B3 is an almost
concealed-canonical algebra of type Λ, B2 is quasi-tilted of canonical type Λ
but not almost concealed-canonical, B1 is not quasi-tilted of canonical type,
but is derived canonical of type Λ. In fact, as we will see in 3.2, B1, B2 and
B3 have isomorphic repetitive algebras.

3. Selfinjective algebras of wild canonical type

3.1. Let B be an algebra and {ei | 1 ≤ i ≤ n} be a complete set of
primitive orthogonal idempotents of B such that 1 = e1 + . . .+ en. Then we
have the associated set {em,i | m ∈ Z, 1 ≤ i ≤ n} of primitive orthogonal
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idempotents of the repetitive algebra B̂ of B such that em,1 + . . .+ em,n is
the identity of Bm, and ν

B̂
(em,i) = em+1,i for any m ∈ Z, 1 ≤ i ≤ n. We

may consider B̂ as a locally bounded K-category with the objects em,i for
(m, i) ∈ Z× {1, . . . , n} and with morphisms given by

Hom
B̂

(em,i, er,j) = Hom
B̂

(em,iB̂, er,jB̂) = er,jB̂em,i.

Note that the modules PB̂(m, i) = em,iB̂, (m, i) ∈ Z × {1, . . . , n}, form

a complete set of pairwise nonisomorphic indecomposable projective B̂-
modules. A group G of K-linear automorphisms of (the category) B̂ is said
to be admissible if G acts freely on the set {em,i | (m, i) ∈ Z × {1, . . . , n}}
and has finitely many orbits. Then the orbit algebra B̂/G (see [13]) is a
(finite-dimensional) selfinjective algebra, and we have a canonical Galois

covering FB : B̂ → B̂/G with group G. In particular, the infinite cyclic
group (ν

B̂
) generated by the Nakayama automorphism ν

B̂
is admissible,

and B̂/(ν
B̂

) is isomorphic to the trivial extension B nD(B) of B by D(B).
Recall that B nD(B) is the symmetric algebra whose additive structure is
that of the vector space B ⊕ D(B) and whose multiplication is defined by
(a, f)(b, g) = (ab, ag + fb) for any a, b ∈ B and f, g ∈ D(B).

3.2. Assume B is a triangular algebra. For a sink i ∈ QB, the reflection
S+
i B of B at i is the quotient of the one-point extension B[IB(i)] by the

two-sided ideal generated by ei (see [19]). The quiver σ+
i QB of S+

i B is called
the reflection of QB at i. Observe that the sink i of QB is replaced in σ+

i QB
by a source i′. Dually, starting from a source j of QB, we define the reflection
S−j B of B at j as the quotient of the one-point coextension [PB(j)]B by the

two-sided ideal generated by ej . The quiver σ−j QB of S−j B is called the

reflection of QB at j, and the source j of QB is replaced in σ−j QB by a sink

j′. For a sink i (respectively, source j) of QB, we have S−i′ S
+
i B
∼= B and

Ŝ+
i B
∼= B̂ (respectively, S+

j′S
−
j B
∼= B and Ŝ−j B

∼= B̂). A reflection sequence
of sinks of QB is a sequence i1, . . . , it of vertices of QB such that is is a
sink of σ+

is−1 . . . σ
+
i1
QB for 1 ≤ s ≤ t. Dually, a reflection sequence of sources

of QB is a sequence j1, . . . , jt of vertices of QB such that js is a source of
σ−js−1 . . . σ

−
j1
QB for 1 ≤ s ≤ t.

For example, if B1, B2, B3 are the algebras considered in 2.3, then B1 =
S+

13S
+
11B2 and B3 = S+

10B1, and in particular we have B̂1
∼= B̂2

∼= B̂3.

3.3. We may now define the main object of our study in this paper.

Definition. A selfinjective algebra A = B̂/G, where B is a derived
wild derived canonical algebra and G is an admissible torsion-free group of
K-linear automorphisms of B̂, is said to be a selfinjective algebra of wild
canonical type.
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3.4. Let Λ = Λ(p, λ) be a wild canonical algebra with p = (p1, . . . , pt),
X = X(p, λ) the weighted projective line attached to Λ, and B a derived

canonical algebra of type Λ. Since mod B̂ ∼= mod Λ̂ ∼= Db(cohX), we infer

that the Auslander–Reiten quiver Γ
B̂

of B̂ is of the form

(∗) Γ
B̂

=
∨

q∈Z
(Tq ∨Rq),

where, for each q ∈ Z, Tq is a family Tq,λ, λ ∈ X, of standard quasi-tubes
whose stable part is a family of stable tubes of tubular type p = (p1, . . . , pt),
and Rq is a family (of cardinality cardK) of components whose stable
parts are of the form ZA∞. Further, ν

B̂
(Tq) = Tq+2, ν

B̂
(Rq) = Rq+2,

Hom
B̂

(Rq, Tq) = 0 for any q ∈ Z, and also Hom
B̂

(Tp ∨Rp, Tq ∨Rq) = 0 for
any p > q. Moreover, each quasi-tubular family Tq separates

∨
s<q(Ts ∨Rs)

from Rq ∨
∨
t>q(Tt ∨ Rt). For each q ∈ Z, we denote by Pq the fam-

ily of all projective (equivalently, injective) B̂-modules from Tq, and de-
fine T +

q = Tq ∩ P⊥q and T −q = Tq ∩ ⊥Pq, where P⊥q and ⊥Pq denote
the right (respectively, left) perpendicular category in the sense of [15].
Clearly, T +

q = (T +
q,λ)λ∈X and T −q = (T −q,λ)λ∈X, with T +

q,λ = Tq,λ ∩ P⊥q and

T −q,λ = Tq,λ ∩ ⊥Pq.
The following theorem gives a more complete information on the struc-

ture of mod B̂.

Theorem. There exist algebras B−q and B+
q , q ∈ Z, such that , in the

above notation, the following statements hold :

(i) For each q ∈ Z, B−q is a convex almost concealed-canonical subcat-

egory of B̂ of canonical type Λ, and T −q is the unique family of ray tubes
in ΓB−q .

(ii) For each q ∈ Z, (B+
q )op is almost concealed-canonical of type Λ, B+

q

is a convex subcategory of B̂, and T +
q is the unique family of coray tubes

in ΓB+
q

.

(iii) For each q ∈ Z, B̂−q = B̂ = B̂+
q , ν

B̂
(B−q ) = B−q+2 and ν

B̂
(B+

q )

= B+
q+2.

(iv) There exists a reflection sequence of sinks i1, . . . , ir, ir+1, . . . , is,
is+1, . . . , it, it+1, . . . , in of QB+

0
, where n is the rank of K0(B+

0 ) ∼= K0(Λ),

such that B−0 = S+
ir
. . . S+

i1
B+

0 , B+
1 = S+

is
. . . S+

ir+1
B−0 , B−1 = S+

it
. . . S+

is+1B
+
1

and B+
2 = S+

in
. . . S+

it+1B
+
1 .

(v) For each q ∈ Z, the supports of indecomposable B̂-modules from Tq
are contained in the convex subcategory Dq of B̂ given by the objects of B+

q

and B−q .
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(vi) For each q ∈ Z, the supports of indecomposable B̂-modules from Rq
are contained in the convex subcategory D′q of B̂ given by the objects of B−q
and B+

q+1.

Proof. Fix q ∈ Z. Since Tq = (Tq,λ)λ∈X is a family of standard quasi-
tubes, it follows from [4] that Cq = Tq ∩ ⊥Pq ∩P⊥q is a standard family Cq,λ,
λ ∈ X, of stable tubes such that Tq is obtained from Cq by a sequence of
admissible operations of types (ad 1), creating the standard family of ray
tubes T −q = Tq ∩ ⊥Pq, and then by a sequence of admissible operations of
type (ad 2∗). Equivalently, Tq is obtained from Cq by a sequence of admissible
operations of types (ad 1∗), creating the standard family of coray tubes T +

q =

Tq ∩ P⊥q , and then by a sequence of admissible operations of type (ad 2).
Further, since Tq separates

∨
s<q(Ts ∨ Rs) from Rq ∨

∨
t>q(Tt ∨ Rt), we

deduce from [25] that the support algebra Λq of Cq is a concealed-canonical
algebra. Therefore, the support algebra B−q of T −q is a branch extension of
Λq, and so B−q is an almost concealed-canonical algebra, by [23], [26]. Du-
ally, the support algebra B+

q of T +
q is a branch coextension of Λq, and hence

(B+
q )op is almost concealed-canonical. Observe also that both B+

q and B−q
are convex subcategories of B̂, and the support algebra Dq of Tq is a convex
subcategory formed by the objects of B+

q and B−q . Since ν
B̂

(Tq) = Tq+2 for

any q ∈ Z, we may choose the algebrasB−q andB+
q such that ν

B̂
(B−q ) = B−q+2

and ν
B̂

(B+
q ) = B+

q+2 for any q ∈ Z.
Denote by Ω the set {1, . . . , n} of vertices of QB+

0
. We may write Ω as a

disjoint union Ω = ΩT0 ∪ΩR0 ∪ΩT1 ∪ΩR1 , where ΩT0 = {i ∈ Ω | P
B̂

(ν
B̂

(i))
∈ T0}, and similarly ΩR0 = {i ∈ Ω | P

B̂
(ν
B̂

(i)) ∈ R0}, ΩT1 = {i ∈ Ω |
P
B̂

(ν
B̂

(i)) ∈ T1}, ΩR1 = {i ∈ Ω | P
B̂

(ν
B̂

(i)) ∈ R1}. We order the vertices of
ΩT0 , ΩR0 , ΩT1 and ΩR1 such that ΩT0 = {i1, . . . , ir}, ΩR0 = {ir+1, . . . , is},
ΩT1 = {is+1, . . . , it}, ΩR1 = {it+1, . . . , in}, and

Hom
B̂

(P
B̂

(ν
B̂

(il)), PB̂(ν
B̂

(im))) = 0

for any 1 ≤ m < l ≤ n. Note that this is possible because B̂ is triangular
and Hom

B̂
(R0, T0) = 0, Hom

B̂
(T1 ∨R1, T0 ∨R0) = 0.

Then i1, . . . , ir, ir+1, . . . , is, is+1, . . . , it, it+1, . . . , in is a reflection se-
quence of sinks of QB+

0
satisfying the conditions of (iv). For each q ∈ Z,

we then also have B̂+
q
∼= B̂−q ∼= B̂+

q+1
∼= B̂−q+1

∼= B̂+
q+2
∼= ̂νB̂(B+

q ). This shows

that mod B̂ ∼= mod B̂−0 , and consequently B̂−q ∼= B̂ ∼= B̂+
q for any q ∈ Z. Fi-

nally, observe that the support algebra D′q of Rq is the convex subcategory

of B̂ formed by the objects of B−q and B+
q+1.

3.5. It follows from the above theorem that in our considerations of
selfinjective algebras of wild canonical type, we may restrict ourselves to the
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selfinjective algebras given by almost concealed-canonical algebras. More-
over, we have the following direct consequence of the above theorem.

Lemma. Let B and D be almost concealed-canonical algebras of wild
type, and let K0(B) and K0(D) have ranks m and n, respectively. Then the
following are equivalent :

(i) B̂ ∼= D̂.
(ii) D ∼= S+

ir
. . . S+

i1
B for a reflection sequence of sinks i1, . . . , ir, r ≤ m,

in QB.
(iii) B ∼= S+

jt
. . . S+

j1
D for a reflection sequence of sinks j1, . . . , jt, t ≤ n,

in QD.

Clearly if B̂ ∼= D̂ then K0(B) and K0(D) are isomorphic, so in the above
corollary we have in fact m = n. We note further that the above corol-
lary also holds for almost concealed-canonical algebras of tame (domestic or
tubular) type, by the corresponding results of [2], [29], [34].

3.6. Let B be an almost concealed-canonical algebra of wild type. We
may identify B with the convex subcategory B−0 of B̂. Following [34], B is
said to be exceptional whenever, in the notation of Theorem 3.4, we have
B−0 ∼= B−1 . Otherwise B is said to be normal. We note that B is exceptional
if and only if B ∼= S+

ir
. . . S+

i1
B for a reflection sequence of sinks i1, . . . , ir in

QB with r smaller than the rank of K0(B). Moreover, if B is exceptional
then the rank of K0(B) is even.

An example of an exceptional almost concealed-canonical algebra of wild
type is provided by the algebra B = K∆/I, where ∆ is the quiver

1 3

2

6

54

α2 α1

β1β2

γ3

γ2

9

7

8

10

σ1

η2

γ1

η1

ξ1

and I is the ideal in K∆ generated by α1α2+β1β2+γ1γ2γ3, σ1α1, ξ1β1, η1γ1.
Then B is an almost concealed-canonical algebra of wild type (3, 3, 5), being
a tubular extension of the canonical algebra C of tubular type (2, 2, 3) given
by the vertices 1, 2, 3, 4, 5, 6. Moreover, for B = B−0 , we have B+

1 = S+
1 B
∼=

Bop and B−1 = S+
5 S

+
4 S

+
3 S

+
2 B+

1
∼= B. Therefore, B ∼= S+

5 S
+
4 S

+
3 S

+
2 S

+
1 B is

an exceptional almost concealed-canonical algebra. On the other hand, the
convex subcategory B′ of B given by all vertices of QB except 10 is a normal
almost concealed-canonical algebra of wild type (3, 3, 4), because K0(B′) is
of odd rank.

For B exceptional, we denote by ϕ
B̂

a fixed extension of B = B−0
∼→

B−1 ↪→ B̂ to a K-linear automorphism of B̂. For B normal, we put ϕB̂ = νB̂.
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Consider now the decomposition (∗)
Γ
B̂

=
∨

q∈Z
(Tq ∨Rq)

described above. Then the separation properties of Tq imply that for any

K-linear automorphism f of B̂, there exists an integer m such that f(Tq) =
Tq+m and f(Rq) = Rq+m for any q ∈ Z. If m ≥ 0 (respectively, m > 0),
such an automorphism f is said to be positive (respectively, strictly positive).
Finally, ifm = 0, f is said to be rigid. Clearly, ϕ

B̂
and ν

B̂
are strictly positive

automorphisms of B̂. Observe that if B is exceptional, then ϕ2
B̂

= fν
B̂

for

some rigid automorphism f of B̂.

Lemma. Let G be a torsion-free admissible group of K-linear automor-
phisms of B̂. Then G is an infinite cyclic group generated by fϕs

B̂
for some

s ≥ 1 and some rigid automorphism f of B̂.

Proof. For g ∈ G, let mg be the integer such that g(T0) = Tmg . Applying
induction and the separation properties of the families of quasi-tubes Tq,
q ∈ Z, we deduce that then g(Tq) = Tq+mg for all q ∈ Z. Similarly, mh =
−mg for h = g−1. Suppose mg = 0 for some g ∈ G. Then g(Tq) = Tq and
g(Rq) = Rq for any q ∈ Z. In particular, g acts on the finite set of projective
modules contained in T0∨R0, and so some power gr of g fixes an idempotent
em,i of B̂. Since G is admissible and torsion-free, we get g = 1. Choose g ∈ G
such that mg is positive and minimal. Let h ∈ G and mh = tmg + l with
0 ≤ l < mg. Then a = hg−t ∈ G, ma = l, and hence l = 0, a = 1. Therefore,
G is infinite cyclic generated by g. If B is normal, then mg is even, say

m = 2s, and f = gϕ−s
B̂

is a rigid automorphism of B̂. Similarly, if B is

exceptional and s = mg, then f = gϕ−s
B̂

is rigid. Consequently, G is infinite

cyclic generated by fϕs
B̂

for some s ≥ 1 and some rigid automorphism f

of B̂.

3.7. There are many normal almost concealed-canonical algebras whose
Grothendieck group has even rank. Let p = (p1, . . . , pt) be a weight sequence
and δ(p) be the discriminant of p defined by

δ(p) = (t− 2)p−
t∑

i=1

p

pi
, where p = lcm(p1, . . . , pt).

Then p is said to be of wild (respectively, tame) type if δ(p) > 0 (respectively,
δ(p) ≤ 0). Note that the weight sequences p = (2, 4, 2m + 1), m ≥ 2, are
wild and δ(p) = 2m−3 exhaust all odd natural numbers. Moreover, for any
almost concealed-canonical algebra B of type (2, 4, 2m+1), K0(B) has even
rank 2(m+3). We have the following direct consequence of [27, Corollary 3]:
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Lemma. Let B be an almost concealed-canonical algebra of wild type p
such that δ(p) is odd. Then B is normal.

For further examples of exceptional almost concealed-canonical algebras
of wild type we refer to [27, Sections 2 and 4].

3.8. Let B be an almost concealed-canonical algebra of wild type. Let
G be the infinite cyclic group of K-linear automorphisms of B̂ generated by
a strictly positive automorphism g. Then g(Tq) = Tq+m and g(Rq) = Rq+m
for all q ∈ Z and some fixed m ≥ 1. We know from Theorem 3.4 that B̂ is
locally support-finite [10], that is, for each idempotent em,i of B̂, the set of

all idempotents en,j of B̂ with Mem,i 6= 0 6= Men,j for some indecomposable

finite-dimensional B̂-module M is finite. Applying [11, Proposition 2.5] we

conclude that the push-down functor FBλ : mod B̂ → mod B̂/G associated to

the Galois covering FB : B̂ → B̂/G is dense and preserves Auslander–Reiten
sequences (see also [13, Theorem 3.6]).

Therefore, Γ
B̂/G

is obtained from Γ
B̂

by identifying, via FBλ , Tq with

Tq+m and Rq with Rq+m, for all q ∈ Z. Thus Γ
B̂/G

is of the form

FBλ (T0 ∨R0) ∨ FBλ (T1 ∨R1) ∨ . . . ∨ FBλ (Tm−1 ∨Rm−1).

Moreover, FBλ : ind B̂ → ind B̂/G is a Galois covering and hence it induces
the following isomorphisms (see [8], [13]):
⊕

g∈G
Hom

B̂
(M,gN)

∼→ Hom
B̂/G

(FBλ (M), FBλ (N))
∼←
⊕

g∈G
Hom

B̂
(gM,N)

for any M,N ∈ ind B̂. This allows one to recover all morphisms in mod B̂/G

from the morphisms in mod B̂.

3.9. Proposition. Let B be an almost concealed-canonical algebra of
wild type, G = (g) an admissible infinite cyclic group of K-linear automor-

phisms of B̂, and g(T0) = Tm for some m ≥ 1. Then the following assertions
are equivalent :

(i) m ≥ 2.
(ii) G is generated by an element ψν

B̂
for some positive automorphism

ψ of B̂.
(iii) There exists r, 0 ≤ r ≤ m−1, such that the family FBλ (Tr)s is stably

generalized standard.
(iv) The families FBλ (Tr)s, 0 ≤ r ≤ m − 1, are stably generalized stan-

dard.

Proof. The equivalence of (i) and (ii) follows from Lemma 3.6. More-

over, mod B̂ ∼= Db(cohX) for a weighted projective line X of wild type.
Because Db(cohX) is an abelian hereditary category, for all p, q ∈ Z we



258 H. LENZING AND A. SKOWROŃSKI

have Hom
B̂

(T s
p , T s

q ) 6= 0 if and only if q = p or q = p+ 1. Since the functor

FBλ : modB̂ → modB̂/G induces a Galois covering FBλ : indB̂ → indB̂/G,
the required equivalence of (i)–(iv) follows.

3.10. Corollary. Let B and G be as above. Assume that the families
FBλ (Tr), 0 ≤ r ≤ m−1, consist of stable tubes. Then the following conditions
are equivalent :

(i) m ≥ 2.
(ii) There exists r, 0 ≤ r ≤ m − 1, such that the family FBλ (Tr) is

generalized standard.
(iii) The families FBλ (Tr), 0 ≤ r ≤ m− 1, are generalized standard.

Proof. Observe that if p, q ∈ Z, |p − q| ≥ 2, then the tubular families
Tp and Tq have different supports, and hence HomB̂(Tp, Tq) = 0. Then the
required equivalences follow from 3.9.

For examples of wild concealed-canonical algebras B satisfying the hy-
pothesis of 3.10 we refer to 5.4–5.6. On the other hand, each wild canonical
algebra satisfies the assumptions of the next corollary.

3.11. Corollary. Let B and G be as in the above proposition. Assume
that one of the families of quasi-tubes FBλ (Tr), 0 ≤ r ≤ m − 1, contains a
projective module. Then the following conditions are equivalent :

(i) m ≥ 3.
(ii) G is generated by an element ψν

B̂
for some strictly positive auto-

morphism ψ of B̂.
(iii) A nonstable quasi-tube in FBλ (Tr) is generalized standard.
(iv) All quasi-tubes in Γ

B̂/G
are generalized standard.

Proof. It follows from our assumptions that Tr contains an indecompos-
able projective B̂-module eq,i B̂. Since ν

B̂
(eq,i) = eq+1,i, we have top(eq,i B̂)

∼= soc(eq+1,iB̂), and hence Hom
B̂

(eq,i B̂, eq+1,i B̂) 6= 0. This implies that

Hom
B̂

(Tr, Tr+2) 6= 0, because eq+1,i B̂ = ν
B̂

(eq,i B̂) belongs to Tr+2. Fur-
ther, we know from 3.4 that Hom

B̂
(Tp, Tq) = 0 for any q ≥ p + 3. Finally,

observe that, in the above notation, n ≥ 3 if and only if g is of the form
g = ψνB̂ for some strictly positive automorphism ψ of B̂. Therefore, since

FBλ : ind B̂ → ind B̂/G is a Galois covering, the required equivalence of
(i)–(iv) follows.

3.12. Let B be an almost concealed-canonical algebra of wild type, G =
(g) an admissible infinite cyclic group of K-linear automorphisms of B̂, and
assume g(T0) = Tm for some m ≥ 2. Then it follows from Lemma 3.6 that

g = fϕmB = ψν
B̂

for some rigid automorphism f of B̂ and some positive auto-

morphism ψ of B̂. Then the Auslander–Reiten quiver ΓA of the selfinjective
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algebra A = B̂/G consists of m ≥ 2 P1(K)-families FBλ (T0), . . . , FBλ (Tm−1)
of quasi-tubes and infinitely many components with stable part ZA∞, dis-
tributed in the families FBλ (R0), . . . , FBλ (Rm−1). Moreover, it follows from

Proposition 3.9 that FBλ (T −q ) and FBλ (T +
q ), 0 ≤ q ≤ m − 1, are general-

ized standard families of modules in modA. Consider the two-sided ideals
I+
q = annA(FBλ (T +

q )) and I−q = annA(FBλ (T −q )), 0 ≤ q ≤ m − 1, of A.
Since T −q (respectively, T +

q ) is a faithful family of ray (respectively, coray)
tubes of the almost concealed-canonical algebra B−q (respectively, of the dual
B+
q of an almost concealed-canonical algebra) we infer that B+

q = A/I+
q

and B−q = A/I−q for any 0 ≤ q ≤ m − 1. Therefore, the algebras B−q
and B+

q , 0 ≤ q ≤ m − 1, are natural factors of the selfinjective algebra

A = B̂/G.

We note that the corresponding claim is not true for an exceptional al-
most concealed-canonical algebra B and A = B̂/(ϕ

B̂
). Indeed, let B be the

exceptional almost concealed-canonical algebra of type (3, 3, 5) considered

in 3.6. Then A = B̂/(ϕ
B̂

) is the bound quiver algebra KQ/I, where Q is
the quiver

1

4

32

5
γ2

γ1γ3

α1

α2 β1

β2

and I is the ideal of KQ generated by α1α2 + β1β2 + γ1γ2γ3, α2α1, β2β1,
γ2γ3α1α2γ1γ2. Observe that the factor algebras of A are not quasi-tilted
algebras of canonical type. This motivates the following definition.

Definition. A selfinjective algebra A = B̂/(ψν
B̂

), where B is almost

concealed-canonical of wild type and ψ is a positive automorphism of B̂, is
said to be a proper selfinjective algebra of wild canonical type.

Clearly, each selfinjective algebra of wild canonical type given by a nor-
mal almost concealed-canonical algebra is proper.

3.13. We end this section with the following characterization of proper
symmetric algebras of wild canonical type.

Theorem. An algebra A is a proper symmetric algebra of wild canonical
type if and only if A is isomorphic to the trivial extension B nD(B) of an
almost concealed-canonical algebra B of wild type.

Proof. This follows from the above definitions and [30, Theorem 2].
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We note that the selfinjective algebra A = B̂/(ϕ
B̂

) of wild type (3, 3, 5)
constructed in 3.12 is symmetric but clearly is not a trivial extension of a
quasi-tilted algebra of canonical type.

4. Cones of ZA∞-components

4.1. Let B be an almost concealed-canonical algebra of wild type Λ =
Λ(p, λ), and X = X(p, λ) the associated weighted projective line. We use
the notation introduced in Sections 2 and 3 and identify B with the convex
subcategory B−0 of B̂. The following theorem describes the structure of
components in ΓB̂ with stable part ZA∞.

Theorem. For a fixed integer q, the following statements hold :

(i) For each component C from Rq, there exist indecomposable modules
M− and M+ in C such that C− = (M− →) is a right stable cone of C
consisting of modules from mod−B−q , C+ = (→M+) is a left stable cone of

C consisting of modules from mod+B
+
q+1, and for X ∈ C− and Y ∈ C+ we

have τ−
B̂
X = τ−

B−q
X and τ

B̂
Y = τB+

q+1
Y .

(ii) For each component D in mod−B−q different from the preinjective
component , there exists an indecomposable module Y in D and a component
C in Rq such that the cone D− = (Y →) of D is a right stable full translation
subquiver of C which is closed under successors.

(iii) For each component E of mod+B
+
q+1 different from the preprojective

component , there exists an indecomposable module Z in E and a component
C in Rq such that the cone E+ = (→ Z) of E is a left stable full translation
subquiver of C which is closed under predecessors.

Proof. First we note that B−q and B+
q+1 are factor algebras of B̂. From

Theorem 3.4(vi) we know that the support of any indecomposable B̂-module

in Rq is contained in the convex subcategory D′q of B̂ given by the objects

of B−q and B+
q+1. Moreover, we have B+

q+1 = S+
jt
. . . S+

j1
B−q for a reflection

sequence j1, . . . , jt of sinks in QB−q . Let P1, . . . , Pt be all indecomposable

projective B̂-modules in Rq. Then the socles of P1, . . . , Pt are the simple

B̂-modules given by those vertices j1, . . . , jt, and the tops of P1, . . . , Pt are

the simple B̂-modules given by the vertices of σ+
jt
. . . σ+

j1
QB−q = QB+

q+1
which

are not vertices of QB−q
.

Let C be a component from Rq. In order to prove claim (i) for C it is

sufficient to find indecomposable B̂-modules M and N in C such that C− =
(M →) is right stable, C+ = (→ N) is left stable, and Hom

B̂
(U,Pi) = 0,

HomB̂(Pi, V ) = 0 for all modules U ∈ C+, V ∈ C−, and any 1 ≤ i ≤ t.
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Observe also that since C+ ∼= N∆ for a quiver ∆ of the form

0→ 1→ . . .→ r ← r + 1← r + 2← . . .

for some r ≥ 0, we have Hom
B̂

(U,Pi) = 0 for any U ∈ C+ if and only if

Hom
B̂

(τ l
B̂
N,Pi) = 0 for any l ∈ N. Similarly, C− ∼= (−N)Σ for a quiver Σ

of the form
0← 1← . . .← s→ s+ 1→ s+ 2→ . . .

for some s ≥ 0, and hence Hom
B̂

(Pi, V ) = 0 for any V ∈ C− if and only if

Hom
B̂

(Pi, τ
−l
B̂
M) = 0 for any l ∈ N.

We know that mod B̂ ∼= mod Λ̂ ∼= Db(cohX), and the full subcategory of

mod B̂ given by all nonprojective objects of Rq is equivalent to the category
of indecomposable vector bundles over X. Applying now [24, Proposition
10.1] we conclude that there are indecomposable modulesM and N in C such
that HomB̂(τ l

B̂
N, radPi) = 0 and HomB̂(Pi/socPi, τ

−l
B̂
M) = 0 for any l ∈ N

and 1 ≤ i ≤ t. Moreover, since the stable part Cs of C is of the form ZA∞, we
may choose M and N such that C+ = (→ N) is left stable and C− = (M →)
is right stable. Further, since τ l

B̂
N , l ∈ N, are nonprojective and τ l

B̂
M ,

l ∈ N, are noninjective, we have Hom
B̂

(τ l
B̂
N,Pi) = Hom

B̂
(τ l
B̂
N, radPi)

and Hom
B̂

(Pi, τ
−l
B̂
M) = Hom

B̂
(Pi/socPi, τ

−l
B̂
M).

Suppose now that there is a nonzero morphism f : τ l
B̂
N → Pi for some

l ∈ N and some 1 ≤ i ≤ t. Since HomB̂(τ l
B̂
N, radPi) = 0, f factors through

a projective B̂-module P . But τ l
B̂
N and radPi belong to Rq, and hence

P is a direct sum of modules P1, . . . , Pt. Observe that if f = f ′′f ′ with
f ′ : τ l

B̂
N → P and f ′′ : P → radPi, then the image of f ′ is contained in

radP . Since Hom
B̂

(τ l
B̂
N, radP ) = 0, we conclude that f ′ factors through a

direct sum of modules from the family P1, . . . , Pt.
Therefore, for any positive number r, we may find a sequence of mor-

phisms

Pi1
h1−→ Pi2 → . . .→ Pir

hr−→ Pir+1

such that i1, . . . , ir+1 ∈ {1, . . . , t}, h1, . . . , hr are nonisomorphisms and
hr . . . h1 6= 0. This leads to a contradiction because the radical of the
algebra End

B̂
(P1 ⊕ . . . ⊕ Pt) is nilpotent. Consequently, we have proved

that Hom
B̂

(τ l
B̂
N,Pi) = 0 for any l ∈ N and 1 ≤ i ≤ t. The proof that

Hom
B̂

(Pi, τ
−l
B̂
N) = 0 for any l ∈ N and 1 ≤ i ≤ t is similar. Hence, for

M+ = N , M− = M , claim (i) follows.
For (ii), take a component D of ΓB−q contained in mod−B−q and differ-

ent from the preinjective component. Let I1, . . . , It be the largest B−q -sub-

modules of the indecomposable projective-injective B̂-modules P1, . . . , Pr
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of Rq, respectively. Note that I1, . . . , It are indecomposable injective B−q -
modules lying in mod−B−q . The support algebra D′q of Rq, given by the ob-

jects of B−q and B+
q+1, is an iterated one-point extension of B−q using modules

whose largest B−q -submodules are I1, . . . , It. Moreover, under the identifica-

tion mod B̂−q = Db(cohX), modB−q is a full subcategory of vectX[1], and

therefore, for all modules U , V from mod−B−q , we have Hom(U, τ−rX V ) = 0
for r � 0, again by [24, Proposition 10.1].

Further, according to 2.3, the component D contains an indecomposable
module Z such that the cone (Z →) of D is a full translation subquiver
of a component of vectX[1]. Hence for any module W in D there is l ∈ N
such that τ−l

B−q
W ∈ (Z →), and consequently τ−s

B−q
(τ−l
B−q

W ) = τ−sX (τ−l
B−q

W )

for any s ≥ 0. Combining the above information we conclude that there is an
indecomposable B−q -module Y in D such that D+ = (Y →) is a right stable
subquiver of D (even contained in vectX[1]) such that HomB−q

(Ij,X) = 0

for any X ∈ D+ and any 1 ≤ j ≤ t. Therefore, applying [33, (2.5.6)] we
conclude that D+ is a full translation subquiver of a connected component
C in Rq.

The proof of (iii) is dual to the proof of (ii).

4.2. Let B be an almost concealed-canonical algebra of wild type and
G an infinite cyclic group of K-linear automorphisms of B̂ such that A =
B̂/G is a proper selfinjective algebra of wild canonical type. Then ΓA has a
canonical decomposition

ΓA = FBλ (T0) ∨ FBλ (R0) ∨ . . . ∨ FBλ (Tm−1) ∨ FBλ (Rm−1)

with m ≥ 2, induced by the decomposition of Γ
B̂

(see 3.4 and 3.8). We also

note that then B−q and B+
q+1, 0 ≤ q ≤ m− 1, with B−0 = B and B+

m = B+
0 ,

are factor algebras of A.

Theorem. For a fixed q, 0 ≤ q ≤ m − 1, the following statements
hold :

(i) For each component C of FBλ (Rq), there exist indecomposable mod-
ules X− and X+ in C such that C− = (X− →) is a right stable cone of C
consisting of modules from mod−B−q , C+ = (→ X+) is a left stable cone of

C consisting of modules from mod+B
+
q+1, and for U ∈ C− and V ∈ C+ we

have τ−A U = τ−
B−q

U and τA V = τB+
q+1

V .

(ii) For each component D of mod−B−q different from the preinjective
component , there exists an indecomposable module Y in D and a component
C in FBλ (Rq) such that the cone D− = (Y →) of D is a right stable full
translation subquiver of C which is closed under successors.
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(iii) For each component E of mod+B
+
q+1 different from the preprojective

component , there exists an indecomposable module Z in E and a component
C in FBλ (Rq) such that the cone E+ = (→ Z) of E is a left stable full
translation subquiver of C which is closed under predecessors.

Proof. This follows from the above theorem and the facts that FB
λ :

ind B̂ → indA is a Galois covering (see 3.8) and B−q , B+
q+1, 0 ≤ q ≤ m− 1,

are factor algebras of A.

4.3. Corollary. For a fixed q, 0 ≤ q ≤ m−1, the following statements
hold.

(i) If M and N are indecomposable modules in FBλ (Rq) and N is non-
projective, then

HomA(M, τ rAN) 6= 0 for r � 0.

(ii) If M and N are indecomposable modules in FBλ (Rq), then

HomA(M, τ−rA N) = 0 for r � 0.

Proof. Let C1 and C2 be components in FBλ (Rq) containing M and N , re-
spectively. Observe that for any projective A-module P and an indecompos-
able nonprojective A-module X we have HomA(P,X) = HomA(P/socP,X)
and P/socP is not projective. Therefore, we may assume that M is not
projective.

(i) Assume N is not projective. Theorem 4.2(i) implies that there exist
indecomposable A-modules X+

1 ∈ C1 and X+
2 ∈ C2 such that C+

1 = (→ X+
1 )

is a left stable cone of C1 consisting of modules from mod+B
+
q+1, C+

2 =

(→ X+
2 ) is a left stable cone of C2 consisting of modules from mod+B

+
q+1,

and τB+
q+1
V1 = τAV1, τB+

q+1
V2 = τAV2 for all modules V1 ∈ C+

1 and V2 ∈ C+
2 .

Moreover, by the dual to Theorem 3.4 of [28], there are indecomposable
modules Y1 ∈ C+

1 and Y2 ∈ C+
2 such that D+

1 = (→ Y1) is a full translation
subquiver of a component of vectX and D+

2 = (→ Y2) is a full translation
subquiver of a component of vectX. Clearly, there is a positive integer s
such that τ tAM ∈ D+

1 and τ tAN ∈ D+
2 for all t ≥ s. Applying now [24,

Proposition 1.10] we obtain HomA(M, τ rAN) ∼= HomA(τ sAM, τ rA(τ sAN)) =
Hom(τ sAM, τ rX(τ sAN)) 6= 0 for r � 0.

(ii) We may assume that N is not injective. It follows from Theo-
rem 4.2(i) that there exists an indecomposable A-module X−2 ∈ C2 such
that C−2 = (X−2 →) is a right stable cone of C2 consisting of modules from
mod−B−q , and τ−

B−q
U = τ−AU for any module U ∈ C−2 . Applying again [28,

Theorem 4.3] we conclude that there is an indecomposable module Y2 ∈ C−2
such that D−2 = (Y2 →) is a full translation subquiver of a component of
vectX[1], and τ−A W = τ−

B−q
W = τ−X W for any module W ∈ D−2 . Take a po-
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sitive integer s such that τ−tA W ∈ D−2 for all t ≥ s. Invoking [24, Proposition
1.10] again, we infer that HomA(M, τ−tA (τ−sA N)) = Hom(M, τ−tX (τ−sA N)) = 0
for t� 0.

5. Distribution of simple and projective modules

5.1. In this section we are interested in the distribution of simple and
projective modules in the Auslander–Reiten components of selfinjective al-
gebras of wild canonical type. We shall use the notation introduced in Sec-
tion 3. For an almost concealed-canonical algebra B and an admissible infi-
nite cyclic group G of K-linear automorphisms of B̂, the Auslander–Reiten
quiver ΓA of the selfinjective algebra A = B̂/G is the orbit quiver Γ

B̂
/G

of the Auslander–Reiten quiver Γ
B̂

, and therefore it is sufficient to investi-
gate the distribution of simple and projective modules in the components
of Γ

B̂
.

Proposition. Let B be an almost concealed-canonical algebra. Then:

(i) For each q ∈ Z, Rq contains at least one simple and at least one
projective module.

(ii) Tq contains a simple module if and only if Tq−1 and Tq+1 contain
projective modules.

(iii) Tq contains a projective module if and only if Tq−1 and Tq+1 contain
simple modules.

Proof. Since the trivial extension B̂/(ν
B̂

) = B nD(B) = A is symmet-

ric, τA = Ω2
A, and for the push-down functor FBλ : mod B̂ → modA asso-

ciated to the Galois covering FB : B̂ → B̂/(ν
B̂

) we have ΩA F
B
λ
∼= FBλ Ω

B̂
,

Ω−A F
B
λ
∼= FBλ Ω−

B̂
, we deduce that Ω

B̂
(T s
q ) = T s

q−1, Ω
B̂

(Rs
q) = Rs

q−1,

Ω−
B̂

(T s
q ) = T s

q+1, and Ωs
B̂

(Rs
q+1) for any q ∈ Z. Moreover, for any in-

decomposable projective B̂-module P we have an Auslander–Reiten se-
quence

0→ radP → P ⊕ radP/socP → P/socP → 0

and Ω
B̂

(P/socP ) = socP , Ω−
B̂

(radP ) = topP . Then (ii) and (iii) fol-

low.
For (i) it is enough to show that each Rq contains a projective mod-

ule. Suppose there exists p ∈ Z such that Rp does not contain a projective
module, and so Rp consists of regular components of type ZA∞. Then it
follows from 3.4 that all components of mod−B−q different from the prein-
jective component are regular. Therefore, all injective modules of the almost
concealed-canonical algebra B−q lie in its unique preinjective component. But
then B−p is a tilted algebra EndH(T ) where H is a hereditary algebra and T
is a tilting H-module without nonzero preinjective direct summands. This
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leads to a contradiction because B−p is of wild canonical type. This finishes
the proof.

5.2. Let Λ = Λ(p, λ) be a canonical algebra of wild type; we identify Λ

with the convex subcategory Λ−0 of Λ̂. Then we have Λ+
0 = Λ = Λ−0 . Let

n be the rank of K0(Λ). Then it follows that each T2m, m ∈ Z, does not
contain a projective module but contains exactly n− 2 simple modules, and
consequently each of T2m+1, m ∈ Z, does not contain simple modules but
contains n−2 projective modules. Moreover, each of the families Rq, q ∈ Z,
contains exactly one simple and one projective module.

5.3. We shall now exhibit an almost concealed-canonical algebra B such
that all parts Tq andRq of Γ

B̂
contain both a simple and a projective module.

Consider the algebra B given by the quiver

1

2

3

4

5

6

7

8

9

α1

α2

α3

β1β2β3

γ2

γ1

σ

γ3

bound by α1α2α3 + β1β2β3 + γ1γ2γ3 = 0 and σγ1 = 0. Then B is the one-
point extension of the canonical algebra Λ of tubular type (3, 3, 3), given by
the vertices 1, 2, . . . , 8, by an indecomposable Λ-module lying on the mouth
of a stable tube of rank 3, and consequently B is almost concealed-canonical
of wild type (3, 3, 4). Identifying B with B−0 inside B̂, we conclude that the

family T0 contains exactly one projective B̂-module, namely PB̂(9). Hence,
each of the families T2m, m ∈ Z, contains exactly one projective module,
and consequently each of the families T2m+1, m ∈ Z, contains exactly one
simple module. Moreover, P

B̂
(8) lies in R0, P

B̂
(1) lies in R−1, and P

B̂
(2),

P
B̂

(3), . . . , P
B̂

(7) lie in T−1. Clearly, all parts Tq andRq, q ∈ Z, of Γ
B̂

contain
both simple and projective modules.

5.4. We now discuss the existence of almost concealed-canonical alge-
bras of wild type such that all families Tq, q ∈ Z, of Γ

B̂
are without pro-

jective (equivalently, simple) modules. Obviously, this never happens for an
almost concealed-canonical but non-concealed-canonical algebra. An equiv-
alent problem is to find a concealed-canonical algebra of wild type whose
unique family of stable tubes does not contain a simple module. The follow-
ing facts proved in [20, Theorem 3, Corollary 4] show that we have plenty
of such algebras.

Theorem. Let Λ = Λ(p, λ) be a wild canonical algebra and m a positive
integer. Then there exist infinitely many pairwise nonisomorphic connected
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wild hereditary algebras C and quasi-simple regular C-modules M such that
the one-point extensions C[M ] are concealed-canonical algebras of type Λ
whose family T of stable tubes has this property : for any indecomposable
module X in T , each simple C[M ]-module occurs with multiplicity at least
m as a composition factor of X.

5.5. Corollary. For each wild canonical algebra Λ = Λ(p, λ) there
exist infinitely many pairwise nonisomorphic concealed-canonical algebras
of type Λ without simple modules in the tubes.

Invoking 3.5 we conclude that for each wild canonical algebra Λ = Λ(p, λ)

there exist infinitely many pairwise nonisomorphic repetitive algebras B̂ of
canonical type Λ without simple modules in the families Tq, q ∈ Z, of Γ

B̂
.

5.6. We now present a concrete example of a concealed-canonical al-
gebra of wild type without simple modules in the tubes. Let t ≥ 3 and
let 1 = λ3, λ4, . . . , λt be pairwise distinct nonzero elements of k. Then the
algebra B given by the quiver

a b

1

2

t

r3

r4

rt

...

y1

y2

yt

...

and bound by the relations

yjri = 0 for j 6= 1, 2, i,

y1ri = λiy1 r1 for i = 3, . . . , t,

y2ri = y2 rj for i, j = 3, . . . , t,

is concealed-canonical. In more detail, B is isomorphic to the endomor-
phism algebra of a tilting bundle T on the weighted projective line X =
X(2, 2, . . . , 2;λ) with t points of weight two and the parameter sequence
λ = (λ3, . . . , λt). Moreover, the ranks of the simple B-modules S(a), S(b),

S(1), . . . , S(t) are given by the sequence 1, 1, −1, . . . ,−1. In particular, B̂
has a family of standard stable tubes.

With the notations from [14] or [24] we define K as the kernel term of
the exact sequence

0→ K
[y1,...,yt]tr−−−−−→

t⊕

i=1

O(~xi)
[x1,...,xt]−−−−−→ O(~c )→ 0
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in cohX. Then it is not difficult to check that K is an exceptional bundle,
and moreover the direct sum of O, K, O(~x1), . . . ,O(~xt) is a tilting bundle
on X with endomorphism ring isomorphic to B. The remaining claims now
follow easily.

For the construction of further examples of this kind, a special type of
reflections, introduced by Hübner [18] for the class of concealed-canonical
algebras, is very useful. These reflections allow one, for instance, to con-
struct such examples for each canonical algebra which is minimal wild. In
particular, the preceding example is obtained from the canonical algebra by
just one Hübner reflection.

5.7. Observe that for a canonical algebra Λ of wild type, the simple
periodic Λ-modules lie on the mouth of the stable tubes. This implies that
for any indecomposable projective B̂-module P with radP (equivalently,
P/socP ) periodic, radP and P/socP lie on the mouth of a stable tube of
Γ s
Λ̂

. We shall now exhibit almost concealed-canonical algebras B for which

there are simple periodic modules in B̂ of large stable quasi-length, that is,
lying far from the mouth of the stable tubes of Γ s

B̂
. Let Rn, n ≥ 0, be the

algebra given by the quiver

. . .
1 3

2n−2 2n

2n−1 2n+1

2 4

α2

β1

β2

β3
γ2

σ1γ1
α1 σ2 σ3

σ2nσ2n−1

σ2n−3

bound by α1α2 + β1β2β3 + γ1γ2 = 0 and σ1γ2 = 0. Then, for n ≥ 3, Rn
is an almost concealed-canonical algebra of wild type (2, 3, 2n + 2), being

the corresponding tubular extension of the canonical algebra R0. Fix n ≥ 3

and put B = Rn. Then, identifying B with B−0 inside B̂, we conclude that
the family T0 contains a quasi-tube depicted on the next page and hence
sql(S(2r + 1)) = (2n+ 2)− (2r + 1) and sql(radP (2r)) = (2n+ 2)− 2r for
r = 0, 1, . . . , n. In particular, sqlS(1) = 2n+ 1 and sql(radP (2)) = 2n. We
also note that K0(B) is of rank 2n+ 6.

5.8. Finally, we shall discuss the distribution of simple modules and
projective modules in the components of Γ

B̂
with stable part ZA∞. In order

to state the result we need an invariant introduced in [24, Section 10]. We say
that B, or the corresponding canonical algebra Λ = Λ(p, λ), p = (p1, . . . , pt),

has Dynkin label ∆ ∈ {D4,E6,E7,E8} if the extended Dynkin diagram ∆̃ is



268 H. LENZING AND A. SKOWROŃSKI

P (2n)

S(2n+1)

S(2n−1)

P (2n−2)

S(2n−3)

S(3)

P (2)

S(1)

.

..
.
..

..

.
..
.

.

..
..
.

..

.

a subtree of the star [p1, . . . , pt] with t arms of length pi (1 ≤ i ≤ t), and
moreover, the number of vertices of ∆ is minimal. For instance, the weight
types (2, 2, 2, 3), (3, 3, 4), (2, 4, 5) and (2, 3, 7) lead to Dynkin labels D4, E6,
E7 and E8, respectively.

Proposition. Let A be a selfinjective algebra of wild canonical type
Λ = Λ(p, λ), S a simple A-module lying in a component of ΓA whose stable
part is ZA∞, and P the projective cover of S. Then sql(S) = sql(radP ) is
bounded by 2, 3, 4 or 6 according as the Dynkin label of A (or Λ) equals D4,
E6, E7 or E8, respectively.
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Proof. Let n = sql(S). Note that S corresponds to an object from a
ZA∞-component C of Db(modΛ) having quasi-length n and trivial endo-
morphism ring. An argument of [40] yields an exceptional object in C of
quasi-length n− 1. The claim now follows from [24, Corollary 10.5].

We note that for any positive integer n ≥ 3 there exists a selfinjective
algebra A of wild tilted type whose Auslander–Reiten quiver ΓA admits a
component C with stable part ZA∞ and containing a simple module of stable
quasi-length n− 2 (see [12, 5.7]).

6. Growth numbers of modules

6.1. Let A be an algebra and P1, . . . , Pn a complete set of pairwise
nonisomorphic indecomposable projective A-modules. The Cartan matrix
CA of A is the n×n integral matrix whose (i, j)-entry is dimK HomA(Pi, Pj).
Assume now that gl.dimA < ∞. Then CA is invertible over Z and C−tA
defines a bilinear form 〈−,−〉A on K0(A) given by 〈x, y〉 = xC−tA yt for
x, y ∈ K0(A). Then we have an integral quadratic form χA on K0(A), called
the Euler form of A, given by χA(x) = 〈x, x〉A for any x ∈ K0(A). The
bilinear form 〈−,−〉A has a well-known homological interpretation [33]:

〈dimX,dimY 〉 =
∑

i≥0

(−1)i dimK ExtiA(X,Y )

for all modules X and Y from modA. The matrix ΦA = −C−tA CA is
called the Coxeter matrix of A. If I1, . . . , In are the injective envelopes of
the tops S1, . . . , Sn of the projective modules P1, . . . , Pn, respectively, then
(dimPi)ΦA = −dim Ii for any 1 ≤ i ≤ n. The characteristic polynomial
PA(T ) = det(ΦA − TI) of A is called the Coxeter polynomial of A. The
roots of PA(T ) form the set Spec(ΦA) of eigenvalues of ΦA, called the spec-
trum of ΦA. Moreover, %A = max{|λ| | λ ∈ Spec(ΦA)} is called the spectral
radius of A. The radical radχA of χA is equal to {x ∈ K0(A) | xΦA = x}
(see [33]).

6.2. Let Λ = Λ(p, λ) be a wild canonical algebra with the weight se-
quence p = (p1, . . . , pt) and parameter sequence λ = (λ1, . . . , λt). Then it is
well known [24] that the Coxeter polynomial of Λ is of the form

PΛ(T ) = (T − 1)2
t∏

i=1

T pi − 1

T − 1
,

and consequently %Λ = 1. Moreover, the radical of χA has rank one.

6.3. For an algebra A and an indecomposable A-module M we may
define the left growth number %+

A(M) = lim supn→∞ n
√

dimK τ
n
AM and sim-

ilarly the right growth number %−A(M) = lim supn→∞
√

dimK τ−nM . If
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%−A(M) = %+
A(M) we denote this number by %A(M) and call it the growth

number of the module M . Observe that if M is τA-periodic then %A(M) = 1.
We have the following facts on the growth number of indecomposable mod-
ules over wild canonical algebras, proved in [24, Theorem 6.1].

Theorem. Let Λ = Λ(p, λ) be a wild canonical algebra and Λ0 be the
path algebra of the wild star obtained by removing the unique source from
the quiver QΛ. Then:

(i) For each stable nonperiodic indecomposable Λ-module M from
mod+ Λ, there exist positive integers a+

M and a−M such that

lim
n→∞

dimK τ
n
ΛM

n
= a+

M , lim
n→∞

dimK τ
−n
Λ M

%nΛ0

= a−M .

In particular , %+
Λ(M) = 1 < %Λ0 = %−Λ(M).

(ii) For each stable nonperiodic indecomposable Λ-module M from
mod− Λ, there exist positive integers b+

M and b−M such that

lim
n→∞

dimK τ
n
ΛM

%nΛ0

= b+M , lim
n→∞

dimK τ
−n
Λ M

n
= b−M .

In particular , %+
A(M) = %Λ0 > 1 = %−A(M).

6.4. It follows from the above theorem that for any stable nonperiodic
indecomposable module M over a wild canonical algebra Λ, the growth
number does not exist. The following theorem shows that the situation is
different for selfinjective algebras of wild canonical type.

Theorem. Let A be a selfinjective algebra of wild canonical type and let
M be a nonprojective indecomposable A-module. Then %A(M) = 1.

Proof. Let A = B̂/G for an almost concealed-canonical algebra B of
wild type and G a torsion-free admissible group of K-linear automorphisms

of B̂. Since the push-down functor FBλ : mod B̂ → mod B̂/G = modA is
dense and preserves projective modules, we have M = FB

λ (N) for some non-

projective indecomposable B̂-module N . Moreover, FBλ (τ
B̂
X) ∼= τA F

B
λ (X),

FBλ (τ−
B̂
X) = τ−A F

B
λ (X), and dimK F

B
λ (X) = dimK X for any indecompos-

able B̂-module X. Therefore, it is enough to prove that

lim sup
n→∞

n

√
dimK τ

n
B̂
N = 1 = lim sup

n→∞
n

√
dimK τ

−n
B̂

N.

Clearly, we may assume that N is nonperiodic, say N belongs to a compo-
nent C of Rq for some q ∈ Z.

It follows from Theorem 4.1 that there exists a positive integer s such
that the cone C+ = (→ τ s

B̂
N) of C is left stable and consists of modules
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from modB+
q+1, the cone C− = (τ−s

B̂
N →) of C is right stable and con-

sists of modules from mod−B−q , and τAU = τB+
q+1
U , τ−A V = τ−

B−q
V for all

modules U ∈ C+ and V ∈ C−. Further, there exist indecomposable mod-
ules Y ∈ C+ and Z ∈ C− such that the left stable cone D+ = (→ Y ) of
C+ is a full translation subquiver of a component of vectX, the right stable
cone D− = (Z →) of C is a full translation subquiver of a component of
vectX[1], and τAW = τXW , τ−A X = τ−X X for any W ∈ D+ and X ∈ D−,
where X = X(p, λ) is the corresponding weighted projective line. Finally,
applying [24, Theorem 6.3] and its dual, we conclude that there exist in-
decomposable modules M+ = τ r

B̂
N ∈ D+ and M− = τ−r

B̂
N ∈ D−, for

some positive integer r ≥ s, such that the left stable cone E+ = (→ M+)
is a full translation subquiver of a component of mod+ Λ(p, λ), the right
stable cone E− = (M− →) is a full translation subquiver of a component
of mod− Λ(p, λ), and τAV = τΛ(p,λ)V , τ−AU = τ−Λ(p,λ)U for any V ∈ E+ and

U ∈ E−. Therefore, it follows from 6.3 that there is a positive integer a
such that dimK τ

m
A N ≤ am and dimK τ

−m
A N ≤ am for m� 0. Clearly, this

implies %+
A(N) = 1 = %−A(N), and hence %A(M) = 1.

We note that for any indecomposable nonprojective module M over a
selfinjective algebra A of wild tilted type ∆ we have %A(M) = %H > 1,
where %H is the spectral radius of H = K∆ (see [12, Theorem 7.3]).

7. Complexity of modules and Ext-algebras. The aim of this sec-
tion is to discuss the complexity of indecomposable modules and the Ext-
algebras of indecomposable modules over symmetric algebras of wild canon-
ical type.

7.1. We say that an N-graded K-vector space V =
⊕

n∈N Vn has poly-
nomial growth if there are a nonnegative integer c and a nonzero constant
µ such that dimK Vn ≤ µnc−1 for n � 0. If these exist, then the smallest
such c is denoted by γ(V ) and called the rate of growth of V . If V is not of
polynomial growth we set γ(V ) =∞.

7.2. Let A be an algebra, M an A-module, and consider a minimal
projective resolution

(∗) . . .→ Pn+1 → Pn → . . .→ P1 → P0 →M → 0

of M in modA. If γ(
⊕

n∈N Pn) < ∞ then following [1] we set cA(M) =
γ(
⊕

n∈N Pn) and call it the complexity of M .

7.3. Let A be a selfinjective algebra, M an A-module, and let

Ext∗A(M,M) =
⊕

n∈N
ExtnA(M,M)
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be the Ext-algebra of M endowed with the Yoneda multiplication. Assume
cA(M) exists. Then γ(Ext∗A(M,M)) exists as well and is bounded by cA(M)
(see [12, 9.3]).

Indeed, observe that ExtnA(M,M) ∼= HomA(Ωn
A(M),M). Applying

HomA(−,M) to the minimal projective resolution (∗) of M we get the in-
equalities

dimK ExtnA(M,M) ≤ dimK HomA(Ωn
A(M),M) ≤ dimK HomA(Pn,M).

Further,

dimK HomA(Pn,M) ≤ (dimK Pn)(dimKM) ≤ (dimKM)µnc−1

for c = cA(M), a constant µ, and n � 0, and hence γ(Ext∗A(M,M)) ≤
cA(M). Note also that if M is an A-module with Ωr

AM
∼= M for some r ≥ 1,

then cA(M) = 1. Obviously, cA(M) = 0 if and only if M is projective.

Theorem. Let A be a symmetric algebra of wild canonical type, and M
an indecomposable A-module. Then γ(Ext∗A(M,M)) = cA(M) ≤ 2. More-
over , cA(M) = 2 if M is nonperiodic and nonprojective.

Proof. It follows from the above remarks that γ(Ext∗A(M,M)) ≤ cA(M).
Moreover, it is clear that γ(Ext∗A(M,M)) = cA(M) = 0 if M is projective
and γ(Ext∗A(M,M)) = cA(M) = 1 if M is periodic. Assume M is non-
periodic and nonprojective. We shall prove that cA(M) ≤ 2. Since A is
symmetric we have τA = Ω2

A. Consider a minimal projective resolution

. . .→ Pn+1 → Pn → . . .→ P1 → P0 →M → 0

of M in modA. Then dimK Pn = dimK Ω
n
AM + dimK Ω

n+1
A M . Put N =

Ωn
AM . For n = 2m, we get dimK P2m+1 = dimK τ

m
A M + dimK τ

m+1
A N ,

and for n = 2m + 1, dimK P2m+1 = dimK τ
m
A N + dimK τ

m
AM . Further, it

follows from 6.4 and its proof that there is a positive integer a such that
dimK τ

m
AM ≤ am and dimK τ

m
A N ≤ am for m � 0. This implies that

cA(M) ≤ 2. It remains to show that γ(Ext∗A(M,M)) > 1. Observe that

Ext2m+1
A (M,M) ∼= Ext1

A(Ω2m
A ,M) ∼= Ext1

A(τmAM,M)

∼= DHomA(M, τm+1
A M)

and dimK DHomA(M, τm+1
A M) = dimK Hom(M, τm+1

A M) is unbounded by
[24, Theorem 4.1]. Therefore, γ(Ext∗A(M,M)) > 1, and this finishes the
proof.

We note that if A is a symmetric algebra of wild tilted type and M a
nonprojective indecomposable A-module then the complexity cA(M) does
not exist (see [12, Theorem 9.4]).

7.4. We are now interested in the structure of algebras Ext∗A(M,M) for
indecomposable modules over a symmetric algebra A of wild canonical type.
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Let A be a selfinjective algebra and M an indecomposable nonprojective
A-module. For each n ≥ 1 we have isomorphisms

HomA(Ωn
AM,M) ∼= ExtnA(M,M) ∼= HomA(M,Ω−nA M).

We shall also consider the subalgebra

Extev
A (M,M) =

⊕

m∈N
Ext2m

A (M,M)

of Ext∗A(M,M) called the even part of Ext∗A(M,M). We also recall from 3.12
that the class of proper symmetric algebras of wild canonical type coincides
with the class of trivial extensions B nD(B) of almost concealed-canonical
algebras of wild type.

Theorem. Let A be a proper symmetric algebra of wild canonical type,
and M an indecomposable nonprojective nonperiodic A-module. Then:

(i) Extev
A (M,M) is a finite-dimensional K-algebra.

(ii) Ext2m+1
A (M,M) · Ext2r+1

A (M,M) = 0 for m, r � 0.

In particular , rad Ext∗A(M,M) is nilpotent.

Proof. It follows from Corollary 4.3 that

Ext2m
A (M,M) ∼= HomA(M,Ω−2m

A M) = HomA(M, τ−mA M) = 0

for m� 0, and then the claim follows.
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[2] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply con-

nected algebras, Tsukuba J. Math. 13 (1989), 31–72.
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[18] T. Hübner, Reflections and almost concealed canonical algebras, Preprint 97-068
Sonderforschungsbereich 343, Bielefeld, 1997.
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