VOL. 135

2014

NO. 1

ON LOCAL WEAK CROSSED PRODUCT ORDERS

ΒY

Th. THEOHARI-APOSTOLIDI and A. TOMPOULIDOU (Thessaloniki)

Abstract. Let $\Lambda = (S/R, \alpha)$ be a local weak crossed product order in the crossed product algebra $A = (L/K, \alpha)$ with integral cocycle, and $H = \{\sigma \in \text{Gal}(L/K) \mid \alpha(\sigma, \sigma^{-1}) \in S^*\}$ the inertial group of α , for S^* the group of units of S. We give a condition for the first ramification group of L/K to be a subgroup of H. Moreover we describe the Jacobson radical of Λ without restriction on the ramification of L/K.

1. Introduction. Let R be a Dedekind domain with quotient field K, let L be a finite Galois extension of K with Galois group G, and S be the integral closure of R in L.

For a ring T, T^* means the group of units and $T^{\#} := T \setminus \{0\}$. Let $\alpha : G \times G \to L^*$ be a normalized cocycle, that is, α satisfies the cocycle relation

(1.1)
$$\rho(\alpha(\sigma,\tau))\alpha(\rho,\sigma\tau) = \alpha(\sigma,\tau)\alpha(\rho\sigma,\tau) \quad \text{for all } \rho,\sigma,\tau \in G$$

and the relations

$$\alpha(\sigma, 1) = \alpha(1, \sigma) = 1 \quad \text{for all } \sigma \in G.$$

It is known that the cocycle α is cohomologous to a cocycle taking values in $S^{\#}$. So we assume in what follows that the cocycle α is normalized taking values in $S^{\#}$. Then we can define the crossed product K-algebra

$$A := (L/K, \alpha) := \bigoplus_{\sigma \in G} Lu_{\sigma}$$

freely generated as an *L*-vector space by the symbols $\{u_{\sigma} \mid \sigma \in G\}$ and with multiplication given by the rule

$$xu_{\sigma}yu_{\tau} = x\sigma(y)\alpha(\sigma,\tau)u_{\sigma\tau}, \quad \forall x,y \in L, \,\forall \sigma,\tau \in G.$$

It is well known that A is a central simple K-algebra and L is a maximal commutative subalgebra of A consisting of all elements of A commuting with all elements of L. $(L/K, \alpha)$ is also called a *classical crossed product algebra*.

Let $\Lambda := (S/R, \alpha) := \bigoplus_{\sigma \in G} Su_{\sigma}$. Then Λ is an *R*-order in A called the *weak crossed product order* corresponding to A. If the cocycle α takes values

²⁰¹⁰ Mathematics Subject Classification: Primary 16S35, 16H10, 16G30, 11S23.

Key words and phrases: crossed products, orders, ramification theory.

in S^* , i.e. it is a factor set, then Λ is called the *classical crossed product* order corresponding to A. Let H be the inertial group of the cocycle α , that is, $H = \{\sigma \in G \mid u_{\sigma} \in \Lambda^*\} = \{\sigma \in G \mid \alpha(\sigma, \sigma^{-1}) \in S^*\}.$

In Section 2 we give all the preliminary concepts and the results we need in this article. In Section 3 we prove some properties of cocycles. The main result of Section 3 is Theorem 3.5 where we give a condition for G_1 , the first ramification group of the extension L/K, to be a subgroup of H.

In case R is a complete discrete valuation ring, Kessler [20, Corollary 3.5] proves that H is the unique subgroup of G with index m/(e, m), where m is the Schur index of A and e is the ramification index of the extension L/K in case Λ is optional.

In Section 4 we describe the Jacobson radical of A in case R is a complete discrete valuation ring without restriction on the ramification of L/K. Our result extends the relevant result of Haile [13] in case the extension L/Kis unramified, and that of Wilson [32] in case the extension L/K is tamely ramified. In the case of a classical crossed product order, without any restriction on the ramification of the extension, the Jacobson radical of A has been described by Chalatsis and Theohari-Apostolidi [7] (see also [27]).

Results of a similar nature for classical orders and Cohen–Macaulay algebras are discussed in [2], [3], [11], [10], [17], [22, Chapter 13], [23]–[26] and [28]–[30].

We refer to [9] and [21] for the theory of orders and crossed product algebras, and to [14]–[15] and [20] for weak crossed product orders.

2. Preliminaries

2.1. Cocycles. Let E/F be a finite Galois field extension with Galois group

$$G = G(E/F).$$

Then we define the crossed product F-algebra

$$A := (E/F, \alpha) = \bigoplus_{\sigma \in G} E u_{\sigma},$$

where $\alpha : G \times G \to E$ is a normalized cocycle taking values in E. We remark that some authors call cocycles taking values in E instead of E^* almost invertible. We refer to [15] and [13] for the theory of cocycles.

Let $Z^2(G, E)$ be the set of all cocycles of G on E. Then $Z^2(G, E)$ becomes a monoid with multiplication

$$\alpha \cdot \beta(\sigma, \tau) = \alpha(\sigma, \tau)\beta(\sigma, \tau)$$

for $\alpha, \beta \in Z^2(G, E)$ and $\sigma, \tau \in G$. A map $\delta: G \times G \to E^*$ is called a *principal*

cocycle if there are elements $\delta_{\sigma} \in E^*$, for $\sigma \in G$, such that

$$\delta(\sigma,\tau) = \delta_{\sigma}\sigma(\delta_{\tau})\delta_{\sigma\tau}^{-1}$$

for $\sigma, \tau \in G$. The set $B^2(G, E^*)$ of principal cocycles is a multiplicative group and submonoid of $Z^2(G, E)$.

Let $M^2(G, E) := Z^2(G, E)/B^2(G, E^*)$. Then $M^2(G, E)$ is a monoid, and two elements $\alpha, \beta \in Z^2(G, E)$ are called *cohomologous* if $\beta = \delta \alpha$ for some $\delta \in B^2(G, E^*)$. Moreover every cocycle is cohomologous to a normalized cocycle, that is, satisfying the cocycle relation and the relation $\alpha(\sigma, 1) = 1 = \alpha(1, \sigma)$ for $\sigma \in G$. The invertible elements of $M^2(G, E)$ form the usual cohomology group $H^2(G, E^*)$. Each of the idempotents of the monoid $M^2(G, E)$ is represented by a unique idempotent cocycle $\varepsilon \in Z^2(G, E)$ such that

$$M^{2}(G, E) = \bigcup_{\varepsilon} M^{2}_{\varepsilon}(G, E),$$

where

 $M^2_\varepsilon(G,E):=\{[\alpha]\in M^2(G,E)\mid \exists \beta\in Z^2(G,E),\, [\alpha][\beta]=[\varepsilon]\}.$

2.2. Local orders. For a ring T, rad T denotes the Jacobson radical of T and $\overline{T} = T/\operatorname{rad} T$.

Throughout this paper, R is a complete discrete valuation ring with quotient field K, L a finite Galois field extension of K of degree n with Galois group

$$(2.1) G = \operatorname{Gal}(L/K),$$

S the integral closure of R in L, and πS (resp. $\pi_K R$) the unique maximal ideal of S (resp. R). We assume that the residue field \overline{R} of R is finite. Let $\alpha : G \times G \to S^{\#}$ be a normalized cocycle of G on $S^{\#}$. Two elements $\alpha, \beta \in Z^2(G, S^{\#})$ are equivalent over S if there is a map $\delta : G \to S^*$ such that

$$\alpha(\sigma,\tau) = \frac{\delta(\sigma)\sigma(\delta(\tau))}{\delta(\sigma\tau)}\beta(\sigma,\tau)$$

for all $\sigma, \tau \in G$. Let $N^2(G, S)$ be the set of equivalence classes of elements of $Z^2(G, S^{\#})$. $N^2(G, S)$ is a monoid under pointwise multiplication. Then there is an epimorphism of monoids $N^2(G, S) \to H^2(G, K)$ and a canonical map $N^2(G, S) \to M^2(G, \overline{S})$. This canonical map is given by reducing the values of the cocycle modulo πS (see [13]). To a cocycle $\alpha \in Z^2(G, S^{\#})$ corresponds a crossed product order

(2.2)
$$\Lambda := (S/R, \alpha) = \bigoplus_{\sigma \in G} Su_{\sigma}.$$

The ring Λ is a free S-module with basis the symbols $u_{\sigma}, \sigma \in G$, and multiplication given by the relations

$$u_{\sigma}u_{\tau} = \alpha(\sigma, \tau) = u_{\sigma\tau}$$
 and $u_{\sigma}s = \sigma(s)u_{\sigma}$,

for $\sigma, \tau \in G$ and $s \in S$. Then Λ is an R-order in the crossed product K-algebra

We recall from [13] the following definition:

DEFINITION 2.4. Assume R, S, G = G(L/K) and A are as above. The *R*-order Λ (2.2) is called a *weak crossed product order* in A (2.3).

The K-algebra A is a central simple K-algebra (see [21]). Let

$$A \cong M_r(D) \cong \operatorname{End}_D(V),$$

where D is a division ring with index, say m, and V is the unique simple left A-module which is an (A, D)-bimodule with (V : L) = m and (V : D) = r. We remark that Λ is a G-graded but not a strongly G-graded R-algebra, since $\alpha(\sigma, \tau)$ is not a unit of S, that is, u_{σ} is not an element of Λ^* for all $\sigma, \tau \in G$.

We need some more notation. Let Δ be the unique maximal *R*-order in *D* with maximal ideal $\pi_D \Delta$ for a prime element π_D of Δ . Then the ramification index of *D* over *K* is *m*, i.e., $\pi_K \Delta = \pi_D^m \Delta$, and *m* is also the inertial degree of *D* over *K*, that is, $m = (\overline{\Delta} : \overline{R})$ for $\overline{\Delta} := \Delta/\pi_D \Delta$ (see [21, §14]).

Let e be the ramification index of L over K, that is, $\pi_K S = \pi^e S$, and f be the inertia degree of L over K, that is, $(\overline{S} : \overline{R}) = f$. Then

$$n = ef = mr.$$

One of our objects of interest in this paper is the subgroup of $G = \operatorname{Gal}(L/K)$ given by

(2.5)
$$H := \{ \sigma \in G \mid u_{\sigma} \in \Lambda^* \} = \{ \sigma \in G \mid \alpha(\sigma, \sigma^{-1}) \in S^* \},$$

called the *inertial group of the cocycle* α (see [13]).

Let L^H be the field corresponding to the subgroup H, and S^H be the integral closure of R in L^H . Then for $\alpha_H := \alpha|_{H \times H}$, the crossed product $\Lambda_H := (S/S^H, \alpha_H)$ is an S^H -order in the crossed product L^H -algebra $(L/L^H, \alpha_H)$; of course Λ_H is a classical crossed product order since α_H takes values in S^* . Moreover $\Lambda = \Lambda_H \oplus I$, where $I := \bigoplus_{\sigma \notin H} Su_{\sigma}$.

In the study of the order Λ its overorders play a significant rôle. In [5] Benz and Zassenhaus define a chain of orders

$$\Lambda = \Lambda_0, \quad \Lambda_{i+1} := O_{\ell}(\operatorname{rad} \Lambda_i) := \{ a \in A \mid a \operatorname{rad} \Lambda_i \subseteq \operatorname{rad} \Lambda_i \}.$$

This chain stops at a number χ and it turns out that Λ_{χ} is a hereditary order. In [8] Cliff and Weiss compute the number χ in the case of a factor set α , i.e., a cocycle taking values in S^* . In [20] Kessler computes the number χ in the case of a cocycle and classifies all local hereditary crossed product orders.

A principal order is a hereditary *R*-order Γ such that rad $\Gamma = \pi_{\Gamma}\Gamma = \Gamma \pi_{\Gamma}$; each such element π_{Γ} is called a *prime element* of Γ . For a discussion of hereditary crossed product orders we refer also to [1], [16], [18], [31] and for principal orders to [6], [12]. Now we sum up some properties of principal orders from [4–6], [12] and [20, Theorem 1.5] that we need in this article. We follow the notation introduced earlier.

THEOREM 2.6. Let $\Lambda := (S/R, \alpha)$ be a weak crossed product order (2.2) in $A := (L/K, \alpha)$ (2.3) for a cocycle $\alpha : G \times G \to S^{\#}$, where G = Gal(L/K). There exists exactly one hereditary order Γ containing Λ which is a principal order with the following properties:

- (i) $S = \Gamma \cap L$ and $\pi S = S \cap \operatorname{rad} \Gamma$, where $\operatorname{rad} \Gamma = \pi_{\Gamma} \Gamma = \Gamma \pi_{\Gamma}$ for a prime element π_{Γ} of Γ .
- (ii) There exists a number k ∈ N which divides r such that r/k is the block length of Γ and (k, k,...,k) (r/k times) are the invariants of Γ.
- (iii) $\pi_K \Gamma = \pi_{\Gamma}^{mk} \Gamma$, that is, the ramification index of Γ over R is mkand $(\overline{\Gamma} : \overline{R}) = nrk$.
- (iv) $\overline{\Gamma} \cong M_{r/k}(\overline{\Delta})^{(k)}$, where (k) means k copies.
- (v) The ramification index of Γ over S is d := m/(e, m), that is, $\pi \Gamma = \pi_{\Gamma}^{d} \Gamma$, and k = de/m = e/(e, m) and r/k = f/d. Hence d divides f.

Let K_0 be the inertia field of the extension L/K, so $(L:K_0) = e$ and $(K_0:K) = f$. Moreover let K_d be the uniquely determined intermediate field $K \leq K_d \leq K_0$ with $(K_d:K) = d$, $G_0 := \operatorname{Gal}(L/K_0)$ and $G_d := \operatorname{Gal}(L/K_d)$. We denote by R_0 (resp. R_d) the integral closure of R in K_0 (resp. K_d), and by π_0 (resp. π_d) a prime element of R_0 (resp. R_d). Then $\overline{S} = \overline{R}_0$, $(\overline{S}:\overline{R}_d) = f/d$ and $(\overline{R}_d:\overline{R}) = d$.

It follows from [20, Corollary 3.5] that the inertial group of α is a subgroup of G_d .

3. Some properties of a cocycle. Let G be a group acting on a field E, and N a normal subgroup of G with fixed field E^N . For a cocycle $\alpha : G/N \times G/N \to E^N$, let $\hat{\alpha} : G \times G \to E$ be defined by $\hat{\alpha}(\sigma, \tau) = \alpha(\sigma N, \tau N)$ for $\sigma, \tau \in G$. Then $\hat{\alpha}$ is also a cocycle, called the *inflation* of α . Moreover for a cocycle $\beta : G \times G \to E$, the restriction $\beta|_{N \times N} : N \times N \to E$ is also a cocycle. In this section and the next we denote $\sigma_x := \sigma(x)$ for $\sigma \in G$ and $x \in E$.

We consider the inflation map

$$\operatorname{Inf}: M^2_{\varepsilon}(G/N, E^N) \to M^2_{\hat{\varepsilon}}(G, E), \quad [\alpha] \mapsto [\hat{\alpha}],$$

and the restriction map

 $\operatorname{Res}: M^2_{\widehat{\varepsilon}}(G,E) \to M^2_{\widehat{\varepsilon}}(N,E), \quad \ [\beta] \mapsto [\beta|_{N \times N}],$

using the notation of Subsection 2.1.

LEMMA 3.1. Let G be a group acting on a field E, and N be a normal subgroup of G such that $H^1(N, E^*) = 1$. Let $\alpha : G \times G \to E$ be a cocycle such that $\alpha|_{N\times N} \in B^2(N, E^*)$. Then α is cohomologous to a cocycle $\delta : G \times G \to E^N$ such that $\delta(\sigma, \tau) = \delta(\sigma n_1, \tau n_2)$ for all $\sigma, \tau \in G$ and $n_1, n_2 \in N$.

Proof. Let N and α be as above. Since $\alpha|_{N\times N} \in B^2(N, E^*)$, there is a map $\mu: N \to E^*$, $\mu(n) = \mu_n$, such that

(3.1)
$$\alpha(n_1, n_2) = \mu_{n_1}^{n_1} \mu_{n_2} \mu_{n_1 n_2}^{-1}$$

for all $n_1, n_2 \in N$. Hence $\alpha(n_1, n_2) \neq 0$, and so N is a subgroup of the inertial group of α . We consider the elements $\varphi_{\sigma} \in E^*$ such that $\varphi_n = \mu_n$ for all $n \in N$, and $\varphi_{\sigma} = 1$ for all $\sigma \in G \setminus N$.

Then the map $\gamma: G \times G \to E$ defined by

(3.2)
$$\gamma(\sigma,\tau) = [\varphi_{\sigma}{}^{\sigma}\varphi_{\tau}]^{-1}\varphi_{\sigma\tau}\alpha(\sigma,\tau)$$

is cohomologous to α . Moreover from (3.1) and (3.2), and since $N \leq H$, we get

(3.3)
$$\gamma(n_1, n_2) = 1 \text{ and } \gamma(\sigma, n) \neq 0,$$

for all $n_1, n_2, n \in N$ and $\sigma \in G$. Let now T be a complete set of representatives of left cosets of N in G such that $1 \in T$. Then if $\sigma \in G$, there exist unique elements $t_0 \in T$ and $n_0 \in N$ depending on σ such that

(3.4)
$$\sigma = t_0 n_0.$$

Using the relation (3.4), for $\sigma \in G$, we consider the elements $\lambda_{\sigma} \in E^*$ such that

(3.5)
$$\lambda_{\sigma} = \lambda_{t_0 n_0} = \gamma(t_0, n_0).$$

Then from (3.3) and (3.5) we have

(3.6)
$$\lambda_n = \gamma(1, n) = 1$$
 for all $n \in N$.

Moreover applying the cocycle equation (1.1) for the cocycle γ and the elements $t \in T$ and $n, n_1 \in N$, we get

$${}^{t}\gamma(n,n_{1})\gamma(t,nn_{1}) = \gamma(t,n)\gamma(tn,n_{1}),$$

which because of the relation (3.3) becomes

(3.7)
$$\gamma(t, nn_1) = \gamma(t, n)\gamma(tn, n_1).$$

In addition, for σ as in (3.4) and $n_1 \in N$, from (3.5) and (3.7) we get

$$\lambda_{\sigma n_1} = \lambda_{t_0 n_0 n_1} = \gamma(t_0, n_0 n_1) = \gamma(t_0, n_0) \gamma(t_0 n_0, n_1) = \lambda_{\sigma} \gamma(\sigma, n_1).$$

Hence

(3.8)
$$\lambda_{\sigma n_1} = \lambda_{\sigma} \gamma(\sigma, n_1) \text{ for all } \sigma \in G \text{ and } n_1 \in N.$$

Now we define a new weak cocycle by

$$\beta: G \times G \to E \quad \text{with} \quad \beta(\sigma, \tau) = \lambda_{\sigma} \, {}^{\sigma} \lambda_{\tau} \lambda_{\sigma\tau}^{-1} \gamma(\sigma, \tau),$$

which is obviously cohomologous to γ . From (3.6) and (3.8), and for $\sigma \in G$ and $n \in N$, we get

$$\beta(\sigma, n) = \lambda_{\sigma} \,{}^{\sigma} \lambda_n \lambda_{\sigma n}^{-1} \gamma(\sigma, n) = 1.$$

Hence

(3.9)
$$\beta(\sigma, n) = 1$$
 for all $\sigma \in G$ and $n \in N$

Using the cocycle equation (1.1) for the weak cocycle β and the elements $\sigma, \tau \in G$ and $n \in n$, we get

$${}^{\sigma}\!\beta(\tau,n)\beta(\sigma,\tau n) = \beta(\sigma,\tau)\beta(\sigma\tau,n).$$

Then from (3.9) we have

(3.10)
$$\beta(\sigma, \tau n) = \beta(\sigma, \tau)$$
 for all $\sigma, \tau \in G$ and $n \in N$.

Since $N \leq G$, for $n \in N$ and $\sigma \in G$ we have $n\sigma = \sigma n'$ for some $n' \in N$. Using (3.10) we get

(3.11)
$$\beta(n_1, n\sigma) = \beta(n_1, \sigma n') = \beta(n_1, \sigma).$$

Hence the cocycle equation (1.1) for β and the elements $n_1, n \in N$ and $\sigma \in G$ becomes

$${}^{n_1}\beta(n,\sigma)\beta(n_1,n\sigma) = \beta(n_1,n)\beta(n_1n,\sigma)$$

and from (3.11) and (3.9) the above equation becomes

(3.12)
$${}^{n_1}\beta(n,\sigma)\beta(n_1,\sigma) = \beta(n_1n,\sigma)$$

We define the map $\zeta_{\sigma}: N \to E^*, n \mapsto \beta(n, \sigma)$, for $\sigma \in G$ and $n \in N$. From (3.12) we have

$$\zeta_{\sigma}(n_1 n_2) = {}^{n_1} \zeta_{\sigma}(n_2) \zeta_{\sigma}(n_1)$$

for $n_1, n_2 \in N$ and $\sigma \in G$. Hence ζ_{σ} is a 1-cocycle, and since $H^1(G, E^*) = 1$, there exists an element $k_{\sigma} \in E^*$ such that

$$\beta(n,\sigma) = \zeta_{\sigma}(n) = {}^{n}k_{\sigma}k_{\sigma}^{-1}$$
 for all $n \in N$.

Hence

(3.13)
$$\beta(n,\sigma) = \zeta_{\sigma}(n) = {}^{n}k_{\sigma}k_{\sigma}^{-1}.$$

Now we consider the elements $\psi_{\sigma} = k_{t_0}$ for $\sigma = t_0 n_0$ as in (3.4), and we get $\psi: G \times G \to E^*$ with $\psi(\sigma, \tau) = \psi_{\sigma} {}^{\sigma} \psi_{\tau} \psi_{\sigma\tau}^{-1}$.

It is clear that $\psi \in B^2(G, E^*)$ and the following hold:

(3.14) $\psi_{\sigma n} = \psi_{\sigma} = \psi_{n\sigma}$ and $\psi_n = 1$, for $n \in N, \sigma \in G$.

Let $\delta : G \times G \to E$ with $\delta(\sigma, \tau) = \psi_{\sigma} {}^{\sigma} \psi_{\tau} \psi_{\sigma\tau}^{-1} \beta(\sigma, \tau)$. Then δ is a cocycle cohomologous to β , and using (3.4), (3.10), (3.13) and (3.14) we obtain consecutively

$$\beta(n,\sigma) = \psi_n {}^n \psi_\sigma \psi_{n\sigma}^{-1} \delta(n,\sigma),$$

$$\beta(n,t_0n_0) = \psi_n {}^n \psi_{t_0n_0} \psi_{t_0n_0}^{-1} \delta(n,\sigma),$$

$$\beta(n,t_0) = {}^n k_{t_0} k_{t_0}^{-1} \delta(n,\sigma),$$

$${}^n k_{t_0} k_{t_0}^{-1} = {}^n k_{t_0} k_{t_0}^{-1} \delta(n,\sigma),$$

and finally

(3.15)
$$\delta(n,\sigma) = 1 \quad \text{for } n \in N \text{ and } \sigma \in G.$$

Moreover from the definition of ψ and δ , and the equations (3.9), (3.14) we get the following implications, for β and for $\sigma \in G$ and $n \in N$:

$$\beta(\sigma, n) = \psi_{\sigma} \,{}^{\sigma} \psi_{n} \psi_{\sigma n}^{-1} \delta(\sigma, n), \quad \text{so} \quad 1 = \psi_{\sigma} \psi_{\sigma}^{-1} \delta(\sigma, n),$$

that is,

(3.16)
$$\delta(\sigma, n) = 1 \text{ for } \sigma \in G \text{ and } n \in N.$$

Now applying the cocycle equation (1.1) for the cocycle δ and for the elements $\sigma, \tau \in G$ and $n \in N$, using (3.15) and (3.16) we get

$${}^{\sigma}\!\delta(\tau,n)\delta(\sigma,\tau n) = \delta(\sigma,\tau)\delta(\sigma\tau,n),$$

and hence

(3.17)
$$\delta(\sigma, \tau n) = \delta(\sigma, \tau),$$

for $\sigma, \tau \in G$ and $n \in N$.

Again from the cocycle equation (1.1) for the elements σ, n, τ and for the weak cocycle δ , using (3.15) and (3.16) for $\sigma, \tau \in G$ and $n \in N$, we obtain

$${}^{\sigma}\!\delta(n,\tau)\delta(\sigma,n\tau) = \delta(\sigma,n)\delta(\sigma n,\tau),$$

so that

(3.18)
$$\delta(\sigma, n\tau) = \delta(\sigma n, \tau).$$

Now for $\sigma, \tau \in G$ and $n_1, n_2 \in N$, and using (3.17) and (3.18), we get

(3.19)
$$\delta(\sigma n_1, \tau n_2) = \delta(\sigma n_1, \tau) = \delta(\sigma, n_1\tau) = \delta(\sigma, \tau n_1') = \delta(\sigma, \tau),$$

where $n_1 \tau = \tau n'_1$ for some $n'_1 \in N$.

In order to finish the proof of the lemma it is sufficient to prove that $\delta(\sigma, n) \in E^N$ for $\sigma, \tau \in G$. For this, let $n \in N$ and $\sigma, \tau \in G$. Then the cocycle equation (1.1) for the cocycle δ and for the elements n, σ, τ becomes

$${}^{n}\delta(\sigma,\tau)\delta(n,\sigma\tau) = \delta(n,\sigma)\delta(n\sigma,\tau).$$

Now let $n\sigma = \sigma n'$ for some $n' \in N$. From (3.15) and (3.19), the above equation becomes

$${}^{n}\!\delta(\sigma,\tau) = \delta(n\sigma,\tau) = \delta(\sigma n',\tau) = \delta(\sigma,\tau).$$

Hence $\delta(\sigma, \tau) \in E^N$ and the result follows.

THEOREM 3.2. Let G be a group acting on a field E, and N a normal subgroup of G with fixed field E^N such that $H^1(N, E^*) = 1$. Then the sequence

$$1 \to M^2_{\varepsilon}(G/N, E^N) \xrightarrow{\operatorname{Inf}} M^2_{\widehat{\varepsilon}}(G, E) \xrightarrow{\operatorname{Res}} H^2(N, E^*)$$

is exact. Moreover the equality $H^2(N, E^*) = 1$ yields

$$M_{\varepsilon}^2(G/N, E^N) \simeq M_{\hat{\varepsilon}}^2(G, E).$$

Proof. First we prove that $\operatorname{Ker}(\operatorname{Inf}) = \{[\varepsilon]\}$. Let $\alpha : G/N \times G/N \to E^N$ be a weak cocycle and $\hat{\alpha} : G \times G \to E$ be defined by $\hat{\alpha}(\sigma, \tau) = \alpha(\sigma N, \tau N)$. Then $\operatorname{Inf}[\alpha] = [\hat{\alpha}]$. Let $[\alpha] \in \operatorname{Ker}(\operatorname{Inf})$, so $[\hat{\alpha}] = [\hat{\varepsilon}]$. Then there exist elements $\mu_{\sigma} \in E^*$, for $\sigma \in G$, such that

$$\hat{\alpha}(\sigma,\tau) = \mu_{\sigma} \,{}^{\sigma} \mu_{\tau} \mu_{\sigma\tau}^{-1} \hat{\varepsilon}(\sigma,\tau) \quad \text{for } \sigma,\tau \in G.$$

We remark that for $n_1, n_2 \in N$,

$$\hat{\alpha}(n_1, n_2) = 1$$
, so $\mu_{n_1 n_2} = \mu_{n_1}{}^{n_1} \mu_{n_2}$

hence for the map $\mu: G \to E^*$, $\mu(\sigma) = \mu_{\sigma}$, we see that $\mu|_N$ is a 1-cocycle and $[\mu|_N] \in H^1(N, E^*) = 1$, by assumption. Therefore, there exists an element $k \in E^*$ such that $\mu(n) = {}^{n}k \cdot k^{-1}$ for $n \in N$. Now we consider the map $\varphi: G \to E^*$ such that $\mu(\sigma) = {}^{\sigma}kk^{-1}\varphi(\sigma)$. Then

(3.20)
$$\varphi(n) = 1 \quad \text{for } n \in N,$$

and

$$\begin{aligned} \hat{\alpha}(\sigma,\tau) &= {}^{\sigma}\mu_{\tau}\mu_{\sigma}\mu_{\sigma\tau}^{-1}\hat{\varepsilon}(\sigma,\tau) \\ &= {}^{\sigma}[{}^{\tau}kk^{-1}\varphi(\tau)] {}^{\sigma}kk^{-1}\varphi(\sigma)[{}^{\sigma\tau}kk^{-1}\varphi(\sigma\tau)]^{-1}\hat{\varepsilon}(\sigma,\tau) \\ &= {}^{\sigma\tau}k({}^{\sigma}k)^{-1}{}^{\sigma}\varphi(\tau) {}^{\sigma}kk^{-1}\varphi(\sigma)({}^{\sigma\tau}k)^{-1}k\varphi(\sigma\tau)^{-1}\hat{\varepsilon}(\sigma,\tau), \end{aligned}$$

and consequently

(3.21)
$$\hat{\alpha}(\sigma,\tau) = {}^{\sigma}\varphi(\tau)\varphi(\sigma)\varphi(\sigma\tau)^{-1}\hat{\varepsilon}(\sigma,\tau).$$

The above equation, for $\tau = n \in N$, yields

(3.22)
$$\hat{\alpha}(\sigma,n) = \varphi(\sigma)^{\sigma} \varphi(n) \varphi(\sigma n)^{-1} \hat{\varepsilon}(\sigma,n).$$

Since $\hat{\alpha}(\sigma, n) = \hat{\varepsilon}(\sigma, n) = 1$, using (3.20), the equation (3.22) gets the form (3.23) $\varphi(\sigma n) = \varphi(\sigma)$ for $\sigma \in G, n \in N$.

Moreover, the equation (3.21), for $\sigma = n \in N$, yields

$$\hat{\alpha}(n,\tau) = \varphi(n) \,{}^{n} \varphi(\tau) \varphi(n\tau)^{-1} \hat{\varepsilon}(n,\tau),$$

and since $\hat{\alpha}(n,\tau) = \hat{\varepsilon}(n,\tau) = 1$, in view of (3.20) we get

(3.24)
$${}^{n}\varphi(\sigma) = \varphi(n\sigma) \quad \text{for } \sigma \in G, n \in N$$

We remark that since $N \trianglelefteq G$, we have $n\sigma = \sigma n'$ for some $n' \in N$. Hence (3.24) gets the form

$${}^{n}\varphi(\sigma) = \varphi(n\sigma) = \varphi(\sigma n') = \varphi(\sigma),$$

therefore we get

$${}^{n}\varphi(\sigma) = \varphi(\sigma) \quad \text{ for } \sigma \in G, \, n \in N.$$

This means that $\varphi(\sigma) \in E^N$ for $\sigma \in G$. So there exists the map

$$\psi: G/N \to E^N, \quad \psi(gN) = \varphi(g)$$

such that, for $\sigma, \tau \in G$, $\alpha(\sigma N, \tau N) = \psi(\sigma N)^{\sigma N} \psi(\tau N) \psi(\sigma \tau N)^{-1} \varepsilon(\sigma N, \tau N)$. In other words, the cocycle α is cohomologous to ε and so Ker(Inf) = { $[\varepsilon]$ }.

To complete the proof we have to show that $\operatorname{Res} \circ \operatorname{Inf} = 1$. Let $[\alpha] \in M_{\varepsilon}^{2}(G/N, E^{N})$ and $[\hat{\alpha}] = \operatorname{Inf}[\alpha]$. Then $\hat{\alpha}(n_{1}, n_{2}) = 1$ for $n_{1}, n_{2} \in N$, and so $\operatorname{Res} \circ \operatorname{Inf}[\alpha] = [1]$. Hence $\operatorname{Im}(\operatorname{Inf}) \subseteq \operatorname{Ker}(\operatorname{Res})$. In order to prove that $\operatorname{Ker}(\operatorname{Res}) \subseteq \operatorname{Im}(\operatorname{Inf})$, let $\alpha : G \times G \to E$ be a cocycle such that $\alpha|_{N \times N} \in B^{2}(G, E)$. Then from Lemma 3.1, α is cohomologous to a cocycle $\beta : G \times G \to E$ such that $\beta(\sigma n_{1}, \tau n_{2}) = \beta(\sigma, \tau) \in E^{N}$ for $\sigma, \tau \in G$ and $n_{1}, n_{2} \in N$. Therefore there exists a cocycle $\gamma : G/N \times G/N \to E^{N}$, $\gamma(\sigma N, \tau N) = \beta(\sigma, \tau)$, so that $\operatorname{Inf}[\gamma] = [\beta] = [\alpha]$, and this means that $\operatorname{Ker}(\operatorname{Res}) \subseteq \operatorname{Im}(\operatorname{Inf})$.

Let now R be a complete discrete valuation ring, let $K, L, S, \pi_K, \pi S, G = \text{Gal}(L/K), \overline{S}, \overline{R}, f$ be as in Section 2, and let G_1 denote the first ramification group of L/K, that is:

Definition 3.3.

 $G_1 = \{ \sigma \in G \mid \sigma(a) \equiv a \pmod{(\pi_K)^2} \text{ for all } a \in S \}.$

The following result generalizes [7, Lemma 1.1], and implies the isomorphism $H^2(G/G_1, \overline{S}^*) \cong H^2(G, \overline{S})$.

PROPOSITION 3.4. Let $G = \operatorname{Gal}(L/K)$ be as in (2.1) and let $\varepsilon : G/G_1 \times G/G_1 \to \overline{S}$ be an idempotent cocycle, where G_1 is the first ramification group (3.3) of L/K. Then the inflation map $M^2_{\varepsilon}(G/G_1, \overline{S}) \xrightarrow{\operatorname{Inf}} M^2_{\widehat{\varepsilon}}(G, \overline{S})$ is a group isomorphism.

Proof. The first ramification group G_1 acts trivially on the field \overline{S} and $(|G_1|, |\overline{S}^*|) = 1$, hence $H^1(G_1, \overline{S}^*) = 1$ [8, §39]. Also $H^2(G_1, \overline{S}^*) = 1$. Now from Theorem 3.2 we get the exact sequence

$$1 \to M^2_{\varepsilon}(G/G_1, \overline{S}^{G_1}) \xrightarrow{\text{Inf}} M^2_{\widehat{\varepsilon}}(G, \overline{S}) \xrightarrow{\text{Res}} H^2(G_1, \overline{S}^*) = 1,$$

and the result follows.

Now we are able to prove one of the main results of this paper.

THEOREM 3.5. Let G = G(L/K) be the group (2.1), $G_1 = \text{Ram}_1(L/K)$ the first ramification group (3.3), and let $\hat{\varepsilon} : G \times G \to \overline{S}$ be an idempotent cocycle such that there exists an idempotent cocycle $\varepsilon : G/G_1 \times G/G_1 \to \overline{S}$ satisfying the relation $\hat{\varepsilon}(\sigma, \tau) = \varepsilon(\sigma G_1, \tau G_1)$. Then:

- (i) For every cocycle $\alpha : G \times G \to \overline{S}$ such that $[\alpha] \in M^2_{\hat{\varepsilon}}(G,\overline{S})$, there exists a cocycle $\hat{\beta} : G \times G \to \overline{S}$ such that $\hat{\beta}$ is cohomologous to α and $\hat{\beta}(\sigma,\tau) = 1$ if σ or τ belongs to G_1 .
- (ii) For every cocycle $\alpha : G \times G \to S^{\#}$ such that $[\overline{\alpha}] \in M^{2}_{\hat{\varepsilon}}(G, \overline{S})$, where $\overline{\alpha}(\sigma, \tau) = \alpha(\sigma, \tau) \mod \pi S$, there exists a cocycle $\beta : G \times G \to S^{\#}$ such that β is cohomologous to α and $\beta(\sigma, \tau) \in 1 + \pi S$ if $\sigma \in G_{1}$ or $\tau \in G_{1}$.
- (iii) The first ramification group G_1 is a subgroup of the inertial group H of the cocycle α .

Proof. (i) We consider the inflation map

$$M^2_{\varepsilon}(G/G_1, \overline{S}) \xrightarrow{\operatorname{Inf}} M^2_{\widehat{\varepsilon}}(G, \overline{S}).$$

If $\alpha : G \times G \to \overline{S}$ is a cocycle such that $[\alpha] \in M^2_{\hat{\varepsilon}}(G,\overline{S})$ then, by Proposition 3.4, there exists $[\beta] \in M^2_{\varepsilon}(G/G_1,\overline{S})$ such that $\text{Inf}[\beta] = [\hat{\beta}] = [\alpha]$. Then $\hat{\beta} : G \times G \to \overline{S}$ is a cocycle having the required properties.

(ii) Let $\alpha: G \times G \to S^{\#}$ be a cocycle. Then from (i) there exists a cocycle γ such that $[\gamma] = [\bar{\alpha}]$ and $\gamma(\sigma, \tau) = 1$ whenever $\sigma \in G_1$ or $\tau \in G_1$. Therefore there exist elements $\mu_{\sigma} \in \overline{S}^*$ for $\sigma \in G$ such that $\bar{\alpha}(\sigma, \tau) = \mu_{\sigma} {}^{\sigma}\mu_{\tau}\mu_{\sigma\tau}^{-1}$ for $\sigma \in G_1$ or $\tau \in G_1$. Let $\mu(\sigma) = \bar{s}_{\sigma} \in \overline{S}$ for some $s_{\sigma} \in S$. Then $\bar{\alpha}(\sigma, \tau) = \bar{s}_{\sigma} {}^{\sigma}\bar{s}_{\tau}\bar{s}_{\sigma\tau}^{-1}$, and hence $\bar{\alpha}(\sigma, \tau) = \bar{s}_{\sigma} {}^{\sigma}s_{\tau}s_{\sigma\tau}^{-1}$. So $\alpha(\sigma, \tau) - s_{\sigma} {}^{\sigma}s_{\tau}s_{\sigma\tau}^{-1} \in \pi S$ whenever $\sigma \in G_1$ or $\tau \in G_1$. We remark that the cocycle $\beta: G \times G \to S^{\#}$, $\beta(\sigma, \tau) = s_{\sigma}^{-1} {}^{\sigma}s_{\tau} {}^{1}s_{\sigma\tau} \alpha(\sigma, \tau)$, has the required properties, and the result follows.

(iii) From (ii) we see that $\beta(\sigma, \tau) \in 1 + \pi S$ if $\sigma \in G_1$ or $\tau \in G_1$. Hence if $\sigma \in G_1$ or $\tau \in G_1$, then $\beta(\sigma, \tau) \in S^*$. Now from the definition of the inertial group H and the fact that the cocycle α is cohomologous to β , we conclude that G_1 is a subgroup of H.

We remark that if $\alpha : G \times G \to S^*$ is a factor set, then there exists a factor set $\beta : G \times G \to S^*$ cohomologous to α such that $\beta(\sigma, \tau) \in 1 + \pi S$

whenever σ or τ belongs to G_1 (see [7, Lemma 1.3]). Theorem 3.5 gives a condition for an analogous result to hold in the case of a cocycle, and hence a condition for $G_1 \leq H$.

4. The Jacobson radical of Λ . Throughout this section we assume that Λ is a weak crossed product order (2.2) in the algebra (2.3) for a cocycle $\alpha : G \times G \to S^{\#}$. In this section we study the Jacobson radical of Λ for any finite field extension L/K and a local field K. We denote by rad the Jacobson radical and follow the notation of the previous sections. We need the following result of Wilson (see [32, Lemmas 2.3 and 2.5]).

LEMMA 4.1. Let $\alpha: G \times G \to S^{\#}$ be a weak cocycle. Then:

- (i) For $\sigma \in G$ and $h \in H$, the elements $\alpha(\sigma, h)$ and $\alpha(h, \sigma)$ are both units of S.
- (ii) If $\sigma, \tau \in G \setminus H$ and $\sigma \tau \in H$, then $\alpha(\sigma, \tau)$ is not a unit of S.

PROPOSITION 4.2. rad $\Lambda = \operatorname{rad} \Lambda_H \oplus I$, where $I = \bigoplus_{\sigma \in G-H} Su_{\sigma}$.

Proof. Since $\Lambda = \Lambda_H \oplus I$, we consider the map

 $\varphi: \Lambda_H \oplus I \to \Lambda_H/\mathrm{rad}\,\Lambda_H, \quad \lambda_H + x \mapsto \lambda_H + \mathrm{rad}\,\Lambda_H,$

for $x \in I$. It is clear that φ is an epimorphism of additive groups with kernel equal to rad $\Lambda_H \oplus I$. We prove that φ preserves ring multiplication. Let $\lambda_H, \lambda'_H \in \Lambda_H$ and $x, x' \in I$. Then

$$(\lambda_H + x)(\lambda'_H + x') = \lambda_H \lambda'_H + \lambda_H x' + x \lambda'_H + x x'.$$

We remark that $\lambda_H \lambda'_H \in \Lambda_H$. Moreover $\lambda_H x', x \lambda'_H \in I$. Indeed, for $h \in H$ and $\sigma \in G - H$ we see that the elements

$$u_h u_\sigma = \alpha(h, \sigma) u_{h\sigma}$$
 and $u_\sigma u_h = \alpha(\sigma, h) u_{\sigma h}$

belong to I, and therefore $\lambda_H x'$ and $x \lambda'_H$ belong to I. For the element xx', let

$$x = \sum_{\sigma \in G-H} s_{\sigma} u_{\sigma}$$
 and $x' = \sum_{\tau \in G-H} s_{\tau} u_{\tau}$

Then $xx' = \sum s_{\sigma} s_{\tau}^{\sigma} \alpha(\sigma, \tau) u_{\sigma\tau}$. If $\sigma \tau \notin H$ then $u_{\sigma\tau} \in I$, and so $xx' \in I$. If $\sigma \tau \in H$, then from Lemma 4.1(ii) we deduce that $\alpha(\sigma, \tau) \in \pi S$ and $s_{\sigma} s_{\tau}^{\sigma} \alpha(\sigma, \tau) u_{\sigma\tau} \in \pi \Lambda_H$. But $\pi \Lambda_H \subset \operatorname{rad} \Lambda_H$, and so $xx' \in \operatorname{rad} \Lambda_H$. Therefore in any case $xx' \in \operatorname{rad} \Lambda_H \oplus I$. Hence

$$\varphi[(\lambda_H + x)(\lambda'_H + x')] = \lambda_H \lambda'_H + \operatorname{rad} \Lambda_H = \varphi(\lambda_H + x)\varphi(\lambda'_H + x').$$

So we get

$$\Lambda_H \oplus I/(\operatorname{rad} \Lambda_H \oplus I) \cong \Lambda_H/\operatorname{rad} \Lambda_H,$$

and so rad $\Lambda_H \oplus I \supset$ rad Λ , Λ_H being semisimple. It remains to prove that rad $\Lambda \supset$ rad $\Lambda_H \oplus I$. For this we have to prove that there is a natural number

k such that $(\operatorname{rad} \Lambda_H \oplus I)^k \subset \pi \Lambda$, in other words $(\operatorname{rad} \Lambda_H \oplus I)/\pi \Lambda$ is a nilpotent ideal of the \overline{R} -algebra $\Lambda/\pi \Lambda$, $\operatorname{rad} \Lambda_H \oplus I$ being an ideal of Λ containing $\pi \Lambda$. In order to prove that $(\operatorname{rad} \Lambda_H \oplus I)/\pi \Lambda$ is a nilpotent ideal of $\Lambda/\pi \Lambda$ it is enough to show that it has an \overline{R} -basis consisting of nilpotent elements, by a theorem of Wedderburn (see [19, Ch. 11, Theorem 1.15]). Since, for $x \in \operatorname{rad} \Lambda_H$, the element $x + \pi \Lambda \in \Lambda/\pi \Lambda$ is nilpotent, it is enough to prove that an element $su_{\sigma} + \pi \Lambda$, for $s \in S$ and $\sigma \in G - H$, is nilpotent. For this let $\sigma \in G - H$ and k be the smallest natural number such that $\sigma^k \in H$. Then

$$(u_{\sigma})^{k} = \left(\prod_{i=1}^{k-1} \sigma^{k-i-1} \alpha(\sigma, \sigma^{k-1})\right) u_{\sigma^{k}}$$
$$= \left(\prod_{i=1}^{k-2} \sigma^{k-i-1} \alpha(\sigma, \sigma^{k-1})\right) \sigma \alpha(\sigma, \sigma^{k-1}) u_{\sigma^{k}}$$

Hence $(u_{\sigma})^k \in \pi \Lambda$ because $\alpha(\sigma, \sigma^{k-1}) \in \pi S$, by Lemma 4.1(ii). Therefore rad $\Lambda \supset \operatorname{rad} \Lambda_H \oplus I$, and we have proved that rad $\Lambda = \operatorname{rad} \Lambda_H \oplus I$.

For the next theorem we need some more notation. Let H_1 be the first ramification group of the field extension L/L^H with corresponding field L^{H_1} , and let α_1 be the restriction of the factor set α_H to $H_1 \times H_1$. Then

$$A_{H_1} := (L^{H_1}/L^H, \alpha_1) \cong \operatorname{End}_{D_1}(V_1) \cong M_{r_1}(D_1)$$

for a division ring D_1 centrally containing L^H with index, say, m_1 . Moreover let Δ_1 be the unique maximal S^H -order in D_1 with maximal ideal $\Delta_1 \pi_{D_1}$. We remark that $\Lambda_{H_1} := (S^{H_1}/S^H, \alpha_1)$ is a hereditary S^H -order in A_{H_1} since the extension L^{H_1}/L^H is tamely ramified (see [31]).

THEOREM 4.3. Let $\Lambda = (S/R, \alpha)$ be a weak crossed product order (2.2) in the crossed product K-algebra $A = (L/K, \alpha)$ (2.3), and H be the inertial group of the cocycle α . Let H_1 be the first ramification group of the extension L/L^H , and X be a complete set of representatives of the left cosets of H_1 in H. Then

(i)

$$\operatorname{rad} \Lambda = \bigoplus_{\sigma \in X} \pi S u_{\sigma} \oplus \left(\bigoplus_{\substack{\sigma \in X \\ \rho \in H_1 - \{1\}}} S u_{\sigma} (u_{\rho} - u_1) \right) \oplus \left(\bigoplus_{\sigma \in G - H} S u_{\sigma} \right).$$

(ii) $\Lambda/\operatorname{rad} \Lambda \cong \Lambda_H/\operatorname{rad} \Lambda_H \cong \Lambda_{H_1}/\operatorname{rad} \Lambda_{H_1} \cong M_{f_H}(\Delta_1/\Delta_1\pi_{D_1})^{e_H/m_1}$, where f_H is the inertial degree of the extension L/L^H , e_H is the tame ramification degree of the extension L/L^H , and m_1 is the index of D_1 .

Proof. (i) This follows from Proposition 4.2 and [7, Proposition 1.4].
(ii) The result follows from Proposition 4.2 and [7, Theorem 1.9]. ■

The above result extends the relevant result of Haile [13] for unramified extensions and that of Wilson [32] for tamely ramified extensions.

5. Maximal orders containing Λ . We follow the notation of Subsection 2.2. Let Γ_0 be a maximal *R*-order in the crossed product algebra $A \cong \operatorname{End}_D(V)$ (2.3) containing the weak crossed product Λ (2.2). From the structure of maximal orders (see $[21, \S17]$), there exists a unique up to isomorphism indecomposable Γ_0 -lattice M full in V, i.e. KM = V, which is a (Γ_0, Δ) -lattice. Let $V = L\omega_1 \oplus \cdots \oplus L\omega_m$. Then we can choose $M = S\omega_1 \oplus \cdots \oplus S\omega_m$, and M is also an indecomposable left A-lattice and a (Λ, Δ) -bimodule. Of course M is a left Γ -lattice for the unique principal R-order Γ in A containing Λ (see Theorem 2.6). From the structure of hereditary orders we deduce that $\Gamma_i = \operatorname{End}_{\Delta}(\pi_{\Gamma}^i M), \ 0 \le i \le k-1$, are all the non-isomorphic maximal *R*-orders in *A* containing Γ , where $\Gamma = \bigcap_{i=0}^{k-1} \Gamma_i$ and $\pi_{\Gamma}^i M, 0 \leq i \leq k-1$, are all the non-isomorphic indecomposable Γ -lattices. Therefore $\Gamma_i, 0 \leq i \leq k-1$, are all the non-isomorphic maximal R-orders containing A. Moreover $\pi_{\Gamma}^{i}M$, $0 \leq i \leq k-1$, are also non-isomorphic indecomposable left A-lattices, full in V and (Λ, Δ) -bimodules. If N is another such left Λ -lattice, then $\operatorname{End}_{\Delta}(N)$ will be a maximal R-order in A, and hence one of Γ_i , $0 \le i \le k - 1$. This means that N is isomorphic to one of $\pi_{\Gamma}^{i}M$, $0 \leq i \leq k-1$. So we conclude with the following:

PROPOSITION 5.1. Let A be a crossed product algebra (2.3) and let $V = L\omega_1 \oplus \cdots \oplus L\omega_m$ be the unique simple (A, D)-bimodule. Let $M = S\omega_1 \oplus \cdots \oplus S\omega_m$ and $\Gamma_0 := \text{End}_{\Delta}(M)$. Then:

- (i) $\Gamma_i := \pi_{\Gamma}^i \Gamma_0, \ 0 \le i \le k-1$, are all the maximal R-orders in A containing the weak crossed product order Λ (2.2).
- (ii) $\pi_{\Gamma}^{i}M$, $0 \leq i \leq k-1$, are all the non-isomorphic indecomposable *A*-lattices which are (Λ, Δ) -bimodules.

Acknowledgements. This research was done while the first author held the research grant 89298 (2013) from the Research Committee of the A.U.TH.

REFERENCES

- M. Auslander and D. S. Rim, Ramification index and multiplicity, Illinois J. Math. 7 (1963), 566–581.
- L. F. Barannyk, Finite-dimensional twisted group algebras of semi-wild representation type, Colloq. Math. 120 (2010), 277–298.
- [3] L. F. Barannyk, Finite groups of OTP projective representation type, Colloq. Math. 126 (2012), 35–51.
- [4] H. Benz, Untersuchungen zur Arithmetik in lokalen einfachen Algebren, insbesondere über maximalen Teilkörpern, J. Reine Angew. Math. 225 (1967), 30–75.

- [5] H. Benz und H. Zassenhaus, Über verschränkte Produktordnungen, J. Number Theory 20 (1985), 282–298.
- C. Buschnell and A. Fröhlich, Non-abelian congruence Gauss sums and p-adic simple algebras, Proc. London Math. Soc. 50 (1985), 207–264.
- [7] A. Chalatsis and Th. Theohari-Apostolidi, Maximal orders containing local crossedproducts, J. Pure Appl. Algebra 50 (1988), 211–222.
- [8] G. H. Cliff and A. R. Weiss, Crossed products and hereditary orders, Pacific J. Math. 122 (1986), 333–345.
- C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, With Applications to Finite Groups and Orders, Wiley, New York, 1981.
- [10] Yu. A. Drozd, Cohen-Macaulay modules and vector bundles, in: Lecture Notes in Pure Appl. Math. 210, Dekker, 2000, 107–130.
- [11] Yu. A. Drozd, A. G. Zavadskiĭ and V. V. Kirichenko, Matrix problems and integral representations, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 291–293 (in Russian).
- [12] A. Fröhlich, Principal orders and embedding of local fields in algebras, Proc. London Math. Soc. 54 (1987), 247–266.
- [13] D. Haile, Crossed product over discrete valuation rings, J. Algebra 105 (1987), 116– 148.
- [14] D. Haile, On crossed product algebras arising from weak cocycles, J. Algebra 74 (1982), 270–279.
- [15] D. Haile, R. Larson and M. Sweedler, Almost invertible cohomology theory and the classification of idempotent cohomology classes and algebras by partially ordered sets with a Galois group action, Amer. J. Math. 105 (1983), 689–814.
- [16] M. Harada, Some criteria for hereditarity of crossed products, Osaka J. Math. 1 (1964), 69–80.
- [17] Y. Hatzaras and Th. Theohari-Apostolidi, Hermitian and quadratic forms over local classical crossed product orders, Colloq. Math. 83 (2000), 43–53.
- [18] G. Janusz, Crossed product orders and the Schur index, Comm. Algebra 8 (1980), 697–806.
- [19] G. Karpilovsky, Group Representations. Vol. 1, North-Holland, Amsterdam, 1992.
- [20] V. Kessler, Crossed products, orders and non-commutative arithmetic, J. Number Theory 46 (1994), 255–302.
- [21] I. Reiner, Maximal Orders, London Math. Soc. Monogr. New Ser. 28, Oxford Univ. Press, 2003.
- [22] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach Sci. Publ., New York, 1992.
- [23] D. Simson, Tame three-partite subamalgams of tiled orders of polynomial growth, Colloq. Math. 8 (1999), 237–262.
- [24] D. Simson, A reduced Tits quadratic form and tameness of three-partite subamalgams of tiled orders, Trans. Amer. Math. Soc. 352 (2000), 4843–4875.
- [25] D. Simson, Cohen-Macaulay modules over classical orders, in: Lecture Notes in Pure Appl. Math. 210, Dekker, 2000, 345–382.
- [26] O. Solberg, Hypersurface singularities of finite Cohen-Macaulay type, Proc. London Math. Soc. 58 (1989), 258–280.
- [27] Th. Theohari-Apostolidi, Local crossed-product orders of finite representation type, J. Pure Appl. Algebra 41 (1986), 87–98.
- [28] Th. Theohari-Apostolidi and H. Vavatsoulas, On the separability of the restriction functor, Algebra Discrete Math. 3 (2003), 95–101.
- [29] Th. Theohari-Apostolidi and H. Vavatsoulas, On strongly Gorenstein orders, Algebra Discrete Math. 2 (2005), 80–89.

- [30] Th. Theohari-Apostolidi and H. Vavatsoulas, Induced modules of strongly group graded algebras, Colloq. Math. 108 (2007), 93–104.
- [31] S. Williamson, Crossed product and hereditary orders, Nagoya Math. J. 23 (1963), 103–120.
- [32] C. J. Wilson, Hereditary crossed product orders over discrete valuation rings, J. Algebra 371 (2012), 329–349.

Th. Theohari-Apostolidi, A. Tompoulidou School of Mathematics Aristotle University of Thessaloniki Thessaloniki 54124, Greece E-mail: theohari@math.auth.gr

atompoul@math.auth.gr

Received 19 December 2013;	
revised 20 January 2014	(6109)

68