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COUNTING LINEARLY ORDERED SPACES

BY

GERALD KUBA (Wien)

Abstract. For a transfinite cardinal κ and i ∈ {0, 1, 2} let Li(κ) be the class of all
linearly ordered spaces X of size κ such that X is totally disconnected when i = 0, the
topology of X is generated by a dense linear ordering of X when i = 1, and X is compact
when i = 2. Thus every space in L1(κ)∩L2(κ) is connected and hence L1(κ)∩L2(κ) = ∅
if κ < 2ℵ0 , and L0(κ) ∩ L1(κ) ∩ L2(κ) = ∅ for arbitrary κ. All spaces in L1(ℵ0) are
homeomorphic, while L2(ℵ0) contains precisely ℵ1 spaces up to homeomorphism. The
class L1(κ)∩L2(κ) contains precisely 2κ spaces up to homeomorphism for every κ ≥ 2ℵ0 .
Our main results are explicit constructions which prove that both classes L0(κ) ∩ L1(κ)
and L0(κ) ∩ L2(κ) contain precisely 2κ spaces up to homeomorphism for every κ > ℵ0.
Moreover, for any κ we investigate the variety of second countable spaces in the class
L0(κ) ∩ L1(κ) and the variety of first countable spaces of arbitrary weight in the class
L2(κ).

1. Introduction. Write |S| for the cardinality (size) of a set S. As
usual, ℵ0 := |N| and c := |R|, and 2κ is the size of the power set of any set
S with |S| = κ. Thus 2κ > κ for every cardinal number κ and c = 2ℵ0 > ℵ0.
The enigmatic region K of all cardinals κ with ℵ0 < κ < c is possibly very
large. In fact, it is consistent with standard set theory that |K| = c (see the
remark below).

A linearly ordered space X is a space whose topology is the order topology
of some linear ordering of X. Just as metric spaces, linearly ordered spaces
satisfy all separation axioms (they are completely normal). Naturally, if κ
is a transfinite cardinal and F is any family of mutually non-homeomorphic
linearly ordered spaces of size κ then |F| ≤ 2κ. The following theorem, which
is covered by [4, Theorem 3] and [5, 7.1], shows that the upper bound 2κ

can be achieved for every cardinal κ ≥ c and for κ = ℵ0.
Theorem 1.

(i) For every cardinal κ ≥ c there exist 2κ mutually non-homeomorphic
connected and compact linearly ordered spaces of size κ.

(ii) There exist c mutually non-homeomorphic linearly ordered spaces of
size ℵ0.
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Let us call a space X densely ordered when its topology is generated by a
dense linear ordering (i.e. infinitely many points lie between any two points).
Clearly, every connected linearly ordered space is densely ordered and every
densely ordered space is dense in itself. A compact linearly ordered space is
densely ordered if and only if it is connected (cf. [8, 39.7, 39.8]). If X is a
linearly ordered space with |X| < c then X is totally disconnected (cf. [2,
6.1.4]). Thus there are two natural directions to modify the combination
connected plus compact in order to raise two interesting counting problems
for linearly ordered spaces of any size in the region K and, more generally,
for totally disconnected linearly ordered spaces of uncountable size. These
two problems are solved by the following theorems which also complement
Theorem 1(i) in interesting ways.

Theorem 2. For every cardinal κ > ℵ0 there exist 2κ mutually non-
homeomorphic totally disconnected densely ordered spaces of size κ.

Theorem 3. For every cardinal κ > ℵ0 there exist 2κ mutually non-
homeomorphic scattered and compact linearly ordered spaces of size κ.

Theorem 3 has the following important consequence.

Corollary 1. For every cardinal κ > ℵ0 there exist precisely 2κ com-
pact Hausdorff spaces of size κ up to homeomorphism.

(Notice that, by the first argument in the proof of Theorem 5 below,
one cannot find more than 2κ non-homeomorphic compact Hausdorff spaces
of size κ for any cardinal κ.) As a consequence of a famous classification
theorem due to Mazurkiewicz and Sierpiński [6], there exist precisely ℵ1
compact Hausdorff spaces of size ℵ0 up to homeomorphism, and they all
are linearly ordered spaces. (ℵ1 is the smallest cardinal greater than ℵ0,
and hence ℵ1 = minK provided that K 6= ∅.) Therefore, Corollary 1 and
Theorem 3 would be either unprovable or false for κ = ℵ0. Also in Theorem 2
we have to exclude the case κ = ℵ0 because (in view of [2, 6.2.A.d]) any
dense-in-itself and countable linearly ordered space is homeomorphic to the
Euclidean space Q. Recall that a Hausdorff space is scattered if and only
if it does not contain a non-empty dense-in-itself point set. Note that any
scattered and compact Hausdorff space is totally disconnected (see [8, Fig. 9]
and [2, 6.2.9]). Note also that any compact Hausdorff space of size smaller
than c is scattered (cf. [2, 3.12.11]).

An essential step in proving Theorem 2 is the following theorem.

Theorem 4. If ℵ0 < κ ≤ c then there exist 2κ mutually non-homeomor-
phic dense and totally disconnected subspaces X of R with |X| = κ.

Theorem 4 (together with Theorem 1(ii)) also solves the counting prob-
lem concerning second countable linearly ordered spaces because any second
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countable linearly ordered space is homeomorphic to a subspace of the Eu-
clidean space R (cf. [2, 4.2.9, 6.3.2.c]) and, clearly, if X is a dense subspace
of R then the order topology of the naturally ordered set X equals the
Euclidean subspace topology of X. As we will see, it is rather easy to estab-
lish the conclusion of Theorem 4 for all cardinals κ ≤ c with 2κ > c. The
challenge is to prove it for all uncountable cardinals κ with 2κ = c.

Remark. For any cardinal κ in the enigmatic region K it is undecidable
whether 2κ > c or 2κ = c. (This is a trivial consequence of Easton’s Theorem
[3, 15.18].) Moreover, it is consistent with standard set theory that there
exist c cardinals κ < c such that 2κ = c for infinitely many κ < c, and 2κ > c
for infinitely many κ < c. (Because if γ is the smallest ordinal number with
γ = ℵγ and cf(γ) = ℵω+2 then, by applying Easton’s Theorem [3, 15.18], it
is consistent with set theory that 2ℵ0 = 2ℵω+1 = ℵγ and 2ℵω+2 = ℵγ+1.) It
is also worth mentioning that the popular hypothesis that c is a real-valued
measurable cardinal implies that |K| = c (cf. [3, 10.15]) and 2κ = c for every
κ ∈ K (cf. [3, 22.2]).

Since the natural ordering of a dense subset of R is a dense linear
ordering, Theorem 4 also solves the counting problem concerning second
countable densely ordered spaces. The counting problem concerning second
countable compact linearly ordered spaces is solved by the Mazurkiewicz–
Sierpiński theorem [6] and by the following interesting theorem. (Note that
if X is a first countable compact Hausdorff space then either |X| ≤ ℵ0 or
|X| = c; see [2, 3.12.11.d]. Note also that the weight of a compact Hausdorff
space can never be greater than its size; see [2, 3.1.21].)

Theorem 5. Let κ ≤ c be a transfinite cardinal. Then up to homeomor-
phism there exist precisely 2κ first countable compact Hausdorff spaces X
such that |X| = c and κ is the weight of X. Moreover, there exist 2κ mu-
tually non-homeomorphic separable, dense-in-itself, first countable, compact
linearly ordered spaces of size c and weight κ.

Note that the size of a dense-in-itself compact Hausdorff space cannot
be smaller than c (cf. [2, 3.12.11.a]). Furthermore, it is plain that any sep-
arable linearly ordered space is first countable. As a consequence, if X is a
separable linearly ordered space then |X| ≤ c. (Consider a linearly ordered
compactification Y ⊃ X of X constructed via Dedekind cuts as in [7, The-
orem 2.32]. Then Y must also be separable, hence first countable, whence
|Y | ≤ c.) Therefore, the counting problem concerning separable linearly
ordered spaces is solved by Theorems 1(ii) and 4.

Remark. In [5] we have shown that up to homeomorphism there are
precisely 2κ metrizable spaces of size κ for every κ ≥ c and also for κ = ℵ0.
But we did not deal with metrizable spaces of sizes in the enigmatic region
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ℵ0 < κ < c. This gap in a complete solution of the fundamental counting
problem concerning metric spaces is now closed by Theorem 4.

2. Preparation of the proofs. Let Ω be the canonically well-ordered
class of all ordinal numbers (with N ∪ {0} ⊂ Ω). Note that any non-empty
subset of the class Ω has a well-defined supremum. If α, β ∈ Ω then let
[α, β] := {ξ ∈ Ω | α ≤ ξ ≤ β} and [α, β[ := [α, β] \ {β} and ]α, β[ :=
[α, β] \ {α, β}. If we speak of the space [α, β], [α, β[ or ]α, β[ then we refer
to the order topology of the canonical well-ordering. So we may say that for
α < β the space [α, β] is compact and scattered.

Define |α| := |[0, α[| for each α ∈ Ω. (This definition is a tautology if
ordinal numbers are defined in the standard way as in [3] where α = [0, α[
for every α ∈ Ω.) As usual we consider cardinal numbers to be defined
as initial ordinal numbers. So for each cardinal number κ we have κ =
min{γ ∈ Ω | |γ| = κ}. In particular, the ordinal ω = supN equals the cardi-
nal ℵ0 and ω1 = sup{α ∈ Ω | |α| = ℵ0} = min{α ∈ Ω | |α| > ℵ0} equals the
cardinal ℵ1.

For any cardinal κ let (as usual) κ+ denote the smallest cardinal greater
than κ. (For example, ℵ1 = ℵ+0 .) Clearly, for cardinals κ and ordinals α we
have |α| = κ if and only if κ ≤ α < κ+.

For ξ ∈ Ω we write (as usual) ωξ for the ordinal power with basis ω
and exponent ξ. So all spaces [0, ωξ] are compact and for ξ > 0 we have
|[0, ωξ]| = max{ℵ0, |ξ|}. In particular, |[0, ωξ]| = |ξ| for every ordinal ξ ≥ ω.

The natural way to prove our theorems is to use the powerful machinery
of Cantor derivatives. Let X be a Hausdorff space. If A is a point set in X,
then the first derivative A′ = A(1) of A is the set of all limit points of A
in X. (Note that A′ ⊂ A if and only if A is closed, whereas A ⊂ A′ if and
only if A is dense in itself.) The higher derivatives are defined recursively in
the following way. For α ∈ Ω we put A(α+1) := (A(α))′ where (since 0 ∈ Ω)
A(0) := A. And A(λ) :=

⋂
{A(α) | α ∈ Ω ∧ α < λ} if λ > 0 is a limit ordinal.

For 0 6= α ∈ Ω the point set A(α) is always closed. Clearly, A(α) ⊃ A(β)

whenever 0 < α ≤ β, and for A ⊂ B ⊂ X we have A(α) ⊂ B(α) for every
α ∈ Ω.

The following lemma is evident. (Historically, Cantor’s definition of the
ordinal powers of ω is designed precisely, so that the following is true.)

Lemma 1. Let 0 6= ξ ∈ Ω. In the compact space [0, ωξ], for every ordinal
α > 0 the point sets [0, ωξ[(α) and [0, ωξ](α) coincide, and they contain the
point ωξ if and only if α ≤ ξ. And [0, ωξ](ξ) = [0, ωξ[(ξ) = {ωξ}.

Remark. If κ is a transfinite cardinal then (by Lemma 1)

Fκ = {[0, ωξ] | ξ ∈ Ω ∧ κ ≤ ξ < κ+}
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is a family of mutually non-homeomorphic compact, scattered linearly or-
dered spaces of size κ with |Fκ| = κ+. But this is not sufficient to prove
Theorem 3 (within standard set theory) because (in view of [3, 15.18] and
[3, 5.17]) the inequality κ+ < 2κ is consistent with standard set theory for
every transfinite cardinal κ.

If X is any Hausdorff space then let

X(Ω) :=
⋂
{X(α) | α ∈ Ω} =

⋃
{A ⊂ X | A ⊂ A′}

denote the perfect kernel, i.e. the maximal dense-in-itself point set in X.
(Thus X is scattered if and only if X(Ω) = ∅.) Clearly, X(Ω) is closed,
and we have X(Ω) = X(α) and (X \ X(Ω))(α) = ∅ for some α ∈ Ω (with
α < |X|+).

Consequently, the class

Σ(X) := {α ∈ Ω | ((X \X(Ω))(α) \ (X \X(Ω))(α+1)) ∩X(Ω) 6= ∅}
is a set and 0 6∈ Σ(X). One may regard Σ(X) as a sort of signature set of
the space X since, naturally, two spaces X1, X2 cannot be homeomorphic if
Σ(X1) 6= Σ(X2).

As usual, a point x in a Hausdorff space is a condensation point if and
only if every neighborhood of x contains uncountably many or, equivalently,
at least ℵ1 points. Let cp(X) denote the set of all condensation points in X
and let b(X) denote the boundary of the point set cp(X) in the space X.
Clearly, cp(X) is closed, whence b(X) ⊂ cp(X). Thus x ∈ b(X) if and only if
every neighborhood of x contains uncountably many points amongst which
there is a point y such that some neighborhood of y contains only countably
many points.

3. Proof of Theorem 4

Lemma 2. Let C be a set of size c and let F be a family of separable
Hausdorff spaces such that the underlying sets are all contained in C. If
|F| > c then F contains a family G with |G| = |F| such that the spaces in G
are mutually non-homeomorphic.

Proof. Clearly, any homeomorphism between Hausdorff spaces is com-
pletely determined by the values at the points of a dense subset of its domain.
Naturally, there are precisely c mappings from a countable non-empty set
into C. Consequently, if H is a family of homeomorphic spaces and H ⊂ F
then |H| ≤ c. Hence the proof is finished by applying a straightforward
counting argument.

In order to prove Theorem 4, let κ be a cardinal with ℵ0 < κ ≤ c. We
distinguish two cases: 2κ > c and 2κ = c. Assume firstly that 2κ > c. In this
case it is easy to find a family G such that |G| = 2κ and the members of G



6 G. KUBA

are mutually non-homeomorphic dense and totally disconnected subspaces
X of R of size κ. Let D be a countable set of irrational numbers such that
D is dense in R, e.g., D = {x+ π | x ∈ Q}. Let

F = {X | Q ⊂ X ⊂ R \D ∧ |X| = κ}.
Then, of course, |F| = 2κ. Since |F| > c, we may apply Lemma 2 for C = R
in order to find an equipollent subfamily G of F such that distinct spaces in
G are never homeomorphic.

This proves both the conclusions in Theorems 2 and 4 for all cardinals
κ ≤ c with 2κ > c. To conclude the proof of Theorem 4, we have to settle the
case where ℵ0 < κ ≤ c and 2κ = c. This is done in the following theorem.

Theorem 6. For every cardinal κ with ℵ0 < κ ≤ c there exist c mutually
non-homeomorphic totally disconnected and dense subspaces X of R with
|X| = κ.

Remark. If 2ℵ1 > c then in view of Lemma 2 it is easy to find 2ℵ1

mutually non-homeomorphic dense subspaces X of R such that not only
|X| = ℵ1, but also |X ∩ [a, b]| = ℵ1 whenever a < b. In view of [1] this is not
possible if 2ℵ1 = c.

4. Proof of Theorem 6. Fix ℵ0 < κ ≤ c and let Nu be the set of
all odd natural numbers, and let Lκ be any subfield of R with |Lκ| = κ.
(For example, let T be a transcendence basis of R over Q, and define Lκ
by adjoining precisely κ numbers from T to Q.) We choose a field only to
guarantee that Q ⊂ Lκ, and that Lκ ∩ [x, y] has size κ and is dense in [x, y]
whenever x < y. Although 2κ > c for κ = c, we do not exclude the case
κ = c in Theorem 6. (In doing so we make sure that Theorem 6 is not a
vacuous statement.) Therefore we also assume that the field Lκ is not equal
to R (or, equivalently, that Lκ is totally disconnected).

For each n ∈ Nu choose a compact, countable subset Kn of [n, n+ 1]∩Q
with minKn > n and maxKn = n+1 so that the naturally ordered set Kn is

order-isomorphic to the well-ordered set [0, ωn]. Then the kth derivativeK
(k)
n

is infinite whenever k < n and empty whenever k > n and K
(n)
n = {n+ 1}.

Let ϕ be an order-isomorphism from [0, ωn] onto Kn.
Define Jn as the family of all intervals [ϕ(α), ϕ(α + 1)] where α runs

through all even ordinals smaller than ωn. (Recall that an ordinal α is even if
and only if α = λ+n where λ is a limit ordinal and n is an even non-negative
integer.)

Then Jn is a family of mutually exclusive compact intervals of positive
length so that Kn is the boundary of the point set

⋃
Jn in the Euclidean

space R. (Notice that the only limit point of
⋃
Jn outside

⋃
Jn is n + 1.)

Therefore, for the dense subspace Vn = [n, n + 1] ∩ (Q ∪ (Lκ ∩
⋃
Jn)) of
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the compact Euclidean space [n, n + 1] with |Vn| = κ, we have cp(Vn) =
(Lκ ∩

⋃
Jn) ∪ {n+ 1} and b(Vn) = Kn.

Let D denote the classical Cantor ternary set. So D ⊂ [0, 1] is a compact,
nowhere dense subset of the Euclidean space R with minD = 0 and with
maxD = 1, and the space D is dense in itself. Hence for the Euclidean space
Y = D ∪ ([0, 1] ∩Q) we have b(Y ) = cp(Y ) = D.

Let {I1, I2, . . .} be the (countable) collection of all intervals [a, b] ⊂ [0, 1]
with a, b ∈ Q and a < b such that D ∩ ]a, b[ 6= ∅. Clearly, we always have
|D ∩ Ik| = c, and so for each k ∈ N we can choose a set Tk ⊂ D ∩ Ik with
|Tk| = ℵ1. Put

D0 := (Q ∩ D) ∪
∞⋃
k=1

Tk.

The set D0 is a thinned-out modification of the Cantor ternary set such
that |D0| = ℵ1, and in the Euclidean space R the set D0 is dense in itself
and its closure is the whole set D. Therefore, also for the Euclidean space
Y0 = D0 ∪ ([0, 1] ∩Q) (where |Y0| = ℵ1) we have the essential identities

b(Y0) = cp(Y0) = D0.

Now put
Dn := {x+ n+ 1 | x ∈ D0}

for every n ∈ Nu, whence Dn is a shifted version of D0 and n + 1 ∈ Dn ⊂
[n+ 1, n+ 2].

Finally, if ∅ 6= S ⊂ Nu then put

X[S] := Q ∪
⋃
n∈S

((
Lκ ∩

⋃
Jn
)
∪Dn

)
.

Each X[S] is a dense, totally disconnected subspace of R with |X[S]| = κ
and we always have

b(X[S]) =
⋃
n∈S

(Kn ∪Dn).

Moreover, the perfect kernel of the Euclidean space b(X[S]) is given by

b(X[S])(Ω) = b(X[S])(ω) =
⋃
n∈S

Dn.

Consequently, Σ(b(X[S])) = S for each non-empty set S ⊂ Nu. (Clearly,
the signature set of the space b(X[S]) is a subset of N.) So the c spaces
X[S] (∅ 6= S ⊂ Nu) are mutually non-homeomorphic, and this concludes the
proof.

5. Proof of Theorem 2. We will prove Theorem 2 in two steps. Assume
that κ ≥ c. (This is enough since the case κ ≤ c is already settled by
Theorem 4.) Put K := {α ∈ Ω | α < κ}, whence |K| = κ. In the first step
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we construct for each S ⊂ K \ {0} a totally disconnected linearly ordered
space YS of size κ such that Σ(YS) = S. In the second step we expand
each space YS to a totally disconnected densely ordered space ZS such that
|ZS | = κ and b(ZS) = YS .

Consider the set K × (Z \ N) equipped with the lexicographic ordering
generated by the well-ordering of K and the natural ordering of the integers.
(In this ordering (k1, z1) is smaller than (k2, z2) when either k1 = k2 and
z1 < z2, or k1 < k2.) One can say that the linearly ordered set K × (Z \ N)
is built from K by replacing each α ∈ K with a copy of Z \ N. Naturally,
the linearly ordered space K × (Z \ N) is discrete and of size κ.

Expand the linearly ordered set K × (Z \N) to a linearly ordered set YS
for every subset S of K \ {0} in the following way.

(i) For each ξ ∈ S replace the point (ξ, 0) in the linearly ordered set
K × (Z \N) with a copy Dξ of the naturally ordered Cantor ternary
set D.

(ii) For each ξ ∈ S replace the point (ξ,−1) (which is the predecessor of
(ξ, 0) in K × (Z \N)) with a copy Wξ of the well-ordered set [0, ωξ[.

By construction, Wξ has no maximum and supWξ = minDξ, and hence

W
(ξ)
ξ = {minDξ} for each ξ ∈ S. Clearly, |YS | = κ. The mutually disjoint

sets Wξ ∪Dξ(ξ ∈ S) are closed and the subspace YS \
⋃
{Wξ ∪Dξ | ξ ∈ S} is

open and discrete, and each Dξ is dense in itself and closed. Consequently,

Y
(Ω)
S =

⋃
ξ∈S Dξ and hence Σ(YS) = S for each S ⊂ K \ {0}. (Notice that

YS = K × (Z \ N) if S = ∅.)
Now in order to conclude the proof, let K 6= R be a subfield of R with

|K| = c. In the linearly ordered set YS we replace Dξ with a copy of D ∪
([0, 1] ∩ Q) for every ξ ∈ S and then, by using even and odd ordinals,
in an alternating way we fill the vacuum between every remaining pair of
consecutive points with copies of Q and K, respectively, and clearly we can
do this so that a totally disconnected densely ordered space ZS of size κ is
created where YS is a subspace of ZS and b(ZS) = YS .

Remark. It is essential that all building blocks Wξ ∪Dξ in the linearly
ordered set YS have copies of Z\N as discrete buffers on the left—otherwise
it could happen that S 6= Σ(YS) and also that b(ZS) 6= YS . (For example, if
in the definition of YS the basic set K × (Z \N) is replaced by K × {−1, 0}
then for S = N ∪ {ω2} we have ω ∈ Σ(YS) but ω 6∈ S.)

6. Proof of Theorem 3. It is appropriate to distinguish between reg-
ular and singular cardinal numbers. Singular cardinals are those which are
not regular. A cardinal κ is regular if and only if supA < κ whenever
∅ 6= A ⊂ [0, κ[ and |A| < κ. Topologically speaking, a cardinal κ is regular
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if and only if in the compact linearly ordered space [0, κ] the first derivative
of a point set A with |A| < κ never contains κ. For example, ℵ0 and ℵ1 are
regular. Note that κ+ is regular for every cardinal κ (cf. [3, 5.3]).

Let X be a scattered Hausdorff space and κ > ℵ0 be a regular cardinal
number. Let us call a point x ∈ X a κ-condensation point if and only if
|U | ≥ κ for every neighborhood U of x and |U | = κ for some neighborhood
U of x. Let Cκ(X) denote the set of all κ-condensation points. (For example,
Cκ([0, κ]) = {κ}.) For x ∈ X let Ωκ(x) denote the class of all ordinals α
such that there exists a point set A ⊂ X with |A| < κ and x ∈ A(α). Since
X is scattered, for every x ∈ X the class Ωκ(x) is a set and, moreover,
Ωκ(x) ⊂ [0, κ[ (because A(κ) = ∅ whenever A ⊂ X and |A| < κ). The set
Ωκ(x) is never empty since, trivially, 0 ∈ Ωκ(x) for every x ∈ X. So we may
define a signature set with respect to the scattered space X and the regular
cardinal κ by

Σ[X,κ] := {supΩκ(x) | x ∈ Cκ(X)}.

Clearly, two scattered spaces X1, X2 cannot be homeomorphic if Σ[X1, κ]
6= Σ[X2, κ] for some regular cardinal κ. If κ > ℵ0 is a regular cardinal
then Σ[[0, κ], κ] = {0} and, more generally in view of the following lemma,
Σ[[0, β], κ] ⊂ {0, κ} for every β ∈ Ω. (The case Σ[[0, β], κ] = {0, κ} may
occur, for example if κ = ℵ1 and β = ω1 · ω.)

Lemma 3. Let κ > ℵ0 be a regular cardinal. For β ∈ Ω consider the
space X = [0, β]. If γ ∈ Cκ(X) then either Ωκ(γ) = [0, κ[ or Ωκ(γ) = {0}.

Proof. Since γ ∈ Cκ(X), if α1 < γ and α2 ∈ Ω and |[α1, α2]| < κ then
[α1, α2] ⊂ [0, γ[. Clearly, if supA 6= γ whenever ∅ 6= A ⊂ [0, γ[ and |A| < κ
then Ωκ(γ) = {0}. So assume that there is a non-empty set A ⊂ [0, γ[ such
that |A| < κ and supA = γ. For ξ ∈ Ω put Uξ :=

⋃
α∈A[α, α+ ωξ]. If ξ < κ

then |[α, α + ωξ]| = |[0, ωξ]| < κ for every α ∈ A; hence Uξ ⊂ [0, γ[ and so

supUξ = supA = γ. Thus |Uξ| < κ and (by Lemma 1) γ ∈ U (ξ)
ξ for every

ξ < κ, and hence Ωκ(γ) = [0, κ[, completing the proof.

If (X,≺) is a linearly ordered set then put [a, b]≺ := {x ∈ X | a � x � b}
and ]a, b[≺ = [a, b]≺ \ {a, b} whenever a, b ∈ X. Furthermore, in the usual
sloppy way, if A is a set of ordinals then let A∗ be the set A equipped with
the backwards linear ordering of the canonical well-ordering of Ω. (In other
words, if α and β are elements of the linearly ordered set A∗ then α is smaller
than β if and only if for the ordinal numbers α, β in the well-ordered class
Ω we have β < α.)

Lemma 4. Let (X,≺) be a linearly ordered set equipped with the order
topology and assume that the space X is scattered. Let 0 6= ξ ∈ Ω and let κ
be a regular cardinal number with κ > |ωξ|. Let x, y, z be three points in X
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with x ≺ z ≺ y so that [x, z]≺ is order-isomorphic to [0, ωξ] and [z, y]≺ is
order-isomorphic to [0, κ]∗. Then Cκ(X) ∩ ]x, y[≺ = {z} and Ωκ(z) = [0, ξ].

Proof. Clearly, z is the only κ-condensation point of X strictly between
x and y. Since κ is regular and [z, y]≺ is order-isomorphic to [0, κ]∗, there
is no set A ⊂ [z, y]≺ with |A| < κ and z ∈ A′. Therefore, if 0 6= α ∈ Ω and
z ∈ A(α) for a point set A in the space X with |A| < κ then we already have
z ∈ (A ∩ [x, z]≺)(α). On the other hand, ([x, z]≺)(ξ) = {z} by Lemma 1 and
|[x, z]≺| = |[0, ωξ]| < κ. Consequently, Ωκ(z) = [0, ξ], completing the proof.

Now to prove Theorem 3 let κ > ℵ0 be a cardinal and put L = [ω, κ]. Let
G be the family of all non-empty sets S of successor ordinals α+ 1 where α
is a limit ordinal in L \ {κ}. So if ξ ∈ S ∈ G then |ξ| = |[0, ωξ]| < κ. Clearly,
|G| = 2κ. For every S ∈ G let

HS := L× {0} ∪
⋃
ξ∈S

({ξ} × [0, ωξ] ∪ {ξ + 1} × [0, κ[∗)

and

GS := L× {0} ∪
⋃
ξ∈S

({ξ} × [0, ωξ] ∪ {ξ + 1} × [0, |ξ|+[∗)

be equipped with the lexicographic ordering. One can say that the linearly
ordered set HS resp. GS is constructed from the well-ordered set L by re-
placing ξ with a copy of [0, ωξ] and ξ+1 with a copy of [0, κ[∗ resp. [0, |ξ|+[∗

for each ξ ∈ S.

Then the corresponding linearly ordered spaces HS and GS are of size κ
and it is evident that all these spaces are scattered. They are also compact
since the ordering is complete with a maximum and a minimum (cf. [8, 39.7]).
We claim that the spaces HS (S ∈ G) are mutually non-homeomorphic if κ
is regular, and the spaces GS (S ∈ G) are mutually non-homeomorphic if κ
is singular.

Assume firstly that κ is regular, let S ∈ G and consider the space HS .
Clearly, (κ, 0) ∈ Cκ(HS) and Ωκ((κ, 0)) = {0}. Obviously, (γ, 0) ∈ Cκ(HS)
if and only if γ = κ or γ = sup(S ∩ [0, γ[) where S ∩ [0, γ[ 6= ∅. If (κ, 0) 6=
(γ, 0) ∈ Cκ(HS) then Ωκ((γ, 0)) = [0, κ[ and hence supΩκ((γ, 0)) = κ,
because if ξ ∈ S ∩ [0, γ[ and α < κ then {ξ+ 1}× [0, ωα]∗ ⊂ {ξ+ 1}× [0, κ[∗

and ∣∣∣⋃{{ξ + 1} × [0, ωα]∗ | ξ ∈ S ∩ [0, γ[}
∣∣∣ < κ

for arbitrarily large exponents α < κ. In view of Lemma 4, Cκ(HS)\L×{0} =
{(ξ, ωξ) | ξ ∈ S} and supΩκ((ξ, ωξ)) = ξ for every ξ ∈ S. Therefore we have

S = Σ[HS , κ] \ {0, κ}

for every S ∈ G and this proves Theorem 3 for regular κ > ℵ0.
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Assume now that κ is a singular cardinal and let R denote the set of
all regular uncountable cardinals smaller than κ. (Notice that |ξ|+ ∈ R
whenever ω ≤ ξ < κ.) We claim that every S ∈ G is completely determined
by the topology of GS via

S =
( ⋃
λ∈R

Σ[GS , λ]
)
\ ({0} ∪ R).

On the one hand, if ξ ∈ S then ξ 6= 0, ξ 6∈ R, |ξ|+ ∈ R and (ξ, ωξ)
is a |ξ|+-condensation point in GS with supΩ|ξ|+((ξ, ωξ)) = ξ in view of
Lemma 4.

On the other hand, let y be a λ-condensation point in GS where λ ∈ R,
and assume firstly that y 6∈ L× {0}. Then y lies in

Bξ := {ξ} × [0, ωξ] ∪ {ξ + 1} × [0, |ξ|+[∗

for some ξ ∈ S. Since the points minBξ = (ξ, 0) and maxBξ = (ξ + 1, 0)
are isolated in the space GS , the point y must be a λ-condensation point
in the space Bξ, whence λ ≤ |Bξ| = |ξ|+. In the case λ = |ξ|+ we must

have y = (ξ, ωξ) and hence supΩλ(y) = ξ ∈ S by Lemma 4. In the case
λ < |ξ|+, the point y must be the maximum resp. minimum of a copy of [0, γ]
resp. [0, γ]∗ within the linearly ordered set Bξ while γ is a λ-condensation
point in the space [0, γ], whence supΩλ(y) ∈ {0, λ} by Lemma 3.

Assume secondly that y = (x, 0) for x ∈ L. If x is a λ-condensation point
in the basic space L then supΩλ(x) ∈ {0, λ} in the space L and, clearly,
supΩλ(y) ∈ {0, λ} in the space GS as well. If x 6∈ Cλ(L) then y ∈ Cλ(GS)
forces x to be the supremum of a set S̃ ⊂ {ξ ∈ S | ξ < x ∧ |ξ|+ = λ} with
|S̃| < λ, and therefore (by the same argument as for the space HS) we must
have Ωλ(y) = [0, λ[ and hence supΩλ(y) = λ. So in any case the ordinal
supΩλ(y) lies in S ∪ {0, λ} if y ∈ Cλ(GS) for λ ∈ R.

Remark. It is not pure chance that the size and weight of each space
HS resp. GS coincide. Actually, if X is a scattered linearly ordered space
of weight λ then λ = |X|. (Trivially, λ ≤ |X|. If X̃ is the set of all x ∈ X
such that |U | > λ for every neighborhood U of x then from the assumption
λ < |X| we conclude that |X \ X̃| ≤ λ and hence the point set X̃ is both
non-empty and dense in itself, whence X is not scattered.)

7. Proof of Theorem 5. First of all, if F is a family of mutually
non-homeomorphic compact Hausdorff spaces of weight κ then |F| ≤ 2κ,
because each space X ∈ F is homeomorphic to a closed subspace of the
Hilbert cube [0, 1]κ (cf. [2, 3.2.5]) and, naturally, the compact space [0, 1]κ

contains precisely 2κ closed sets. So to prove Theorem 5 it is enough to
exhibit 2κ mutually non-homeomorphic separable, dense-in-itself, compact
linearly ordered spaces of weight κ for every transfinite cardinal κ ≤ c.
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Again we distinguish two cases: 2κ > c and 2κ = c. The (only) two cardinals
for which we can decide which case actually occurs are ℵ0 and c, since
2ℵ0 = c and 2c > c. The conclusion of Theorem 5 for κ = ℵ0 is covered by
the following theorem. (Note that if X is a closed subspace of R then the
order topology of the naturally ordered set X equals the Euclidean subspace
topology of X.)

Theorem 7. The Euclidean space R contains c mutually non-homeo-
morphic compact subspaces which are dense in itself (and hence of size c).

Proof. For n ∈ Nu let Kn ⊂ [n, n + 1] and Jn be as in the proof of
Theorem 6. Let h(x) = (2/π) arctanx, whence h is a strictly increasing
function which maps [0,∞[ onto [0, 1[. For every infinite S ⊂ Nu consider
the compact and dense-in-itself Euclidean space

AS := h
( ⋃
n∈S

(
{n+ 1} ∪

⋃
Jn
))
∪ {1}.

Then for the c infinite subsets S of Nu the corresponding spaces AS are
mutually non-homeomorphic because a moment’s reflection suffices to see
that Σ∗(AS) \ {ω} = S always holds when the signature set Σ∗(X) of any
Hausdorff space X is defined via

Σ∗(X) := {α ∈ Ω | (ρ(X)(α) \ ρ(X)(α+1)) ∩ δ(X) 6= ∅},

where δ(X) is the set of all points x ∈ X such that {x} is a component of
the space X, and ρ(X) is the set of all points x ∈ X such that x ∈ Z for
some component Z of X with Z \ {x} non-empty and connected. (Notice
that ρ(AS) =

⋃
n∈S h(Kn \ {n+ 1}) and δ(AS) = {h(n+ 1) | n ∈ S} ∪ {1}.)

Now to prove Theorem 5 for uncountable weights assume firstly that
ℵ0 < κ ≤ c and 2κ > c. By applying Lemma 2 it is enough to construct 2κ

separable, dense-in-itself, compact linearly ordered spaces of weight κ whose
underlying sets are contained in C = [0, 1]×{0, 1}. Let Yκ denote the family
of all sets Y ⊂ ]0, 1[ such that |Y | = κ. Clearly, |Yκ| = 2κ. For each Y ∈ Yκ
consider the set

K[Y ] := ([0, 1] \ Y )× {0} ∪ Y × {0, 1}

equipped with the lexicographic ordering. (Let ≺ denote this ordering.) One
can say that K[Y ] is constructed from the unit interval [0, 1] by splitting each
point in Y in two.

Each non-empty subset of K[Y ] has a supremum and an infimum with
respect to ≺. (Indeed, if ∅ 6= A ⊂ K[Y ] then supA equals (a, 0) or (a, 1),
where a is the supremum of the projection of A into the number line.)
Consequently (cf. [8, 39.7]), the linearly ordered space K[Y ] is compact.
Clearly, ([0, 1]∩Q)×{0} is a dense subset ofK[Y ], whenceK[Y ] is separable.
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Since 0, 1 6∈ Y , the space K[Y ] has no isolated points, i.e. K[Y ] is dense in
itself.

Finally, we claim that the weight of K[Y ] is |Y | = κ. Indeed, if B is a
basis of K[Y ] then for every y ∈ Y we may choose By ∈ B disjoint from
{x ∈ K[Y ] | (y, 1) � x} with (y, 0) ∈ By, whence By 6= By′ for distinct
y, y′ ∈ Y and therefore |B| ≥ κ. And the rays {x ∈ K[Y ] | x ≺ (r, 0)} and
{x ∈ K[Y ] | (z, 0) ≺ x} and {x ∈ K[Y ] | x ≺ (y, 1)}, where r ∈ Q ∩ [0, 1]
and z ∈ Y ∪ (Q∩ [0, 1]) and y ∈ Y , form a subbasis of K[Y ], and hence there
exists a basis B with |B| = κ.

Now to conclude the proof of Theorem 5 assume that ℵ0 < κ < c and
2κ = c. Let A denote the family of all spaces AS ⊂ [0, 1] from the proof
of Theorem 7. Trivially, the corresponding subspaces ÃS := AS × {0} of
the Euclidean plane R2 are mutually non-homeomorphic. For each AS ∈ A
choose a set YS ⊂ ]0, 1[ with AS ∩ YS = ∅ and |YS | = κ such that YS is a
dense subset of the Euclidean open set ]0, 1[ \AS . For every AS ∈ A consider
the separable, dense-in-itself, compact linearly ordered space K[YS ] whose
weight is |YS | = κ. Obviously, each ÃS is not only a subspace of R × {0}
but also a subspace of the linearly ordered space K[YS ]. Since YS is a dense
subset of ]0, 1[ \AS , the non-singleton components of K[YS ] are precisely the

non-singleton components of ÃS . So if US is the union of all non-singleton
components of K[YS ] then US = h(

⋃
n∈S(

⋃
Jn))× {0}. Since the closure of

US in the Euclidean plane R2 is ÃS , it is evident that ÃS is the closure of
US in the linearly ordered space K[YS ] as well. Thus for each AS ∈ A the
space ÃS can be recovered from K[YS ], and hence the 2κ = c spaces K[YS ]
are mutually non-homeomorphic.

Remark. Obviously, each space in the family Q := {K[Y ] | ]0, 1[ ∩ Q
⊂ Y ⊂ ]0, 1[} is totally disconnected. So Q contains 2c mutually non-
homeomorphic separable and first countable, totally disconnected, dense-in-
itself compact Hausdorff spaces. On the other hand (cf. [2, 6.2.A.c, 6.2.9]),
any second countable, totally disconnected, dense-in-itself compact Haus-
dorff space is homeomorphic to the Cantor ternary set D. (For example, the
c spaces K[Y ] in the family Q where Y is countable are all homeomorphic
to D.)
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