on local Weak crossed product orders

BY
Th. THEOHARI-APOSTOLIDI and A. TOMPOULIDOU (Thessaloniki)

Abstract

Let $\Lambda=(S / R, \alpha)$ be a local weak crossed product order in the crossed product algebra $A=(L / K, \alpha)$ with integral cocycle, and $H=\left\{\sigma \in \operatorname{Gal}(L / K) \mid \alpha\left(\sigma, \sigma^{-1}\right)\right.$ $\left.\in S^{*}\right\}$ the inertial group of α, for S^{*} the group of units of S. We give a condition for the first ramification group of L / K to be a subgroup of H. Moreover we describe the Jacobson radical of Λ without restriction on the ramification of L / K.

1. Introduction. Let R be a Dedekind domain with quotient field K, let L be a finite Galois extension of K with Galois group G, and S be the integral closure of R in L.

For a ring T, T^{*} means the group of units and $T^{\#}:=T \backslash\{0\}$. Let $\alpha: G \times G \rightarrow L^{*}$ be a normalized cocycle, that is, α satisfies the cocycle relation

$$
\begin{equation*}
\rho(\alpha(\sigma, \tau)) \alpha(\rho, \sigma \tau)=\alpha(\sigma, \tau) \alpha(\rho \sigma, \tau) \quad \text { for all } \rho, \sigma, \tau \in G \tag{1.1}
\end{equation*}
$$

and the relations

$$
\alpha(\sigma, 1)=\alpha(1, \sigma)=1 \quad \text { for all } \sigma \in G .
$$

It is known that the cocycle α is cohomologous to a cocycle taking values in $S^{\#}$. So we assume in what follows that the cocycle α is normalized taking values in $S^{\#}$. Then we can define the crossed product K-algebra

$$
A:=(L / K, \alpha):=\bigoplus_{\sigma \in G} L u_{\sigma}
$$

freely generated as an L-vector space by the symbols $\left\{u_{\sigma} \mid \sigma \in G\right\}$ and with multiplication given by the rule

$$
x u_{\sigma} y u_{\tau}=x \sigma(y) \alpha(\sigma, \tau) u_{\sigma \tau}, \quad \forall x, y \in L, \forall \sigma, \tau \in G
$$

It is well known that A is a central simple K-algebra and L is a maximal commutative subalgebra of A consisting of all elements of A commuting with all elements of $L .(L / K, \alpha)$ is also called a classical crossed product algebra.

Let $\Lambda:=(S / R, \alpha):=\bigoplus_{\sigma \in G} S u_{\sigma}$. Then Λ is an R-order in A called the weak crossed product order corresponding to A. If the cocycle α takes values

[^0]Key words and phrases: crossed products, orders, ramification theory.
in S^{*}, i.e. it is a factor set, then Λ is called the classical crossed product order corresponding to A. Let H be the inertial group of the cocycle α, that is, $H=\left\{\sigma \in G \mid u_{\sigma} \in \Lambda^{*}\right\}=\left\{\sigma \in G \mid \alpha\left(\sigma, \sigma^{-1}\right) \in S^{*}\right\}$.

In Section 2 we give all the preliminary concepts and the results we need in this article. In Section 3 we prove some properties of cocycles. The main result of Section 3 is Theorem 3.5 where we give a condition for G_{1}, the first ramification group of the extension L / K, to be a subgroup of H.

In case R is a complete discrete valuation ring, Kessler [20, Corollary 3.5] proves that H is the unique subgroup of G with index $m /(e, m)$, where m is the Schur index of A and e is the ramification index of the extension L / K in case Λ is optional.

In Section 4 we describe the Jacobson radical of Λ in case R is a complete discrete valuation ring without restriction on the ramification of L / K. Our result extends the relevant result of Haile [13] in case the extension L / K is unramified, and that of Wilson [32] in case the extension L / K is tamely ramified. In the case of a classical crossed product order, without any restriction on the ramification of the extension, the Jacobson radical of A has been described by Chalatsis and Theohari-Apostolidi [7] (see also [27]).

Results of a similar nature for classical orders and Cohen-Macaulay algebras are discussed in [2], [3], [11], [10, [17, [22, Chapter 13], [23]-26] and [28-30].

We refer to [9] and [21] for the theory of orders and crossed product algebras, and to $14-15$ and 20 for weak crossed product orders.

2. Preliminaries

2.1. Cocycles. Let E / F be a finite Galois field extension with Galois group

$$
G=G(E / F) .
$$

Then we define the crossed product F-algebra

$$
A:=(E / F, \alpha)=\bigoplus_{\sigma \in G} E u_{\sigma}
$$

where $\alpha: G \times G \rightarrow E$ is a normalized cocycle taking values in E. We remark that some authors call cocycles taking values in E instead of E^{*} almost invertible. We refer to 15 and 13 for the theory of cocycles.

Let $Z^{2}(G, E)$ be the set of all cocycles of G on E. Then $Z^{2}(G, E)$ becomes a monoid with multiplication

$$
\alpha \cdot \beta(\sigma, \tau)=\alpha(\sigma, \tau) \beta(\sigma, \tau)
$$

for $\alpha, \beta \in Z^{2}(G, E)$ and $\sigma, \tau \in G$. A map $\delta: G \times G \rightarrow E^{*}$ is called a principal
cocycle if there are elements $\delta_{\sigma} \in E^{*}$, for $\sigma \in G$, such that

$$
\delta(\sigma, \tau)=\delta_{\sigma} \sigma\left(\delta_{\tau}\right) \delta_{\sigma \tau}^{-1}
$$

for $\sigma, \tau \in G$. The set $B^{2}\left(G, E^{*}\right)$ of principal cocycles is a multiplicative group and submonoid of $Z^{2}(G, E)$.

Let $M^{2}(G, E):=Z^{2}(G, E) / B^{2}\left(G, E^{*}\right)$. Then $M^{2}(G, E)$ is a monoid, and two elements $\alpha, \beta \in Z^{2}(G, E)$ are called cohomologous if $\beta=\delta \alpha$ for some $\delta \in B^{2}\left(G, E^{*}\right)$. Moreover every cocycle is cohomologous to a normalized cocycle, that is, satisfying the cocycle relation and the relation $\alpha(\sigma, 1)=1=$ $\alpha(1, \sigma)$ for $\sigma \in G$. The invertible elements of $M^{2}(G, E)$ form the usual cohomology group $H^{2}\left(G, E^{*}\right)$. Each of the idempotents of the monoid $M^{2}(G, E)$ is represented by a unique idempotent cocycle $\varepsilon \in Z^{2}(G, E)$ such that

$$
M^{2}(G, E)=\bigcup_{\varepsilon} M_{\varepsilon}^{2}(G, E),
$$

where

$$
M_{\varepsilon}^{2}(G, E):=\left\{[\alpha] \in M^{2}(G, E) \mid \exists \beta \in Z^{2}(G, E),[\alpha][\beta]=[\varepsilon]\right\} .
$$

2.2. Local orders. For a ring $T, \operatorname{rad} T$ denotes the Jacobson radical of T and $\bar{T}=T / \operatorname{rad} T$.

Throughout this paper, R is a complete discrete valuation ring with quotient field K, L a finite Galois field extension of K of degree n with Galois group

$$
\begin{equation*}
G=\operatorname{Gal}(L / K), \tag{2.1}
\end{equation*}
$$

S the integral closure of R in L, and πS (resp. $\pi_{K} R$) the unique maximal ideal of S (resp. R). We assume that the residue field \bar{R} of R is finite. Let $\alpha: G \times G \rightarrow S^{\#}$ be a normalized cocycle of G on $S^{\#}$. Two elements $\alpha, \beta \in Z^{2}\left(G, S^{\#}\right)$ are equivalent over S if there is a map $\delta: G \rightarrow S^{*}$ such that

$$
\alpha(\sigma, \tau)=\frac{\delta(\sigma) \sigma(\delta(\tau))}{\delta(\sigma \tau)} \beta(\sigma, \tau)
$$

for all $\sigma, \tau \in G$. Let $N^{2}(G, S)$ be the set of equivalence classes of elements of $Z^{2}\left(G, S^{\#}\right) . N^{2}(G, S)$ is a monoid under pointwise multiplication. Then there is an epimorphism of monoids $N^{2}(G, S) \rightarrow H^{2}(G, K)$ and a canonical map $N^{2}(G, S) \rightarrow M^{2}(G, \bar{S})$. This canonical map is given by reducing the values of the cocycle modulo πS (see [13]). To a cocycle $\alpha \in Z^{2}\left(G, S^{\#}\right)$ corresponds a crossed product order

$$
\begin{equation*}
\Lambda:=(S / R, \alpha)=\bigoplus_{\sigma \in G} S u_{\sigma} . \tag{2.2}
\end{equation*}
$$

The ring Λ is a free S-module with basis the symbols $u_{\sigma}, \sigma \in G$, and multiplication given by the relations

$$
u_{\sigma} u_{\tau}=\alpha(\sigma, \tau)=u_{\sigma \tau} \quad \text { and } \quad u_{\sigma} s=\sigma(s) u_{\sigma},
$$

for $\sigma, \tau \in G$ and $s \in S$. Then Λ is an R-order in the crossed product K-algebra

$$
\begin{equation*}
A:=(L / K, \alpha) . \tag{2.3}
\end{equation*}
$$

We recall from [13] the following definition:
Definition 2.4. Assume $R, S, G=G(L / K)$ and A are as above. The R-order Λ (2.2) is called a weak crossed product order in $A(2.3)$.

The K-algebra A is a central simple K-algebra (see [21]). Let

$$
A \cong M_{r}(D) \cong \operatorname{End}_{D}(V),
$$

where D is a division ring with index, say m, and V is the unique simple left A-module which is an (A, D)-bimodule with $(V: L)=m$ and $(V: D)=r$. We remark that Λ is a G-graded but not a strongly G-graded R-algebra, since $\alpha(\sigma, \tau)$ is not a unit of S, that is, u_{σ} is not an element of Λ^{*} for all $\sigma, \tau \in G$.

We need some more notation. Let Δ be the unique maximal R-order in D with maximal ideal $\pi_{D} \Delta$ for a prime element π_{D} of Δ. Then the ramification index of D over K is m, i.e., $\pi_{K} \Delta=\pi_{D}^{m} \Delta$, and m is also the inertial degree of D over K, that is, $m=(\bar{\Delta}: \bar{R})$ for $\bar{\Delta}:=\Delta / \pi_{D} \Delta$ (see 21, §14]).

Let e be the ramification index of L over K, that is, $\pi_{K} S=\pi^{e} S$, and f be the inertia degree of L over K, that is, $(\bar{S}: \bar{R})=f$. Then

$$
n=e f=m r .
$$

One of our objects of interest in this paper is the subgroup of $G=$ $\operatorname{Gal}(L / K)$ given by

$$
\begin{equation*}
H:=\left\{\sigma \in G \mid u_{\sigma} \in \Lambda^{*}\right\}=\left\{\sigma \in G \mid \alpha\left(\sigma, \sigma^{-1}\right) \in S^{*}\right\}, \tag{2.5}
\end{equation*}
$$

called the inertial group of the cocycle α (see [13]).
Let L^{H} be the field corresponding to the subgroup H, and S^{H} be the integral closure of R in L^{H}. Then for $\alpha_{H}:=\left.\alpha\right|_{H \times H}$, the crossed product $\Lambda_{H}:=\left(S / S^{H}, \alpha_{H}\right)$ is an S^{H}-order in the crossed product L^{H}-algebra $\left(L / L^{H}, \alpha_{H}\right)$; of course Λ_{H} is a classical crossed product order since α_{H} takes values in S^{*}. Moreover $\Lambda=\Lambda_{H} \oplus I$, where $I:=\bigoplus_{\sigma \notin H} S u_{\sigma}$.

In the study of the order Λ its overorders play a significant rôle. In 5 Benz and Zassenhaus define a chain of orders

$$
\Lambda=\Lambda_{0}, \quad \Lambda_{i+1}:=O_{\ell}\left(\operatorname{rad} \Lambda_{i}\right):=\left\{a \in A \mid a \operatorname{rad} \Lambda_{i} \subseteq \operatorname{rad} \Lambda_{i}\right\} .
$$

This chain stops at a number χ and it turns out that Λ_{χ} is a hereditary order. In [8] Cliff and Weiss compute the number χ in the case of a factor set α, i.e., a cocycle taking values in S^{*}. In 20 Kessler computes the number χ in the case of a cocycle and classifies all local hereditary crossed product orders.

A principal order is a hereditary R-order Γ such that $\operatorname{rad} \Gamma=\pi_{\Gamma} \Gamma=$ $\Gamma \pi_{\Gamma}$; each such element π_{Γ} is called a prime element of Γ. For a discussion of hereditary crossed product orders we refer also to [1], [16], [18], [31] and for principal orders to [6], [12]. Now we sum up some properties of principal orders from [4-6], [12] and [20, Theorem 1.5] that we need in this article. We follow the notation introduced earlier.

Theorem 2.6. Let $\Lambda:=(S / R, \alpha)$ be a weak crossed product order (2.2) in $A:=(L / K, \alpha)$ 2.3) for a cocycle $\alpha: G \times G \rightarrow S^{\#}$, where $G=\operatorname{Gal}(L / K)$. There exists exactly one hereditary order Γ containing Λ which is a principal order with the following properties:
(i) $S=\Gamma \cap L$ and $\pi S=S \cap \operatorname{rad} \Gamma$, where $\operatorname{rad} \Gamma=\pi_{\Gamma} \Gamma=\Gamma \pi_{\Gamma}$ for a prime element π_{Γ} of Γ.
(ii) There exists a number $k \in \mathbb{N}$ which divides r such that r / k is the block length of Γ and $(k, k, \ldots, k)(r / k$ times $)$ are the invariants of Γ.
(iii) $\pi_{K} \Gamma=\pi_{\Gamma}^{m k} \Gamma$, that is, the ramification index of Γ over R is $m k$ and $(\bar{\Gamma}: \bar{R})=n r k$.
(iv) $\bar{\Gamma} \cong M_{r / k}(\bar{\Delta})^{(k)}$, where (k) means k copies.
(v) The ramification index of Γ over S is $d:=m /(e, m)$, that is, $\pi \Gamma=$ $\pi_{\Gamma}^{d} \Gamma$, and $k=d e / m=e /(e, m)$ and $r / k=f / d$. Hence d divides f.
Let K_{0} be the inertia field of the extension L / K, so $\left(L: K_{0}\right)=e$ and $\left(K_{0}: K\right)=f$. Moreover let K_{d} be the uniquely determined intermediate field $K \leq K_{d} \leq K_{0}$ with $\left(K_{d}: K\right)=d, G_{0}:=\operatorname{Gal}\left(L / K_{0}\right)$ and $G_{d}:=\operatorname{Gal}\left(L / K_{d}\right)$. We denote by R_{0} (resp. R_{d}) the integral closure of R in K_{0} (resp. K_{d}), and by $\pi_{0}\left(\operatorname{resp} . \pi_{d}\right)$ a prime element of $R_{0}\left(\right.$ resp. $\left.R_{d}\right)$. Then $\bar{S}=\bar{R}_{0},\left(\bar{S}: \bar{R}_{d}\right)=f / d$ and $\left(\bar{R}_{d}: \bar{R}\right)=d$.

It follows from [20, Corollary 3.5] that the inertial group of α is a subgroup of G_{d}.
3. Some properties of a cocycle. Let G be a group acting on a field E, and N a normal subgroup of G with fixed field E^{N}. For a cocycle $\alpha: G / N \times G / N \rightarrow E^{N}$, let $\hat{\alpha}: G \times G \rightarrow E$ be defined by $\hat{\alpha}(\sigma, \tau)=\alpha(\sigma N, \tau N)$ for $\sigma, \tau \in G$. Then $\hat{\alpha}$ is also a cocycle, called the inflation of α. Moreover for a cocycle $\beta: G \times G \rightarrow E$, the restriction $\left.\beta\right|_{N \times N}: N \times N \rightarrow E$ is also a cocycle. In this section and the next we denote $\sigma_{x}:=\sigma(x)$ for $\sigma \in G$ and $x \in E$.

We consider the inflation map

$$
\text { Inf : } M_{\varepsilon}^{2}\left(G / N, E^{N}\right) \rightarrow M_{\hat{\varepsilon}}^{2}(G, E), \quad[\alpha] \mapsto[\hat{\alpha}],
$$

and the restriction map

$$
\text { Res : } M_{\hat{\varepsilon}}^{2}(G, E) \rightarrow M_{\tilde{\varepsilon}}^{2}(N, E), \quad[\beta] \mapsto\left[\left.\beta\right|_{N \times N}\right],
$$

using the notation of Subsection 2.1.
Lemma 3.1. Let G be a group acting on a field E, and N be a normal subgroup of G such that $H^{1}\left(N, E^{*}\right)=1$. Let $\alpha: G \times G \rightarrow E$ be a cocycle such that $\left.\alpha\right|_{N \times N} \in B^{2}\left(N, E^{*}\right)$. Then α is cohomologous to a cocycle δ : $G \times G \rightarrow E^{N}$ such that $\delta(\sigma, \tau)=\delta\left(\sigma n_{1}, \tau n_{2}\right)$ for all $\sigma, \tau \in G$ and $n_{1}, n_{2} \in N$.

Proof. Let N and α be as above. Since $\left.\alpha\right|_{N \times N} \in B^{2}\left(N, E^{*}\right)$, there is a map $\mu: N \rightarrow E^{*}, \mu(n)=\mu_{n}$, such that

$$
\begin{equation*}
\alpha\left(n_{1}, n_{2}\right)=\mu_{n_{1}}{ }_{1}^{n_{1}} \mu_{n_{2}} \mu_{n_{1} n_{2}}^{-1} \tag{3.1}
\end{equation*}
$$

for all $n_{1}, n_{2} \in N$. Hence $\alpha\left(n_{1}, n_{2}\right) \neq 0$, and so N is a subgroup of the inertial group of α. We consider the elements $\varphi_{\sigma} \in E^{*}$ such that $\varphi_{n}=\mu_{n}$ for all $n \in N$, and $\varphi_{\sigma}=1$ for all $\sigma \in G \backslash N$.

Then the map $\gamma: G \times G \rightarrow E$ defined by

$$
\begin{equation*}
\gamma(\sigma, \tau)=\left[\varphi_{\sigma}{ }^{\sigma} \varphi_{\tau}\right]^{-1} \varphi_{\sigma \tau} \alpha(\sigma, \tau) \tag{3.2}
\end{equation*}
$$

is cohomologous to α. Moreover from (3.1) and (3.2), and since $N \leq H$, we get

$$
\begin{equation*}
\gamma\left(n_{1}, n_{2}\right)=1 \quad \text { and } \quad \gamma(\sigma, n) \neq 0, \tag{3.3}
\end{equation*}
$$

for all $n_{1}, n_{2}, n \in N$ and $\sigma \in G$. Let now T be a complete set of representatives of left cosets of N in G such that $1 \in T$. Then if $\sigma \in G$, there exist unique elements $t_{0} \in T$ and $n_{0} \in N$ depending on σ such that

$$
\begin{equation*}
\sigma=t_{0} n_{0} \tag{3.4}
\end{equation*}
$$

Using the relation (3.4), for $\sigma \in G$, we consider the elements $\lambda_{\sigma} \in E^{*}$ such that

$$
\begin{equation*}
\lambda_{\sigma}=\lambda_{t_{0} n_{0}}=\gamma\left(t_{0}, n_{0}\right) . \tag{3.5}
\end{equation*}
$$

Then from (3.3) and (3.5) we have

$$
\begin{equation*}
\lambda_{n}=\gamma(1, n)=1 \quad \text { for all } n \in N . \tag{3.6}
\end{equation*}
$$

Moreover applying the cocycle equation (1.1) for the cocycle γ and the elements $t \in T$ and $n, n_{1} \in N$, we get

$$
{ }^{t} \gamma\left(n, n_{1}\right) \gamma\left(t, n n_{1}\right)=\gamma(t, n) \gamma\left(t n, n_{1}\right),
$$

which because of the relation (3.3) becomes

$$
\begin{equation*}
\gamma\left(t, n n_{1}\right)=\gamma(t, n) \gamma\left(t n, n_{1}\right) . \tag{3.7}
\end{equation*}
$$

In addition, for σ as in (3.4) and $n_{1} \in N$, from (3.5) and (3.7) we get

$$
\lambda_{\sigma n_{1}}=\lambda_{t_{0} n_{0} n_{1}}=\gamma\left(t_{0}, n_{0} n_{1}\right)=\gamma\left(t_{0}, n_{0}\right) \gamma\left(t_{0} n_{0}, n_{1}\right)=\lambda_{\sigma} \gamma\left(\sigma, n_{1}\right) .
$$

Hence

$$
\begin{equation*}
\lambda_{\sigma n_{1}}=\lambda_{\sigma} \gamma\left(\sigma, n_{1}\right) \quad \text { for all } \sigma \in G \text { and } n_{1} \in N . \tag{3.8}
\end{equation*}
$$

Now we define a new weak cocycle by

$$
\beta: G \times G \rightarrow E \quad \text { with } \quad \beta(\sigma, \tau)=\lambda_{\sigma}{ }^{\sigma} \lambda_{\tau} \lambda_{\sigma \tau}^{-1} \gamma(\sigma, \tau),
$$

which is obviously cohomologous to γ. From (3.6) and (3.8), and for $\sigma \in G$ and $n \in N$, we get

$$
\beta(\sigma, n)=\lambda_{\sigma}{ }^{\sigma} \lambda_{n} \lambda_{\sigma n}^{-1} \gamma(\sigma, n)=1 .
$$

Hence

$$
\begin{equation*}
\beta(\sigma, n)=1 \quad \text { for all } \sigma \in G \text { and } n \in N . \tag{3.9}
\end{equation*}
$$

Using the cocycle equation (1.1) for the weak cocycle β and the elements $\sigma, \tau \in G$ and $n \in n$, we get

$$
{ }^{\sigma} \beta(\tau, n) \beta(\sigma, \tau n)=\beta(\sigma, \tau) \beta(\sigma \tau, n) .
$$

Then from (3.9) we have

$$
\begin{equation*}
\beta(\sigma, \tau n)=\beta(\sigma, \tau) \quad \text { for all } \sigma, \tau \in G \text { and } n \in N . \tag{3.10}
\end{equation*}
$$

Since $N \unlhd G$, for $n \in N$ and $\sigma \in G$ we have $n \sigma=\sigma n^{\prime}$ for some $n^{\prime} \in N$. Using (3.10) we get

$$
\begin{equation*}
\beta\left(n_{1}, n \sigma\right)=\beta\left(n_{1}, \sigma n^{\prime}\right)=\beta\left(n_{1}, \sigma\right) . \tag{3.11}
\end{equation*}
$$

Hence the cocycle equation (1.1) for β and the elements $n_{1}, n \in N$ and $\sigma \in G$ becomes

$$
{ }^{n_{1}} \beta(n, \sigma) \beta\left(n_{1}, n \sigma\right)=\beta\left(n_{1}, n\right) \beta\left(n_{1} n, \sigma\right),
$$

and from (3.11) and (3.9) the above equation becomes

$$
\begin{equation*}
{ }^{n_{1}} \beta(n, \sigma) \beta\left(n_{1}, \sigma\right)=\beta\left(n_{1} n, \sigma\right) . \tag{3.12}
\end{equation*}
$$

We define the map $\zeta_{\sigma}: N \rightarrow E^{*}, n \mapsto \beta(n, \sigma)$, for $\sigma \in G$ and $n \in N$. From (3.12) we have

$$
\zeta_{\sigma}\left(n_{1} n_{2}\right)={ }^{n_{1}} \zeta_{\sigma}\left(n_{2}\right) \zeta_{\sigma}\left(n_{1}\right)
$$

for $n_{1}, n_{2} \in N$ and $\sigma \in G$. Hence ζ_{σ} is a 1-cocycle, and since $H^{1}\left(G, E^{*}\right)=1$, there exists an element $k_{\sigma} \in E^{*}$ such that

$$
\beta(n, \sigma)=\zeta_{\sigma}(n)={ }^{n} k_{\sigma} k_{\sigma}^{-1} \quad \text { for all } n \in N .
$$

Hence

$$
\begin{equation*}
\beta(n, \sigma)=\zeta_{\sigma}(n)={ }^{n} k_{\sigma} k_{\sigma}^{-1} . \tag{3.13}
\end{equation*}
$$

Now we consider the elements $\psi_{\sigma}=k_{t_{0}}$ for $\sigma=t_{0} n_{0}$ as in (3.4), and we get

$$
\psi: G \times G \rightarrow E^{*} \quad \text { with } \quad \psi(\sigma, \tau)=\psi_{\sigma}{ }^{\sigma} \psi_{\tau} \psi_{\sigma \tau}^{-1}
$$

It is clear that $\psi \in B^{2}\left(G, E^{*}\right)$ and the following hold:

$$
\begin{equation*}
\psi_{\sigma n}=\psi_{\sigma}=\psi_{n \sigma} \quad \text { and } \quad \psi_{n}=1, \quad \text { for } n \in N, \sigma \in G \tag{3.14}
\end{equation*}
$$

Let $\delta: G \times G \rightarrow E$ with $\delta(\sigma, \tau)=\psi_{\sigma}{ }^{\sigma} \psi_{\tau} \psi_{\sigma \tau}^{-1} \beta(\sigma, \tau)$. Then δ is a cocycle cohomologous to β, and using (3.4), (3.10), (3.13) and (3.14) we obtain consecutively

$$
\begin{aligned}
\beta(n, \sigma) & =\psi_{n}{ }^{n} \psi_{\sigma} \psi_{n \sigma}^{-1} \delta(n, \sigma), \\
\beta\left(n, t_{0} n_{0}\right) & =\psi_{n}{ }^{n} \psi_{t_{0} n_{0}} \psi_{t_{0} n_{0}}^{-1} \delta(n, \sigma), \\
\beta\left(n, t_{0}\right) & ={ }^{n} k_{t_{0}} k_{t_{0}}^{-1} \delta(n, \sigma), \\
{ }^{n} k_{t_{0}} k_{t_{0}}^{-1} & ={ }^{n} k_{t_{0}} k_{t_{0}}^{-1} \delta(n, \sigma),
\end{aligned}
$$

and finally

$$
\begin{equation*}
\delta(n, \sigma)=1 \quad \text { for } n \in N \text { and } \sigma \in G \tag{3.15}
\end{equation*}
$$

Moreover from the definition of ψ and δ, and the equations (3.9), (3.14) we get the following implications, for β and for $\sigma \in G$ and $n \in N$:

$$
\beta(\sigma, n)=\psi_{\sigma}{ }^{\sigma} \psi_{n} \psi_{\sigma n}^{-1} \delta(\sigma, n), \quad \text { so } \quad 1=\psi_{\sigma} \psi_{\sigma}^{-1} \delta(\sigma, n)
$$

that is,

$$
\begin{equation*}
\delta(\sigma, n)=1 \quad \text { for } \sigma \in G \text { and } n \in N \tag{3.16}
\end{equation*}
$$

Now applying the cocycle equation (1.1) for the cocycle δ and for the elements $\sigma, \tau \in G$ and $n \in N$, using (3.15) and (3.16) we get

$$
{ }^{\sigma} \delta(\tau, n) \delta(\sigma, \tau n)=\delta(\sigma, \tau) \delta(\sigma \tau, n)
$$

and hence

$$
\begin{equation*}
\delta(\sigma, \tau n)=\delta(\sigma, \tau) \tag{3.17}
\end{equation*}
$$

for $\sigma, \tau \in G$ and $n \in N$.
Again from the cocycle equation (1.1) for the elements σ, n, τ and for the weak cocycle δ, using (3.15) and (3.16) for $\sigma, \tau \in G$ and $n \in N$, we obtain

$$
{ }^{\sigma} \delta(n, \tau) \delta(\sigma, n \tau)=\delta(\sigma, n) \delta(\sigma n, \tau)
$$

so that

$$
\begin{equation*}
\delta(\sigma, n \tau)=\delta(\sigma n, \tau) \tag{3.18}
\end{equation*}
$$

Now for $\sigma, \tau \in G$ and $n_{1}, n_{2} \in N$, and using (3.17) and (3.18), we get

$$
\begin{equation*}
\delta\left(\sigma n_{1}, \tau n_{2}\right)=\delta\left(\sigma n_{1}, \tau\right)=\delta\left(\sigma, n_{1} \tau\right)=\delta\left(\sigma, \tau n_{1}^{\prime}\right)=\delta(\sigma, \tau) \tag{3.19}
\end{equation*}
$$

where $n_{1} \tau=\tau n_{1}^{\prime}$ for some $n_{1}^{\prime} \in N$.

In order to finish the proof of the lemma it is sufficient to prove that $\delta(\sigma, n) \in E^{N}$ for $\sigma, \tau \in G$. For this, let $n \in N$ and $\sigma, \tau \in G$. Then the cocycle equation (1.1) for the cocycle δ and for the elements n, σ, τ becomes

$$
{ }^{n} \delta(\sigma, \tau) \delta(n, \sigma \tau)=\delta(n, \sigma) \delta(n \sigma, \tau) .
$$

Now let $n \sigma=\sigma n^{\prime}$ for some $n^{\prime} \in N$. From (3.15) and (3.19), the above equation becomes

$$
{ }^{n} \delta(\sigma, \tau)=\delta(n \sigma, \tau)=\delta\left(\sigma n^{\prime}, \tau\right)=\delta(\sigma, \tau) .
$$

Hence $\delta(\sigma, \tau) \in E^{N}$ and the result follows.
Theorem 3.2. Let G be a group acting on a field E, and N a normal subgroup of G with fixed field E^{N} such that $H^{1}\left(N, E^{*}\right)=1$. Then the sequence

$$
1 \rightarrow M_{\varepsilon}^{2}\left(G / N, E^{N}\right) \xrightarrow{\operatorname{Inf}} M_{\hat{\varepsilon}}^{2}(G, E) \xrightarrow{\mathrm{Res}} H^{2}\left(N, E^{*}\right)
$$

is exact. Moreover the equality $H^{2}\left(N, E^{*}\right)=1$ yields

$$
M_{\varepsilon}^{2}\left(G / N, E^{N}\right) \simeq M_{\hat{\varepsilon}}^{2}(G, E) .
$$

Proof. First we prove that $\operatorname{Ker}(\operatorname{Inf})=\{[\varepsilon]\}$. Let $\alpha: G / N \times G / N \rightarrow E^{N}$ be a weak cocycle and $\hat{\alpha}: G \times G \rightarrow E$ be defined by $\hat{\alpha}(\sigma, \tau)=\alpha(\sigma N, \tau N)$. Then $\operatorname{Inf}[\alpha]=[\hat{\alpha}]$. Let $[\alpha] \in \operatorname{Ker}(\operatorname{Inf})$, so $[\hat{\alpha}]=[\hat{\varepsilon}]$. Then there exist elements $\mu_{\sigma} \in E^{*}$, for $\sigma \in G$, such that

$$
\hat{\alpha}(\sigma, \tau)=\mu_{\sigma}{ }^{\sigma} \mu_{\tau} \mu_{\sigma \tau}^{-1} \hat{\varepsilon}(\sigma, \tau) \quad \text { for } \sigma, \tau \in G .
$$

We remark that for $n_{1}, n_{2} \in N$,

$$
\hat{\alpha}\left(n_{1}, n_{2}\right)=1, \quad \text { so } \quad \mu_{n_{1} n_{2}}=\mu_{n_{1}}{ }^{n_{1}} \mu_{n_{2}},
$$

hence for the $\operatorname{map} \mu: G \rightarrow E^{*}, \mu(\sigma)=\mu_{\sigma}$, we see that $\left.\mu\right|_{N}$ is a 1-cocycle and $\left[\left.\mu\right|_{N}\right] \in H^{1}\left(N, E^{*}\right)=1$, by assumption. Therefore, there exists an element $k \in E^{*}$ such that $\mu(n)={ }^{n} k \cdot k^{-1}$ for $n \in N$. Now we consider the map $\varphi: G \rightarrow E^{*}$ such that $\mu(\sigma)={ }^{\sigma} k k^{-1} \varphi(\sigma)$. Then

$$
\begin{equation*}
\varphi(n)=1 \quad \text { for } n \in N, \tag{3.20}
\end{equation*}
$$

and

$$
\begin{aligned}
\hat{\alpha}(\sigma, \tau) & ={ }^{\sigma} \mu_{\tau} \mu_{\sigma} \mu_{\sigma \tau}^{-1} \hat{\varepsilon}(\sigma, \tau) \\
& \left.={ }^{\sigma}\left[{ }^{\tau} k k^{-1} \varphi(\tau)\right]\right]^{\sigma} k k^{-1} \varphi(\sigma)\left[{ }^{\sigma \tau} k k^{-1} \varphi(\sigma \tau)\right]^{-1} \hat{\varepsilon}(\sigma, \tau) \\
& ={ }^{\sigma \tau} k\left({ }^{\sigma} k\right)^{-1}{ }^{\sigma} \varphi(\tau){ }^{\sigma} k k^{-1} \varphi(\sigma)\left({ }^{\sigma \tau} k\right)^{-1} k \varphi(\sigma \tau)^{-1} \hat{\varepsilon}(\sigma, \tau),
\end{aligned}
$$

and consequently

$$
\begin{equation*}
\hat{\alpha}(\sigma, \tau)={ }^{\sigma} \varphi(\tau) \varphi(\sigma) \varphi(\sigma \tau)^{-1} \hat{\varepsilon}(\sigma, \tau) . \tag{3.2.2}
\end{equation*}
$$

The above equation, for $\tau=n \in N$, yields

$$
\begin{equation*}
\hat{\alpha}(\sigma, n)=\varphi(\sigma)^{\sigma} \varphi(n) \varphi(\sigma n)^{-1} \hat{\varepsilon}(\sigma, n) . \tag{3.22}
\end{equation*}
$$

Since $\hat{\alpha}(\sigma, n)=\hat{\varepsilon}(\sigma, n)=1$, using (3.20), the equation (3.22) gets the form

$$
\begin{equation*}
\varphi(\sigma n)=\varphi(\sigma) \quad \text { for } \sigma \in G, n \in N . \tag{3.23}
\end{equation*}
$$

Moreover, the equation (3.21), for $\sigma=n \in N$, yields

$$
\hat{\alpha}(n, \tau)=\varphi(n)^{n} \varphi(\tau) \varphi(n \tau)^{-1} \hat{\varepsilon}(n, \tau),
$$

and since $\hat{\alpha}(n, \tau)=\hat{\varepsilon}(n, \tau)=1$, in view of 3.20 we get

$$
\begin{equation*}
{ }^{n} \varphi(\sigma)=\varphi(n \sigma) \quad \text { for } \sigma \in G, n \in N . \tag{3.24}
\end{equation*}
$$

We remark that since $N \unlhd G$, we have $n \sigma=\sigma n^{\prime}$ for some $n^{\prime} \in N$. Hence (3.24) gets the form

$$
{ }^{n} \varphi(\sigma)=\varphi(n \sigma)=\varphi\left(\sigma n^{\prime}\right)=\varphi(\sigma),
$$

therefore we get

$$
{ }^{n} \varphi(\sigma)=\varphi(\sigma) \quad \text { for } \sigma \in G, n \in N .
$$

This means that $\varphi(\sigma) \in E^{N}$ for $\sigma \in G$. So there exists the map

$$
\psi: G / N \rightarrow E^{N}, \quad \psi(g N)=\varphi(g)
$$

such that, for $\sigma, \tau \in G, \alpha(\sigma N, \tau N)=\psi(\sigma N)^{\sigma N} \psi(\tau N) \psi(\sigma \tau N)^{-1} \varepsilon(\sigma N, \tau N)$. In other words, the cocycle α is cohomologous to ε and so $\operatorname{Ker}(\operatorname{Inf})=\{[\varepsilon]\}$.

To complete the proof we have to show that $\operatorname{Res} \circ \operatorname{Inf}=1$. Let $[\alpha] \in$ $M_{\varepsilon}^{2}\left(G / N, E^{N}\right)$ and $[\hat{\alpha}]=\operatorname{Inf}[\alpha]$. Then $\hat{\alpha}\left(n_{1}, n_{2}\right)=1$ for $n_{1}, n_{2} \in N$, and so Res $\circ \operatorname{Inf}[\alpha]=[1]$. Hence $\operatorname{Im}(\operatorname{Inf}) \subseteq \operatorname{Ker}(\operatorname{Res})$. In order to prove that $\operatorname{Ker}(\operatorname{Res}) \subseteq \operatorname{Im}(\operatorname{Inf})$, let $\alpha: G \times G \rightarrow E$ be a cocycle such that $\left.\alpha\right|_{N \times N} \in B^{2}(G, E)$. Then from Lemma 3.1, α is cohomologous to a cocycle $\beta: G \times G \rightarrow E$ such that $\beta\left(\sigma n_{1}, \tau n_{2}\right)=\beta(\sigma, \tau) \in E^{N}$ for $\sigma, \tau \in G$ and $n_{1}, n_{2} \in N$. Therefore there exists a cocycle $\gamma: G / N \times G / N \rightarrow E^{N}$, $\gamma(\sigma N, \tau N)=\beta(\sigma, \tau)$, so that $\operatorname{Inf}[\gamma]=[\beta]=[\alpha]$, and this means that $\operatorname{Ker}(\operatorname{Res}) \subseteq \operatorname{Im}(\operatorname{Inf})$.

Let now R be a complete discrete valuation ring, let $K, L, S, \pi_{K}, \pi S, G=$ $\operatorname{Gal}(L / K), \bar{S}, \bar{R}, f$ be as in Section 2, and let G_{1} denote the first ramification group of L / K, that is:

Definition 3.3.

$$
G_{1}=\left\{\sigma \in G \mid \sigma(a) \equiv a\left(\bmod \left(\pi_{K}\right)^{2}\right) \text { for all } a \in S\right\} .
$$

The following result generalizes $\mathbf{7}$, Lemma 1.1], and implies the isomorphism $H^{2}\left(G / G_{1}, \bar{S}^{*}\right) \cong H^{2}(G, \bar{S})$.

Proposition 3.4. Let $G=\operatorname{Gal}(L / K)$ be as in (2.1) and let $\varepsilon: G / G_{1} \times$ $G / G_{1} \rightarrow \bar{S}$ be an idempotent cocycle, where G_{1} is the first ramification group (3.3) of L / K. Then the inflation map $M_{\varepsilon}^{2}\left(G / G_{1}, \bar{S}\right) \xrightarrow{\operatorname{Inf}} M_{\hat{\varepsilon}}^{2}(G, \bar{S})$ is a group isomorphism.

Proof. The first ramification group G_{1} acts trivially on the field \bar{S} and $\left(\left|G_{1}\right|,\left|S^{*}\right|\right)=1$, hence $H^{1}\left(G_{1}, \bar{S}^{*}\right)=1[8, \S 39]$. Also $H^{2}\left(G_{1}, \bar{S}^{*}\right)=1$. Now from Theorem 3.2 we get the exact sequence

$$
1 \rightarrow M_{\varepsilon}^{2}\left(G / G_{1}, \bar{S}^{G_{1}}\right) \xrightarrow{\mathrm{Inf}} M_{\hat{\varepsilon}}^{2}(G, \bar{S}) \xrightarrow{\mathrm{Res}} H^{2}\left(G_{1}, \bar{S}^{*}\right)=1,
$$

and the result follows.
Now we are able to prove one of the main results of this paper.
Theorem 3.5. Let $G=G(L / K)$ be the group (2.1), $G_{1}=\operatorname{Ram}_{1}(L / K)$ the first ramification group (3.3), and let $\hat{\varepsilon}: G \times G \rightarrow \bar{S}$ be an idempotent cocycle such that there exists an idempotent cocycle $\varepsilon: G / G_{1} \times G / G_{1} \rightarrow \bar{S}$ satisfying the relation $\hat{\varepsilon}(\sigma, \tau)=\varepsilon\left(\sigma G_{1}, \tau G_{1}\right)$. Then:
(i) For every cocycle $\alpha: G \times G \rightarrow \bar{S}$ such that $[\alpha] \in M_{\hat{\varepsilon}}^{2}(G, \bar{S})$, there exists a cocycle $\hat{\beta}: G \times G \rightarrow \bar{S}$ such that $\hat{\beta}$ is cohomologous to α and $\hat{\beta}(\sigma, \tau)=1$ if σ or τ belongs to G_{1}.
(ii) For every cocycle $\alpha: G \times G \rightarrow S^{\#}$ such that $[\bar{\alpha}] \in M_{\hat{\varepsilon}}^{2}(G, \bar{S})$, where $\bar{\alpha}(\sigma, \tau)=\alpha(\sigma, \tau) \bmod \pi S$, there exists a cocycle $\beta: G \times G \rightarrow S^{\#}$ such that β is cohomologous to α and $\beta(\sigma, \tau) \in 1+\pi S$ if $\sigma \in G_{1}$ or $\tau \in G_{1}$.
(iii) The first ramification group G_{1} is a subgroup of the inertial group H of the cocycle α.
Proof. (i) We consider the inflation map

$$
M_{\varepsilon}^{2}\left(G / G_{1}, \bar{S}\right) \xrightarrow{\text { Inf }} M_{\hat{\varepsilon}}^{2}(G, \bar{S}) .
$$

If $\alpha: G \times G \rightarrow \bar{S}$ is a cocycle such that $[\alpha] \in M_{\hat{\varepsilon}}^{2}(G, \bar{S})$ then, by Proposition 3.4, there exists $[\beta] \in M_{\varepsilon}^{2}\left(G / G_{1}, \bar{S}\right)$ such that $\operatorname{Inf}[\beta]=[\hat{\beta}]=[\alpha]$. Then $\hat{\beta}: G \times G \rightarrow \bar{S}$ is a cocycle having the required properties.
(ii) Let $\alpha: G \times G \rightarrow S^{\#}$ be a cocycle. Then from (i) there exists a cocycle γ such that $[\gamma]=[\bar{\alpha}]$ and $\gamma(\sigma, \tau)=1$ whenever $\sigma \in G_{1}$ or $\tau \in G_{1}$. Therefore there exist elements $\mu_{\sigma} \in \bar{S}^{*}$ for $\sigma \in G$ such that $\bar{\alpha}(\sigma, \tau)=\mu_{\sigma}{ }^{\sigma} \mu_{\tau} \mu_{\sigma \tau}^{-1}$ for $\sigma \in G_{1}$ or $\tau \in G_{1}$. Let $\mu(\sigma)=\bar{s}_{\sigma} \in \bar{S}$ for some $s_{\sigma} \in S$. Then $\bar{\alpha}(\sigma, \tau)=$ $\bar{s}_{\sigma}{ }^{\sigma_{\bar{s}}} \bar{\sigma}_{\sigma \tau}^{-1}$, and hence $\bar{\alpha}(\sigma, \tau)=\overline{s_{\sigma}{ }^{\sigma_{s_{\tau}} s_{\sigma \tau}-1}}$. So $\alpha(\sigma, \tau)-s_{\sigma}{ }^{{ }^{s_{\tau}}} s_{\sigma \tau}^{-1} \in \pi S$ whenever $\sigma \in G_{1}$ or $\tau \in G_{1}$. We remark that the cocycle $\beta: G \times G \rightarrow S^{\#}$, $\beta(\sigma, \tau)=s_{\sigma}^{-1} \sigma_{s_{\tau}^{-1} s_{\sigma \tau} \alpha(\sigma, \tau) \text {, has the required properties, and the result }}^{\text {a }}$ follows.
(iii) From (ii) we see that $\beta(\sigma, \tau) \in 1+\pi S$ if $\sigma \in G_{1}$ or $\tau \in G_{1}$. Hence if $\sigma \in G_{1}$ or $\tau \in G_{1}$, then $\beta(\sigma, \tau) \in S^{*}$. Now from the definition of the inertial group H and the fact that the cocycle α is cohomologous to β, we conclude that G_{1} is a subgroup of H.

We remark that if $\alpha: G \times G \rightarrow S^{*}$ is a factor set, then there exists a factor set $\beta: G \times G \rightarrow S^{*}$ cohomologous to α such that $\beta(\sigma, \tau) \in 1+\pi S$
whenever σ or τ belongs to G_{1} (see [7, Lemma 1.3]). Theorem 3.5 gives a condition for an analogous result to hold in the case of a cocycle, and hence a condition for $G_{1} \leq H$.
4. The Jacobson radical of Λ. Throughout this section we assume that Λ is a weak crossed product order (2.2) in the algebra (2.3) for a cocycle $\alpha: G \times G \rightarrow S^{\#}$. In this section we study the Jacobson radical of Λ for any finite field extension L / K and a local field K. We denote by rad the Jacobson radical and follow the notation of the previous sections. We need the following result of Wilson (see [32, Lemmas 2.3 and 2.5]).

Lemma 4.1. Let $\alpha: G \times G \rightarrow S^{\#}$ be a weak cocycle. Then:
(i) For $\sigma \in G$ and $h \in H$, the elements $\alpha(\sigma, h)$ and $\alpha(h, \sigma)$ are both units of S.
(ii) If $\sigma, \tau \in G \backslash H$ and $\sigma \tau \in H$, then $\alpha(\sigma, \tau)$ is not a unit of S.

Proposition 4.2. $\operatorname{rad} \Lambda=\operatorname{rad} \Lambda_{H} \oplus I$, where $I=\bigoplus_{\sigma \in G-H} S u_{\sigma}$.
Proof. Since $\Lambda=\Lambda_{H} \oplus I$, we consider the map

$$
\varphi: \Lambda_{H} \oplus I \rightarrow \Lambda_{H} / \operatorname{rad} \Lambda_{H}, \quad \lambda_{H}+x \mapsto \lambda_{H}+\operatorname{rad} \Lambda_{H},
$$

for $x \in I$. It is clear that φ is an epimorphism of additive groups with kernel equal to $\operatorname{rad} \Lambda_{H} \oplus I$. We prove that φ preserves ring multiplication. Let $\lambda_{H}, \lambda_{H}^{\prime} \in \Lambda_{H}$ and $x, x^{\prime} \in I$. Then

$$
\left(\lambda_{H}+x\right)\left(\lambda_{H}^{\prime}+x^{\prime}\right)=\lambda_{H} \lambda_{H}^{\prime}+\lambda_{H} x^{\prime}+x \lambda_{H}^{\prime}+x x^{\prime} .
$$

We remark that $\lambda_{H} \lambda_{H}^{\prime} \in \Lambda_{H}$. Moreover $\lambda_{H} x^{\prime}, x \lambda_{H}^{\prime} \in I$. Indeed, for $h \in H$ and $\sigma \in G-H$ we see that the elements

$$
u_{h} u_{\sigma}=\alpha(h, \sigma) u_{h \sigma} \quad \text { and } \quad u_{\sigma} u_{h}=\alpha(\sigma, h) u_{\sigma h}
$$

belong to I, and therefore $\lambda_{H} x^{\prime}$ and $x \lambda_{H}^{\prime}$ belong to I. For the element $x x^{\prime}$, let

$$
x=\sum_{\sigma \in G-H} s_{\sigma} u_{\sigma} \quad \text { and } \quad x^{\prime}=\sum_{\tau \in G-H} s_{\tau} u_{\tau} .
$$

Then $x x^{\prime}=\sum s_{\sigma} s_{\tau}^{\sigma} \alpha(\sigma, \tau) u_{\sigma \tau}$. If $\sigma \tau \notin H$ then $u_{\sigma \tau} \in I$, and so $x x^{\prime} \in I$. If $\sigma \tau \in H$, then from Lemma 4.1(ii) we deduce that $\alpha(\sigma, \tau) \in \pi S$ and $s_{\sigma} s_{\tau}^{\sigma} \alpha(\sigma, \tau) u_{\sigma \tau} \in \pi \Lambda_{H}$. But $\pi \Lambda_{H} \subset \operatorname{rad} \Lambda_{H}$, and so $x x^{\prime} \in \operatorname{rad} \Lambda_{H}$. Therefore in any case $x x^{\prime} \in \operatorname{rad} \Lambda_{H} \oplus I$. Hence

$$
\varphi\left[\left(\lambda_{H}+x\right)\left(\lambda_{H}^{\prime}+x^{\prime}\right)\right]=\lambda_{H} \lambda_{H}^{\prime}+\operatorname{rad} \Lambda_{H}=\varphi\left(\lambda_{H}+x\right) \varphi\left(\lambda_{H}^{\prime}+x^{\prime}\right) .
$$

So we get

$$
\Lambda_{H} \oplus I /\left(\operatorname{rad} \Lambda_{H} \oplus I\right) \cong \Lambda_{H} / \operatorname{rad} \Lambda_{H},
$$

and so $\operatorname{rad} \Lambda_{H} \oplus I \supset \operatorname{rad} \Lambda, \Lambda_{H}$ being semisimple. It remains to prove that $\operatorname{rad} \Lambda \supset \operatorname{rad} \Lambda_{H} \oplus I$. For this we have to prove that there is a natural number
k such that $\left(\operatorname{rad} \Lambda_{H} \oplus I\right)^{k} \subset \pi \Lambda$, in other words $\left(\operatorname{rad} \Lambda_{H} \oplus I\right) / \pi \Lambda$ is a nilpotent ideal of the \bar{R}-algebra $\Lambda / \pi \Lambda, \operatorname{rad} \Lambda_{H} \oplus I$ being an ideal of Λ containing $\pi \Lambda$. In order to prove that $\left(\operatorname{rad} \Lambda_{H} \oplus I\right) / \pi \Lambda$ is a nilpotent ideal of $\Lambda / \pi \Lambda$ it is enough to show that it has an \bar{R}-basis consisting of nilpotent elements, by a theorem of Wedderburn (see [19, Ch. 11, Theorem 1.15]). Since, for $x \in \operatorname{rad} \Lambda_{H}$, the element $x+\pi \Lambda \in \Lambda / \pi \Lambda$ is nilpotent, it is enough to prove that an element $s u_{\sigma}+\pi \Lambda$, for $s \in S$ and $\sigma \in G-H$, is nilpotent. For this let $\sigma \in G-H$ and k be the smallest natural number such that $\sigma^{k} \in H$. Then

$$
\begin{aligned}
\left(u_{\sigma}\right)^{k} & =\left(\prod_{i=1}^{k-1} \sigma^{k-i-1} \alpha\left(\sigma, \sigma^{k-1}\right)\right) u_{\sigma^{k}} \\
& =\left(\prod_{i=1}^{k-2} \sigma^{k-i-1} \alpha\left(\sigma, \sigma^{k-1}\right)\right) \sigma_{\alpha\left(\sigma, \sigma^{k-1}\right)} u_{\sigma^{k}}
\end{aligned}
$$

Hence $\left(u_{\sigma}\right)^{k} \in \pi \Lambda$ because $\alpha\left(\sigma, \sigma^{k-1}\right) \in \pi S$, by Lemma 4.1(ii). Therefore $\operatorname{rad} \Lambda \supset \operatorname{rad} \Lambda_{H} \oplus I$, and we have proved that $\operatorname{rad} \Lambda=\operatorname{rad} \Lambda_{H} \oplus I$.

For the next theorem we need some more notation. Let H_{1} be the first ramification group of the field extension L / L^{H} with corresponding field $L^{H_{1}}$, and let α_{1} be the restriction of the factor set α_{H} to $H_{1} \times H_{1}$. Then

$$
A_{H_{1}}:=\left(L^{H_{1}} / L^{H}, \alpha_{1}\right) \cong \operatorname{End}_{D_{1}}\left(V_{1}\right) \cong M_{r_{1}}\left(D_{1}\right)
$$

for a division ring D_{1} centrally containing L^{H} with index, say, m_{1}. Moreover let Δ_{1} be the unique maximal S^{H}-order in D_{1} with maximal ideal $\Delta_{1} \pi_{D_{1}}$. We remark that $\Lambda_{H_{1}}:=\left(S^{H_{1}} / S^{H}, \alpha_{1}\right)$ is a hereditary S^{H}-order in $A_{H_{1}}$ since the extension $L^{H_{1}} / L^{H}$ is tamely ramified (see 31).

Theorem 4.3. Let $\Lambda=(S / R, \alpha)$ be a weak crossed product order (2.2) in the crossed product K-algebra $A=(L / K, \alpha)(2.3)$, and H be the inertial group of the cocycle α. Let H_{1} be the first ramification group of the extension L / L^{H}, and X be a complete set of representatives of the left cosets of H_{1} in H. Then
(i)

$$
\operatorname{rad} \Lambda=\bigoplus_{\sigma \in X} \pi S u_{\sigma} \oplus\left(\bigoplus_{\substack{\sigma \in X \\ \rho \in H_{1}-\{1\}}} S u_{\sigma}\left(u_{\rho}-u_{1}\right)\right) \oplus\left(\bigoplus_{\sigma \in G-H} S u_{\sigma}\right)
$$

(ii) $\Lambda / \operatorname{rad} \Lambda \cong \Lambda_{H} / \operatorname{rad} \Lambda_{H} \cong \Lambda_{H_{1}} / \operatorname{rad} \Lambda_{H_{1}} \cong M_{f_{H}}\left(\Delta_{1} / \Delta_{1} \pi_{D_{1}}\right)^{e_{H} / m_{1}}$, where f_{H} is the inertial degree of the extension $L / L^{H}, e_{H}$ is the tame ramification degree of the extension L / L^{H}, and m_{1} is the index of D_{1}.

Proof. (i) This follows from Proposition 4.2 and [7, Proposition 1.4].
(ii) The result follows from Proposition 4.2 and [7, Theorem 1.9].

The above result extends the relevant result of Haile [13] for unramified extensions and that of Wilson 32 for tamely ramified extensions.
5. Maximal orders containing Λ. We follow the notation of Subsection 2.2. Let Γ_{0} be a maximal R-order in the crossed product algebra $A \cong \operatorname{End}_{D}(V)$ (2.3) containing the weak crossed product $\Lambda \sqrt{2.2}$. From the structure of maximal orders (see $21, \S 17]$), there exists a unique up to isomorphism indecomposable Γ_{0}-lattice M full in V, i.e. $K M=V$, which is a $\left(\Gamma_{0}, \Delta\right)$-lattice. Let $V=L \omega_{1} \oplus \cdots \oplus L \omega_{m}$. Then we can choose $M=S \omega_{1} \oplus \cdots \oplus S \omega_{m}$, and M is also an indecomposable left Λ-lattice and a (Λ, Δ)-bimodule. Of course M is a left Γ-lattice for the unique principal R-order Γ in A containing Λ (see Theorem 2.6). From the structure of hereditary orders we deduce that $\Gamma_{i}=\operatorname{End}_{\Delta}\left(\pi_{\Gamma}^{i} M\right), 0 \leq i \leq k-1$, are all the non-isomorphic maximal R-orders in A containing Γ, where $\Gamma=\bigcap_{i=0}^{k-1} \Gamma_{i}$ and $\pi_{\Gamma}^{i} M, 0 \leq i \leq k-1$, are all the non-isomorphic indecomposable Γ-lattices. Therefore $\Gamma_{i}, 0 \leq i \leq k-1$, are all the non-isomorphic maximal R-orders containing Λ. Moreover $\pi_{\Gamma}^{i} M$, $0 \leq i \leq k-1$, are also non-isomorphic indecomposable left Λ-lattices, full in V and (Λ, Δ)-bimodules. If N is another such left Λ-lattice, then $\operatorname{End}_{\Delta}(N)$ will be a maximal R-order in A, and hence one of $\Gamma_{i}, 0 \leq i \leq k-1$. This means that N is isomorphic to one of $\pi_{\Gamma}^{i} M, 0 \leq i \leq k-1$. So we conclude with the following:

Proposition 5.1. Let A be a crossed product algebra (2.3) and let $V=$ $L \omega_{1} \oplus \cdots \oplus L \omega_{m}$ be the unique simple (A, D)-bimodule. Let $M=S \omega_{1} \oplus \cdots \oplus$ $S \omega_{m}$ and $\Gamma_{0}:=\operatorname{End}_{\Delta}(M)$. Then:
(i) $\Gamma_{i}:=\pi_{\Gamma}^{i} \Gamma_{0}, 0 \leq i \leq k-1$, are all the maximal R-orders in A containing the weak crossed product order Λ (2.2).
(ii) $\pi_{\Gamma}^{i} M, 0 \leq i \leq k-1$, are all the non-isomorphic indecomposable -lattices which are (Λ, Δ)-bimodules.
Acknowledgements. This research was done while the first author held the research grant 89298 (2013) from the Research Committee of the A.U.TH.

REFERENCES

[1] M. Auslander and D. S. Rim, Ramification index and multiplicity, Illinois J. Math. 7 (1963), 566-581.
[2] L. F. Barannyk, Finite-dimensional twisted group algebras of semi-wild representation type, Colloq. Math. 120 (2010), 277-298.
[3] L. F. Barannyk, Finite groups of OTP projective representation type, Colloq. Math. 126 (2012), 35-51.
[4] H. Benz, Untersuchungen zur Arithmetik in lokalen einfachen Algebren, insbesondere über maximalen Teilkörpern, J. Reine Angew. Math. 225 (1967), 30-75.
[5] H. Benz und H. Zassenhaus, Über verschränkte Produktordnungen, J. Number Theory 20 (1985), 282-298.
[6] C. Buschnell and A. Fröhlich, Non-abelian congruence Gauss sums and p-adic simple algebras, Proc. London Math. Soc. 50 (1985), 207-264.
[7] A. Chalatsis and Th. Theohari-Apostolidi, Maximal orders containing local crossedproducts, J. Pure Appl. Algebra 50 (1988), 211-222.
[8] G. H. Cliff and A. R. Weiss, Crossed products and hereditary orders, Pacific J. Math. 122 (1986), 333-345.
[9] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, With Applications to Finite Groups and Orders, Wiley, New York, 1981.
[10] Yu. A. Drozd, Cohen-Macaulay modules and vector bundles, in: Lecture Notes in Pure Appl. Math. 210, Dekker, 2000, 107-130.
[11] Yu. A. Drozd, A. G. Zavadskĭ and V. V. Kirichenko, Matrix problems and integral representations, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 291-293 (in Russian).
[12] A. Fröhlich, Principal orders and embedding of local fields in algebras, Proc. London Math. Soc. 54 (1987), 247-266.
[13] D. Haile, Crossed product over discrete valuation rings, J. Algebra 105 (1987), 116148.
[14] D. Haile, On crossed product algebras arising from weak cocycles, J. Algebra 74 (1982), 270-279.
[15] D. Haile, R. Larson and M. Sweedler, Almost invertible cohomology theory and the classification of idempotent cohomology classes and algebras by partially ordered sets with a Galois group action, Amer. J. Math. 105 (1983), 689-814.
[16] M. Harada, Some criteria for hereditarity of crossed products, Osaka J. Math. 1 (1964), 69-80.
[17] Y. Hatzaras and Th. Theohari-Apostolidi, Hermitian and quadratic forms over local classical crossed product orders, Colloq. Math. 83 (2000), 43-53.
[18] G. Janusz, Crossed product orders and the Schur index, Comm. Algebra 8 (1980), 697-806.
[19] G. Karpilovsky, Group Representations. Vol. 1, North-Holland, Amsterdam, 1992.
[20] V. Kessler, Crossed products, orders and non-commutative arithmetic, J. Number Theory 46 (1994), 255-302.
[21] I. Reiner, Maximal Orders, London Math. Soc. Monogr. New Ser. 28, Oxford Univ. Press, 2003.
[22] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon \& Breach Sci. Publ., New York, 1992.
[23] D. Simson, Tame three-partite subamalgams of tiled orders of polynomial growth, Colloq. Math. 8 (1999), 237-262.
[24] D. Simson, A reduced Tits quadratic form and tameness of three-partite subamalgams of tiled orders, Trans. Amer. Math. Soc. 352 (2000), 4843-4875.
[25] D. Simson, Cohen-Macaulay modules over classical orders, in: Lecture Notes in Pure Appl. Math. 210, Dekker, 2000, 345-382.
[26] O. Solberg, Hypersurface singularities of finite Cohen-Macaulay type, Proc. London Math. Soc. 58 (1989), 258-280.
[27] Th. Theohari-Apostolidi, Local crossed-product orders of finite representation type, J. Pure Appl. Algebra 41 (1986), 87-98.
[28] Th. Theohari-Apostolidi and H. Vavatsoulas, On the separability of the restriction functor, Algebra Discrete Math. 3 (2003), 95-101.
[29] Th. Theohari-Apostolidi and H. Vavatsoulas, On strongly Gorenstein orders, Algebra Discrete Math. 2 (2005), 80-89.
[30] Th. Theohari-Apostolidi and H. Vavatsoulas, Induced modules of strongly group graded algebras, Colloq. Math. 108 (2007), 93-104.
[31] S. Williamson, Crossed product and hereditary orders, Nagoya Math. J. 23 (1963), 103-120.
[32] C. J. Wilson, Hereditary crossed product orders over discrete valuation rings, J. Algebra 371 (2012), 329-349.

Th. Theohari-Apostolidi, A. Tompoulidou
School of Mathematics
Aristotle University of Thessaloniki
Thessaloniki 54124, Greece
E-mail: theohari@math.auth.gr
atompoul@math.auth.gr

Received 19 December 2013;
revised 20 January 2014

[^0]: 2010 Mathematics Subject Classification: Primary 16S35, 16H10, 16G30, 11S23.

