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Abstract. A ring R is called an E-ring if every endomorphism of RT, the additive
group of R, is multiplication on the left by an element of R. This is a well known notion
in the theory of abelian groups. We want to change the “E” as in endomorphisms to an
“A” as in automorphisms: We define a ring to be an A-ring if every automorphism of R
is multiplication on the left by some element of R. We show that many torsion-free finite
rank (tfir) A-rings are actually E-rings. While we have an example of a mixed A-ring that
is not an E-ring, it is still open if there are any tffr A-rings that are not E-rings. We will
employ the Strong Black Box [5] to construct large integral domains that are A-rings but
not E-rings.

0. Introduction. Let R be a ring and R* the additive group of R. For
a € R define a;,a, € End(R") by a;(x) = az and a,(z) = za for all z € R.
Let Ry = {a; : a € R} and R, = {a, : a € R}. Then R is called an E-ring
if End(R") = R;. This notion of an E-ring is well known in abelian group
theory, and we refer the reader to the survey article [8] for more information
about E-rings and related literature. [1, Section 14] is a good source for
E-rings R such that R is torsion-free of finite rank, or tffr for short.

We want to modify the definition of E-rings by considering only the
group Aut(R™) of automorphisms of R™ instead of the entire ring of endo-
morphisms of RT.

DEFINITION. The ring R is called an A-ring if Aut(R™) C R;. If Rt has
elements of order 2, we require 1 € R. (We will show 1 € R if R has no
elements of order 2.) If an abelian group G is the additive group of some
A-ring, then we call G an A-group.

We will see that each A-ring R has a unity 1 € R and Aut(R") =
(U(R));, where U(R) is the group of units of R. Moreover, we will show
that U(R) C Z(R), the center of R, for any A-ring R, which implies that
U(R) ~ Aut(R™) is commutative. In Section 1 we obtain some information
on abelian groups G with Aut(G) commutative.
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In Section 2 we concentrate on tffr A-rings. While we have an example of
a mixed A-ring that is not an E-ring, it is open if there are any tffr A-rings
that are not E-rings. Our results seem to indicate that there are no such
rings. We will show that each strongly indecomposable tffr A-ring is indeed
an E-ring and any tffr A-ring of rank two is an E-ring. We define the notion
of a strong A-ring and show that all tffr strong A-rings are E-rings. The
key to this result is that quasi-summands of strong A-rings are again strong
A-rings, a property that seems to be elusive for A-rings in general.

In the last section we give a construction of commutative, torsion-free A-
rings of large (> 2%0) cardinality. We start with a suitable integral domain S
and construct a commutative S-algebra R such that Aut(R™) = (U(S)), but
End(R*%) = R;[y] & R|z], the polynomial ring in a single variable over R.
This shows that R is not an E-ring. We will use the Strong Black Box, as
developed in [5], in our construction. This prediction principle is also used
in [4], and the forthcoming monograph [7] will contain a detailed description
of the Strong Black Box.

1. Preliminaries. Recall that a ring R is called an E-ring if End(R™) =
R;, as defined in the introduction. We will show that every E-ring has a unity
1 € R. Usually, the definition of E-rings states “1 € R”, which is not needed:

Since idg € End(R™), there is some ¢ € R such that ¢; = idg. Thus
ex = x for all z € R and we have e? = e. Since e, € End(R™), there is some
a € R such that e, = aq;. Thus xe = ax for all x € R, and e = ee = ae (for
r =e) and ae = a® (for x = a), which implies e = a®. Thus ze = (ze)e =
(ax)e = a(ze) = a(ax) = a’r = ex = x for all z € R. This shows that
l=e€R.

Now assume that R is an A-ring as defined in the introduction. We prove
that R has an identity if R has no elements of additive order 2:

Since idg € Aut(RT), there is some e € R such that idg = €; and
thus ex = « for all x € R and e2 = e. Now we have a decomposition
R* = R-e® (idg — €,)(R) and there is a § € Aut(R") such that [, =
idpg.e and 014, c.)(r) = —1d(idg—e,)(r)- Then 6 = b, for some b € R and
6% = idg. This implies, for all z € R, bze = we and b(x — xe) = —x + we.
Thus bx — re = —x + ze and bz + = = 2we, which yields b? + b = 2be and
b%e + be = 2be? = 2be. Now we have b%e = be. Since (b;)? = idg, we have
b’e = e and we get e = be. Thus = ex = bex = bx for all z € R, which
shows that § = b, = ¢, = idg and 2(idg — e,)(R) = {0}. If R™ has no
elements of order 2, then we conclude idgr = e, and 1 = e € R.

From now on, we will assume that 1 € R for each A-ring R.

Since Aut(R™) is a group, we have Aut(R*) = (U(R));, U(R) the group
of units of R. If s € U(R), then o = s, € Aut(R") and o = ¢; for some
t € R. Now s = s,.(1) = a(1) = t;(1) = t and we have xs = tx = sz for
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all z € R and s € Z(R). It follows that U(R) C Z(R). If w € R is some
nilpotent element, then 1+w € U(R) C Z(R) and it follows that w € Z(R).
Thus, if N(R) is the nilradical of R, then N(R) = Nil(R) :={w € R: w
nilpotent}.

Now assume that R is a ring, 1 € R, such that each a € Aut(R) com-
mutes with all the elements in R,.. Then «a(z)r = a(xr) for all r,x € R and
a = (a(1));. We collect what we just proved in

1.1. PROPOSITION. Let R be a ring. Then the following hold:

(1) If R is an A-ring, then 1 € R, Aut(R") = (U(R)); and U(R) C
Z(R).

(2) If R is an A-ring, then the nilradical N(R) is contained in Z(R),
where N(R) = Nil(R) := {w € R : w nilpotent}.

(3) If aca, =a,oa forall « € Aut(R"), a € R, and 1 € R, then R is
an A-ring.

Recall that if G ~ R™ is the additive group of an A-ring, we call G an
A-group.

We will exhibit an example of an A-ring R such that (U(R)); = Aut(R™)
is not contained in the center of End(R™). This is also our first example of
an A-ring that is not an E-ring.

1.2. EXAMPLE. Let G = Z(2) ®Z and define a ring R with R™ = G and
with the multiplication

(e,2)(¢',2") = ((e2' +€'2) mod 2, 22)

for e,e’ € Z(2) = {0,1} and 2,2’ € Z. Let mod2 : Z — Z(2) be the natural
epimorphism. Then, letting matrices operate from the right,

End(G) = [Z%n@m %

is not a commutative ring (and thus not an E-ring), but

Aut(G) = [Z Ii}d 2 {170—1}]

is a commutative group, as one easily verifies. Let

a= [1 (1)] € Aut(G), o= H 8} € End(Q).

Then

10 10 10
m’b:[Qmon 0}:[0 0]’ but W:[l 0]’
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which shows Aut(G) & Z(End(G)). On the other hand,

( ) 1 0
S v mod2 1

( ) 1 0
©2) | v mod2 —1

} = (e + 22’ mod 2, 2) = (¢, 2)(2' mod 2,1),

} = (e + 22’ mod 2, —2) = (—e + 22’ mod 2, —2)

= (e, 2)(2' mod 2, 1),

which shows that G is an A-group. Also note that G allows two non-
isomorphic ring structures.

Since A-groups have commutative automorphism groups, we want to
collect some information about abelian groups with that peculiar property.
It is known [3, Corollary 115.2] that an abelian torsion p-group G has Aut(G)
commutative iff G is cocyclic or p = 2 and G =~ Z(2) @ Z(2°°). It seems that
the prime p = 2 always causes trouble for automorphisms!

Next we will look at mixed groups with commutative automorphism
group.

1.3. THEOREM. Let G be a mized group with Aut(G) commutative. Let
P = {p prime : t(G), # 0}. Then, for each p € P, there is a natural number
k, and a subgroup H®) such that G = Z(p») @ HP). If (p,k,) # (2,1),
then pH®) = H®) qnd t(HP)), = {0}. Moreover, H®) is fully invariant
in G. If (p,ky) = (2,1), then G = Z(2) @ H®, H? s 2-torsion-free and
Aut(H®)) induces only the identity on H? /2H®),

Proof. Assume that t(G) is not reduced, i.e. there is a prime p € P and
a subgroup K of G such that G = Z(p™) ® K. Since G is mixed, there is an
element k € K with infinite order. Let f : kZ — Z(p>°) with o(f(k)) > 2.
Then f extends to a homomorphism ¢ : K — Z(p>°). Consider

ot = [; (ﬂ b = [; _OJ € Aut(@).

Then

2¢p

which implies 2¢ = 0, a contradiction to 2p(k) = 2f(k) # 0.

Since t(G), is reduced, t(G), has a cyclic summand (a) with G = (a) & H
for some subgroup H of G. If t(H), # 0 we may repeat this step and find a
cyclic subgroup (b) of H such that G = (a) & (b) & L for some subgroup L
of G. It follows that Aut({a)® (b)) C Aut(G) is commutative, a contradiction
to [3, 115.2].

Thus G = Z(p*) @ H® and H® is p-torsion-free. If HP) # pH®)
there is an element in H®) /pk» H(®) that generates a direct summand of
order p*». Thus there is a ¢ € Hom(H®), Z(p*»)) such that ¢ is surjective.

_ 1 0 _ 1 0
e ) e A |
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Now construct 1™ and 1~ as above and conclude that 2 = 0. Thus p = 2
and ko = 1.

Now consider the case G = Z(2) ® H®. Recall that H® has no ele-
ments of order 2 and Aut(G) is commutative. Moreover, ({Ker(y) : ¢ €
Hom(H®) 7Z(2))} = 2H®?. Let 7 € Aut(H®)). Then

P = [(1) 2], o = [910 2] € Aut(G)

commute and so ¢ = me. This means that 0 = (=14 7)p and H(—1+7) C
Ker(p) for all o € Hom(H?),Z(2)). Thus H(—1+x)C2H and Aut(H) It jom
= {idg/2m }. The converse is easy to verify. m

1.4. THEOREM. Let G be a group with t(G)y = 0 and Aut(G) commu-
tative. If G = A® B then Aut(G) = Aut(A)x Aut(B). If G is an A-group,
then A and B are A-groups and both are fully invariant in G.

Proof. Let ¢ € Hom(B, A) and define 17/~ as in the proof of 1.3. Then
again we infer 2¢p = 0, which now implies that ¢ = 0. Thus Hom(A, B) =
0 = Hom(B, A) and Aut(G) = Aut(A) x Aut(B). Moreover, if R is a ring
with RT™ = G, then A and B are ideals and there are subrings S and T of R
such that R=S xT and ST =Aand TT = B. =

If t(G)2 # 0, we can say the following:

1.5. COROLLARY. Let G = Z(2) ® H with H not torsion. The following
are equivalent:

(I) Aut(G) is commutative.
(IT) (a) t(H)2 = 0 and Aut(H) is commutative.
(b) FEither 2H = H (and thus H is fully invariant in G), or 2H # H
and Aut(H) induces the identity on H/2H.

Proof. By Theorem 1.3, t(G)2 = Z(2) and thus t(H )2 = 0. Thus

Aut(Zg) 0

A(G) = | fom(H, Z(2))  Aut(H) |-

The rest is easy verification. m

The following example shows that the case 2H # H can actually occur:

1.6. ExXAMPLE. Pick three distinct odd primes p,q,r and define H =
(e1Z[1/p) ® e2Z[1/q]) + (e1 + e2)Z[1/r]. Then H is 2-reduced and Aut(H) =
{1,—1}. Thus, for G = Z(2) & H, we see that

1 0

AWG) = | Hom(m,2(2)) {1, -1}
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is commutative. Note that End(H) = Z, and thus

_ Z(2) 0

- |Hom(H,Z(2)) Z

Now let 6 : G — End(G) be a homomorphism. Since Hom(H,Z) = 0 we

infer 20(G) = 0 and there is no ring R, 1 € R, such that R = G. Thus G is
an example of a group G with Aut(G) commutative that is not an A-group.

End(G)

We will now determine which completely decomposable groups are A-
groups. We leave the easy proof to the reader.

1.7. THEOREM. Let G = @, A; with A; a subgroup of Q for all i € I.
Then Aut(G) is commutative if and only if the types of the A;’s are pairwise
incomparable. Moreover, G is an A-group if and only if Aut(G) is commu-
tative, I is finite, and the types of all the A;’s are idempotent if and only if
G is an E-group.

1.8. THEOREM. Let G be a mized group with Aut(G) commutative. Let
P = {p prime : t(G), # 0} and assume 2 ¢ P. Then there are natural
numbers k, such that t(G), = Z(p**) and t(G) = D,cpr Z(p*»). If P is
finite, then G = Z(Hpeppkp) @ H, where H is torsion-free and p-divisible
for allp e P.

If P is infinite, then there is a pure subgroup A of [[,cp Z(p*) and a
torsion-free, P-divisible group H such that G = A® H and both A and H

are fully invariant in G. Moreover, Aut(A) and Aut(H) are commutative
and Aut(G) = Aut(A) x Aut(H).

Proof. Let P’ be the set of all primes not in P. Let S =Z[1/p:p € P’].
Consider the short exact sequence 0 — t(G) — G — G/t(G) — 0. By
Theorem 1.3, {(G) = @D, p Z(p*») and G /t(G) is P-divisible. Now we tensor
by S and obtain 0 — t(G) =2 t(G)® S - G® S — (G/t(G)) ® S — 0 and
(G/t(G))® S is divisible. There are pure subgroups A and H of G such that
A® S is the reduced part of G® S and H ® S is the divisible part of G ® S.
Moreover, t(G®S) = t(G). This implies that ¢(G) C A, A/t(G) is P-divisible
and H is torsion-free. This shows that A is the P-adic closure of ¢(G) in G.
Since t(G) is P’-divisible, so is A. Now G C (A® S)® (H® S) = A® H.
Thus G = A@® H and A is a pure subgroup of the P-adic closure of ¢(G),
namely J[ . p Z(p*v). m

1.9. PROPOSITION. Let R = (Z(p™),+,*) be a unital ring with additive
group Z(p™). Then R is isomorphic to the ring Z(p™).

Proof. 1t is easy to see that there is a v € U(Z(p™)) such that zxy = vy
for all z,y € Z(p"). The map 6 : Z(p") — R with 6(z) = v~z is a ring
isomorphism. m
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1.10. THEOREM. Let G be a mizxed A-group and R an A-ring with
R* = G. Assume that t(G)2 = 0 and that G has no torsion-free summand.
Then P = {p prime : t(G), # 0} is infinite and R is a pure subring of
[Lep Z(p*r), where t(G), = Z(p*») for all p € P. Moreover, all such A-
rings are E-rings.

Proof. Since t(G), is fully invariant in G, the subring ¢(G) of R is iso-
morphic to the natural ring structure by 1.9. By 1.8, G is isomorphic to a
pure subgroup of Hpe p Z(p™), the P-adic completion of ¢(G). By continuity
we may assume that R is a subring of the natural ring [[ . p Z(p*»). Any
such ring is an E-ring (cf. [6]). =

The example at the beginning shows that the hypothesis t(G)2 = 0 is
needed in 1.10.

2. Torsion-free finite rank (tffr) A-rings. We will now consider
A-groups and A-rings that are torsion-free of finite rank (tffr). While it is
known that all E-rings R have N(R) = {0} (cf. [1, Corollary 14.7]), we can
only prove something weaker for A-rings.

2.1. PROPOSITION. Let R be a tffr A-ring and N = N(R) the nilradical
of R. Then N? = 0.

Proof. By aresult due to Beaumont—Pierce (see [1, Corollary 14.2]) there
is a subring T" of R and an integer n such that nR CT® N C R. Let s € N
and 6 : R — R be the map that is the composition of multiplication by n,
followed by the natural projection onto N, followed by the multiplication
by s € N. Then nNs is contained in the image of . Moreover, by 1.1(2),
s is nilpotent, and thus 6 is nilpotent. Now 1 — 6 € Aut(R™) and is thus a
multiplication. This shows that 6 is a multiplication by some element r € R.
Now n =nl € T and T C Ker(6), which implies that 0 = §(nl) = nf(1) =
nr and 7 = 0. Thus § = 0 and nNs = {0} for all s € N, which means
N? = {0}. m

2.2. THEOREM. If R is a tffr strongly indecomposable A-ring, then R is
an E-ring.

Proof. By a result due to J. D. Reid (cf. [3, 92.3]), QEnd(R™) is an
artinian algebra and a local ring in which all non-units are nilpotent. Let
¢ € End(R™) be such that ¢(1) = 0. Then Ker(yp) # {0} and ¢ induces an
element in QEnd(R™) that is nilpotent. Thus ¢ is nilpotent and 1 — ¢ €
Aut(R™) is a multiplication. This implies that ¢ is a multiplication with
©(1) = 0. Thus ¢ = 0 and Hom(R" /(1), R*) = {0}, which implies that R
is an E-ring. =

2.3. PROPOSITION. If R is a tffr A-ring of rank 2, then R is an E-ring.
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Proof. Let G = RT and let k be the number of distinct types of elements
of G. By another result due to Beaumont-Pierce (see [1, Theorem 3.2]), the
following are possible:

(a) k=1, G is strongly indecomposable or G = A ® B with A = B. In
the latter case, Aut(G) is not commutative.

(b) k = 2 and G is strongly indecomposable or else G = A @& B with
type(A) < type(B). In the latter case, Aut(G) is not commutative.

(¢) k =3 and G is strongly indecomposable or there is some k € N such
that kG C A® B C G and A, B have incomparable types. In the latter
case, if G =2 A® B, then G is an E-group, otherwise G is almost completely
decomposable but indecomposable and A, B are subrings of Q that are fully
invariant in G. Thus G is an E-group.

(d) £ > 3 and G is strongly indecomposable.

Thus we may assume that G is strongly indecomposable and G is an E-group
by Theorem 2.2. =

We now define a class of tffr rings in terms of their quasi-automorphisms
and quasi-units.

2.4. DEFINITION. A tffr ring R is called a strong A-ring if U(QEnd(R™))
=U(QR,), i.e. Ry and End(R™) have the same quasi-units.

Our goal is to show that all strong A-rings are actually E-rings. The
proof is presented in a sequence of propositions. Here is the first step:

2.5. PROPOSITION. Let R be a tffr ring, 1 € R. Then R is a strong
A-ring if and only if each element of U(QEnd(R™)) commutes with each
element of R, Thus {a € R : Ker(a,) =0} is contained in Z(R).

Proof. Suppose R is a strong A-ring and let o € U(QEnd(R™)) =
U(QR;). Then there is a natural number n and b € R such that na = b;.
Now b; commutes with each element of R,. Thus a commutes with each
element of R,.

To show the converse, let « € U(QEnd(R"1)) and a € R. Then for
all z € R we have a(za) = a(x)a and a(a) = a(l)a for all a € R. Let
B = a1 As before we have 3(a) = 3(1)a for all @ € R and it follows that
a(1)B(1) = 1, which shows that a(1) € U(QR) and o € U(QR;), and R is
a strong A-ring. =

2.6. PROPOSITION. Fach tffr strong A-ring R is an A-ring.

Proof. Let o € Aut(R"). Then there is a natural number n such that
na = r; for some r € R. Thus na(l) =r € nR and r = ns for some s € R,

and it follows that a = s;. Since a € Aut(R™), there is t € R with a(t) =1
and we have st = 1 and s is a unit in R. This shows that R is an A-ring. =
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2.7. PROPOSITION. Let R be a strong A-ring. Then U(QR) C QZ(R)
and U(QEnd(R™)) is commutative.

Proof. Let b be a quasi-unit of R. Then b, € U(QEnd(R")) = U(QR;)
and for some m € N we have mb, = a; for some a € R. Now mb = mb,(1) =
a;(1) = a and it follows that b, = b; and b is in the center of R. =

NoTE. If R is a tffr E-ring, then R is a strong A-ring, because in this
case End(R") = R;.

Next we show that strong A-rings quasi-decompose just like E-rings.

2.8. PROPOSITION. Let R be a strong A-ring such that RT™ = H ® K is
a quasi-decomposition. Then H, K are strong A-rings and Hom(H, K) =
0 = Hom(K, H).

Proof. There is a natural number n such that n(H @ K) C RC Ho K.
Let 1y : H® K — H and g : H & K — K be the natural projections.
Let H = 7g(R) and K’ = mg(R). Then H is quasi-equal to H' since
nH C H' C H. The same holds for K and K’. Thus, we may assume that
mr and T are onto. Let ¢ € Hom(H, K). With matrices operating on the
right, we have elements

L [n np __In ne
i (e R e
in End(R). Moreover, 7,9~ € U(QEnd(R")), a commutative group by
2.7. Thus ¥ "¢~ =1~ 9¢™* and ¢ = 0 follows. This shows Hom(H, K) =0 =
Hom(K, H).

For h € H, the map (nh), : nH — R is a homomorphism and (nh), :
H — H & K. Thus (nH)(nH) C H and also (nK)(nK) C K. Moreover
(nH)(nK) € HN K = 0. Thus (nH)(nK) = 0 = (nK)(nH). Now let
hi,ho € H. Then there are elements ki,ky € K with hi + k&1 € R and
ho+ ks € R. Tt follows that n?(hy +ky)(he + ko) = (nhy +nki)(nha +nks) =
(nh1)(nhe)+ (nki)(nks) = hg+ks € n?R C n?(H® K). Thus hy = n?hy for
some hy € H and we can define hihy = hy. This makes H into a ring and
the same works for K. This shows that n(H ® K) CRCH® K~ H x K
is an inclusion of subrings.

Let o € U(QEnd(H)). Then

b= [”Oa 2} € U(QEnd(R")).

Thus there is a natural number m such that my = (h + k); with h + k a
quasi-unit of R. We get mna = ¢ [ = h; and thus o € U(QH;). Thus H is
a strong A-ring and the same holds for K. =

Now we can prove our result:
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2.9. THEOREM. Let R be a tffr strong A-ring. Then R is an E-ring.

Proof. By 2.8 we have n(Ry X ... x Rg) € R C Ry X ... X Ry where
each R; is a strongly indecomposable strong A-ring and Hom(R;, R;) = 0
for each 1 <1 # j < k. By 2.2 and 2.6, each R; is an E-ring, which implies
that R is an E-ring (cf. [1, Corollary 14.7]). m

3. Large A-rings. While we have not been able to find tffr A-rings
that are not E-rings, we are more successful in the infinite rank case. We
will prove the following result:

3.1. THEOREM. Let k,u, A be infinite cardinals such that u* = p and
A = pt, the successor cardinal of p. Let S be an integral domain such
that |S| < K and ST is torsion-free and p-reduced for the prime integer p.
Moreover, assume that there is some p-adic integer m such that w is tran-
scendental over S. Then there exists an S-algebra R such that:

(a) |R| = X and R is an integral domain.
(b) End(R™) = Ri[y] &~ R[z]| and v is an injective ring homomorphism
of R but ~v is not surjective.

(¢) Aut(RT) = (U(9));.
Thus R is an integral domain and an A-ring that is not an E-ring.

We could prove this theorem in almost the same way as in the construc-
tion of large E-rings in [2], but we prefer to apply a more sophisticated
version of the Black Box as introduced in [5] because this new version is
easier to apply and also presents a A-filtration of our desired ring R. We
will present the main steps leading to the Strong Black Box [5] without
duplicating the proofs. Let S have the properties as given in 3.1. Then
Nicw p'S = {0} and S is Hausdorff in its p-adic topology.

Let B = S[zan 1 @ < A\, n < w| be the commutative polynomial ring
with indeterminates x, . Let M be the set of all monomials m € B, i.e.

m = Hle x8 - with e; > 0 and {(a;,n;) : 1 < i < k} a finite subset

QN5
of A X w. Each a € B has a unique representation a = ), ma,, where

am € S and A a finite subset of M. We define deg(m) = Ele e; to be the
degree of the monomial m. Note that B = €D, Sm is a free S-module.
Let B be the p-adic completion of B and let C, denote “contained as a
p-pure subgroup”. For any g = > ma,, € B C | Sm we define the
support of g to be [g] = {m € M : a,, # 0} and if M is a subset of B\, then
[M] = Ugenld)-

We define the A-support of g € B by [g]x = {a < A : there are m € [g],
n < w and m’ € M such that m = z, ,m'}. Note that [g]\ is an at most
countable set of ordinals below A and [g], is the set of all ordinals o < A such
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that some variable z, ,, actually shows up in the representation of g € Basa
multivariate polynomial. Finally we define an S-linear ring homomorphism
v:B — B by y(Tan) = Tans+1 foral a <X and n < w.

Next define a norm by |{a}|| = a + 1 for any & < A and ||M| =
sup,e |la| for any subset M C X. Moreover ||g|| = ||[g]x]| for any g € B.
Note that ||g|| = min{8 < X : [g]» € 5} and [g]x» C B holds iff g € Eg where
Bg = S[zan:a<f,n<w.

Fix, once and for all, bijections h,, : ¢ — « for all p < a < A such that
h, =1id, and for technical reasons we define hg = id,, as well for 3 < p.

3.2. DEFINITION. Define P to be a canonical subalgebra of B if P =
Slxan €I, n <w|for some I C X\ with |I| < & such that ho(I Np) =
INhg(p) for all a € 1.

Accordingly, an additive homomorphism ¢ : P — B is canonical if P
is canonical and ¢(P) C P. We also define [p] = [P], [¢]x» = [P]a, and
llell = || P]|. Moreover, let E be a stationary subset of \° = {a < X\ : a has
countable cofinality} such that A° — E is stationary in A as well.

We are now ready to state

3.3. STRONG BLACK Box. Let i, k, A, S, B, E be as above. Then there
is a family of canonical homomorphisms g, 3 < A, such that:

1) |legll € E for all B < .

2) lleell < llpsll for all o < 3 < A.

3) lllwela Nlgslall < llgslall for all o < B < A.

4) PREDICTION. For any homomorphism i : B — B and for any sub-
set I of X with |I| < k, the set {a € E : there is < X with ||[pg]A] = «
and I C [pg]r} is stationary in A.

(
(
(
(

REMARK. In the older version of the Black Box some ordinal A* with
IA*| = A was used to enumerate the canonical homomorphisms. In our set-
ting it turns out that A* = A: If there is a canonical homomorphism ¢, then
lloall = 6 < A and we have A (distinct) canonical subalgebras of cardinality
< k contained in a set of cardinality p with u® = . But there are only u
such subalgebras, and not A = u™ of them.

The one thing we need to prove in detail is the (algebraic) Step Lemma
which will allow us to eliminate unwanted homomorphisms.

3.4. STEP LEMMA. Let S, B, v be as above and 7 a p-adic integer which
is transcendental over S. Moreover, the following is given:

(1) Let P = S[zan: o€ I*, n <w] for some subset I* of X and let M

~

be a subring of B with P C, M C, B such that 7 is transcendental over
M and ~v(M) C M.
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(2) Thereis a set I ={o; i <w } CAwith a; < foralli < j<w
such that I C I* = [P]x and I N|g]x is finite for all g € M.

—

(3) Let ip: P — M be a homomorphism that is not in (M[y])|p.

Then there is some y € P such that ¥(y) & M’ = (M (y) : i < w])«-
Moreover,  is transcendental over M'. The element y will be either v =
> icw P Ta, 0 07y = x+bm with a suitable element b € P. Note that v*(z) =
YicwP'Ta, ke for all k < w. Also

(4) M and M' have the same group of units.

Proof. Let @ = ,_ p'®a,0 and assume (z) € M = (M[y'(y) :
i < w])«. Then for some a < w we have p®i(x) € M[y"(x) : i < w]. Note that
by the disjointness condition (2) the p-adic integer 7 is still transcendental
over M'. Let

(¥ p(e) = Y ma,

where m is a monomial in the elements ’yi(x), 1 < w. Choose a representation
such that N = max{deg(m) : m € T} is the least possible.

Assume N > 2. Now pick another variable g = x50 € P such that
none of the x5, occurs in any of the finitely many a,,, m € T, and define
y = = + mxg. Moreover, define M" = (M[y'(y) : i < w]). and assume
¥(y) € M". Then there are some ¢’ < w and b, € M and a set T" of
monomials in the variables 7*(y) such that

() P (x + Tg) = Z m/ by,
m/eT/

We now multiply equation (%) by p® and equation (sx) by p® and sub-
tract the former from the latter to obtain
(ox%) P (o) = Y pUmlbp — Y p¥man, € M.

m’'eT’ meT

For each monomial m’ € T” we form the monomial m” by simply erasing

the v(zom) term. (In other words, we set zp = 0.) Now we expand the

monomials m’ € T” and collect like terms by powers of . This turns (ss)
into

N'—1
(#) p*P(zo)m = 7 gno + Z 7rjgj+( Z p*m’ by, — Z pa/mam)
=1 m/ €T meT

Note that N' > 1, all g; € M, and (3, cq P by — ZmeTp“/mam)
€ M'. Moreover, 1(x¢) € M by hypothesis.

First of all, this implies ), p*m/bpy =32, p* may, =0and N/ =
N >2and {m” :m’ € T'} = T. Moreover p*b,,, = p“/am forallmeT.
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Note that gy = 0 as well, because N = N’ > 2. We need to have a closer
look at that term. Note that

O=gv= >  plabe= Y pUian

meT,deg(m)=N meT,deg(m)=N
where m is the monomial obtained from m (or m’) by replacing v¢(z) (or
vi(xo + ) by v (xo) = x5,. Since m — m is injective, and all zs5; are
transcendental over the a,,, by the choice of x5, we conclude that a,, =0
whenever m € T and deg(m) = N. This is a contradiction to the minimality
of N.

Thus we may assume that N = 1 and we have, by way of contradiction,
for = chosen as above,

(+) p*(x) = Zaﬂi(as) for some a; € M.

We define M’ as above as well.
Assume that p*y|p # Zl 0 @7". Then there is some w € P with

“h(w) # Zi:o a;v'(w). Let y = wr + x and define M" for this choice.
Now assume that

(++) p* h(wr + ) Z mby,
meT

where m is a monomial in the variables ~/(br + x). As above we subtract
p® (+) from p®(+-+) and obtain p® > mer Mbm — P Z?:o aiyi(z) € M.
Thus p* Y~ cp My, = p* Zf:o a;y*(z) and the maximal degree of polyno-
mials in 7" is at most 1. Thus we have

¥
(+++) Y (br 4 ) = Z biy' (wr + ).

i=0

Again we do our subtraction and obtain

K’ K
Pt p(w)m = p Z biv' (w)m +p > by’ (@) —p* Y aiy'(x)
1=0 =0

The fact that 7 is transcendental over M’ now tells us that £ = k' and
p*b; = p® a; for all 0 < i < k. Therefore,

k
Pt p(w) = p Z biv'(w) =p* > aiy (w
1=0

and it follows that ¥(w) = Zf:o a;'(w), a contradiction to the choice of w.
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Now we are finally down to the case where
k
Pl p = Z:aifyZ with a; € M.
i=0

We may pick some variable Z from P such that none of the v/ (), j < w,
occurs in any of the a; € M and get p*¢(x) = Z?:o a;y(z) € p®*M. Thus
a; = p*m; with m; € M and ¢[p = (Zf:o miv*) | p.

Now we need to prove (4). Suppose u € M’ is a unit in M’ such that
u ¢ M. Let k be minimal such that u € (M[yi(z) : 0 < i < k]), =
(M[yi(x) : 0 < i < k])[v*(z)])«. Note that v*(x) is transcendental over
My (z) : 1 < i < k]. If v is the inverse of u, then v € (M[y!(z) : 1 <i <
K])[v*(x)])« as well. This shows that k = 0, since in polynomial rings only
constants are units and we obtain u,v € (M|x]).. Since x is transcendental
over M, we infer u € M. m

We will now construct our ring R.

Let pg, B < A, be the sequence of canonical homomorphisms provided by
the Strong Black Box 3.3. Let Pz = S[zqa.n : @ € [¢]x, n < w] be the domain
of p3. We will construct R as the union of a Afiltration R = (J,_, RP of
p-pure subrings of B with R° = P, such that

() RC(S|UP]) and {geB:lgl<lesl} c R
a<f

If 3 is a limit ordinal, we let R® = Ua< g R*. Now suppose we have
already constructed R”. Consider the canonical homomorphism ¢g. Since
llpsll € A° is a limit ordinal of countable cofinality, there are ordinals v <
ap <...<a, <...in [pg]r such that ||¢g| = sup,,. {an}. Let I = {a, :
n < w}. Then I'N[g]y is finite by (%) and condition (2) in 3.3. If ¢z maps Pg
into R? and s is not induced by some map in RP [7], then apply the Step
Lemma to I, P = Pg, M = R®, and ¢ = ¢g. Thus there is some y = yg
€ ]35 and R = (RP[y%(yp) : i < w])« such that 7 is transcendental over
R and @s(ys) & RPHL. Moreover, RO+! satisfies (x), because ys € Pj.

If p5 € (R°[v)) [, then we do not need to apply the Step Lemma and
we simply define RFT! = (RP[y!(yg) : i < w])., where yg = >, p'Ta, 0.

3.5. LEMMA. Let R be the ring constructed above. The following hold:

(a) {7 (yg) : B <\, i <w} is transcendental over B.

(b) If g € R— B, then there is a finite subset N of A X w and a < w such
that p*g € B[y'(yg) : (B,4) € N] and [g]xN[y'(ys)]x is infinite iff (B,4) € N.

If llgll is @ limit ordinal, then ||g|| = ||lys|| where (B is the largest ordinal
such that (8,7) € N for some j < w. Moreover,
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(¢) RN Ps C RPHY for all B < .
(d) U(R) = U(S).

The proof of 3.5 is the same as that of Lemma 2.2.4 and 2.2.5(a) in [5]
and left to the reader. (For example, clause (c) follows from (b) and 3.3(3).
Moreover, (d) follows from 3.4(4).)

We will now show that End(R") = R[y]. Again, we can almost copy the
proof of 2.2.1 from [5]. We want to outline the proof anyway.

Let B = Uz R? be the ring constructed above. Obviously, R[y] C
End(R™) by the construction of R. Moreover, 7 is transcendental over each
RP and thus R and the R?, 3 < )\, form a Mfiltration of R. Let I =
{a; 1 i < w} C X be such that a; < «; for all i < j < w such that
n = sup;.,{a;} € A> = E # () by the choice of E. Then [g]) NI is finite for
all g € R.

Let ¢ € End(R") — R[y]. By the Step Lemma, there is some y € B
such that y = . _ pixam up to, possibly, a m-multiple of some element
in B, and ¥(y) € (R[Y'(y) : ¢ < w])s«. Now we apply 3.3 and conclude
that £ = {« € E : there is § < A such that ||pg| = « and g C ¢ and
[y] C [pp]} is stationary in A. Let C = {8 : ¥(R?) C RP}. This set is a
cub (closed unbounded subset) of A\. Thus E” = E' N C is stationary in A
and we may pick some n < a € E”. Then there is some 3 < X such that
o = sl and w5 C ¢ and [y] C [Pa] = [pg]. Recall that n — |y|| and
y € Pg. Thus RP*! was constructed such that ¥ (ys) = ¢s(ys) ¢ R°H! and
vs(yp) € ]35. By 3.5(c) we have ¥ (y3) € R, a contradiction to ¢ € End(R™).
This proves 3.1(b). To show part (c), observe that for any automorphism «
of RT, a is a unit in R[], which is isomorphic to a polynomial ring over
the integral domain R; ~ R. Thus o € R is a unit in R and by 3.5(d) we
have « e U(R) =U(S5). m

Added in proof (June 2003). The first named author has a forthcoming paper
answering the question stated in the introduction: All tffr A-rings are indeed E-rings.
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