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OF AN INTEGER
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Abstract. Let p,,(n) stand for the middle prime factor of the integer n > 2. We first
establish that the size of log pm,(n) is close to v/logn for almost all n. We then show how
one can use the successive values of p,,, (n) to generate a normal number in any given base
D > 2. Finally, we study the behavior of exponential sums involving the middle prime
factor function.

1. Introduction. Given an integer D > 2, a D-normal number is an
irrational number ¢ such that any preassigned sequence of [ digits occurs in
the D-ary expansion of ¢ at the expected frequency, namely 1/D!.

In a series of recent papers, we constructed large families of D-normal
numbers using the distribution of the values of the largest prime factor func-
tion P(n) (see for instance [2], [3] and [4]). We also showed [5] how one can
use the large prime divisors of an integer to construct normal numbers. Re-
cently, we proved [0] that the concatenation of the successive values of p(n),
the smallest prime factor of n, in a given base D > 2, yields a D-normal
number.

Given an integer n > 2, write it as n = pi" ~--pz’“, where p; < -+ < pg
are its distinct prime factors and aq,...,ap are positive integers. We let
Pm (1) = Pmax(1,|k/2)) and say that pp,(n) is the “middle” prime factor of n.
Recently, De Koninck and Luca [7] showed that as z — oo,

1
2 Pm(n) 10296 exp ((1 4 0(1))y/2loglog z logloglog =),

n<x

thus answering in part a question raised by Paul Erdés.

Here, we first establish that the size of log p,,(n) is, for almost all n, close
to v/logn, and then we show how one can use the middle prime factor of an
integer to generate a normal number in any given base D > 2. Finally, we
study the behavior of exponential sums involving the middle prime factor
function.
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2. Notation. The letters p, ¢ and 7, with or without subscript, will
always denote prime numbers. The letter ¢, with or without subscript, will
always denote a positive constant, but not necessarily the same at each
occurrence.

Let D > 2 be a fixed integer and let A = Ap ={0,1,...,D —1}. Given
an integer ¢ > 1, an expression of the form 4 ..., where each i; € Ap,
is called a word of length t. Given a word «, we shall write A(a) = t to
indicate that a is a word of length t. We shall also use the symbol A to
denote the empty word. For each t € N, we let A' = A!) stand for the set of
words of length ¢ over A, while A* = A}, will stand for the set of all words
over A regardless of their length, including the empty word A. Observe that
the concatenation of two words a, 5 € A*, written o3, also belongs to A*.
Finally, given a word o and a subword /3 of «, we will denote by Fp(a) the
number of occurrences of 8 in «, that is, the number of pairs of words p1, uo
such that pi8us = a.

Given a positive integer n, we write its D-ary expansion as

n =eo(n) +e1(n)D + - +¢ei(n)D,

where ¢;(n) € A for 0 < i < t and &¢(n) # 0. To this representation we
associate the word

7 =eo(n)er(n)...e(n) € AL
For convenience, if n < 0, we will write m = A. Observe that the number of
digits of such a number 7 will thus be A(7) = |(logn)/log D] + 1.
Finally, given a sequence of integers a(1),a(2),..., we will say that
the concatenation of their D-ary digit expansions a(1)a(2)..., denoted

Concat(a(n) : n € N), is a D-normal sequence if the number 0.a(1)a(2)...
is a D-normal number.

3. Main results

THEOREM 3.1. Let g(x) be a function which tends to infinity with x but
arbitrarily slowly. Set x9 = loglogx. Then, as x — o0,

(3.1) 1#{n € [0, 20] : e~V (@) < 108Pm(M) emgm} N
X

logxz —
log pm
(3.2) #{n <z e VIR < % < emgm} 1

Analogously, as T — 00,
(3.3) —#{n <z : |loglog pm(n) 2@‘ < Vr2g9(x)} — 1.

THEOREM 3.2. The sequence Concat(py,(n) : n € N) is D-normal in
every basis D > 2.
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From here on, we will be using the standard notation e(y) := exp(27iy).
We now introduce the sum
= Z log pm (n)

n<z

THEOREM 3.3. Consider the real-valued polynomial Q(x) = ayz® + -

+ ayix, where at least one of the coeﬁﬁcients Qp, ..., o1 18 irrational, and set
Z logpm : Q(pm( )))
n<x

Then,

Eqlz) = o(T(x)) (¢ — o).

REMARK 3.4. Observe that Theorem includes the interesting case
Q(x) = ax, where « is an arbitrary irrational number.

4. Preliminary results

LEMMA 4.1. Given a positive integer k, let 1 and Bo be distinct words
belonging to A’B. Let cg > 0 be an arbitrary number and consider the inter-
vals

Jy = [w,w+w/log®w]  (w>1).
Further, let w(Jy) stand for the number of prime numbers belonging to the
interval Jy,. Then

Z ‘Fﬁl FB2(§)|

-0 asw — 0.
logp

pEJ
Proof. This result is a consequence of Theorem 1 in the paper of Bassily
and Kétai[I]. m
LEMMA 4.2. Let

E, := Z log pp ().

n<x
gpm(n)|n
Pm(n)/3<q<3pm(n)

Then there exists a positive constant ¢ such that
FE,. < crloglogx.
Proof. We have

E, <Zlogp Z 1<z ZIng Z

p<z gpr<zx p<z p/3<q<3p
p/3<q<3p

1
< clxz — < coxloglogzx. m
p<z p
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LEMMA 4.3. Let Q(z) = apaF+- - -+aix be a real-valued polynomial such
that at least one of its coefficients ag, ..., a1 is irrational. If p1 < ps < ---
stands for the sequence of primes, then

Z e(Q(pn)) = o(x) asx — oo.

n<x

Proof. For a proof of this result, see Chapters 7 and 8 in the book of
I. M. Vinogradov [§]. u

5. Proof of Theorem [3.1] Let

(5.1) Y = exp (\/Iogx), so that loglogy = %:1;2.
Then set
wy(n) = Z 1, Ry(n)= Z L Ay(n) = wy(n) — Ry(n).
pln pln
p<y p>y

It is well known that, if £, — O arbitrarily slowly as  — oo, then

T

1 1
#{n <z:|w(n) — x| > \/.%'2} —0 asz— oo.
x €

On the other hand, from the Turdn—Kubilius inequality and in light of our
choice of y given by (5.1)), we have

> (wy(n) = §z2)* = 3 lwy(n) — loglog y|* = O(aw2).
Secondly, . .
|Ry(n) — $aa|* < (lw(n) — 22| + |wy(n) — a2))?
(5.2) < 2((w(n) — x2)2 + (wy(n) — %332)2),

where we used the basic inequality (a + b)? < 2(a? + b?) valid for all real
numbers a and b. Then, summing both sides of ([5.2)) for n < z, we obtain,
for some positive constant C,

2 2
(5.3) D> 1A, < 2Jwy(n) — dao| + > 2|Ry(n) — 32| < Camsy.
n<x n<lx n<x
It follows from (/5.3)) that
1
(5.4) |Ay(n)] < E—\/m? for all but at most o(x) integers n < z.

T

Let us now choose z and w so that

log z = (logy)e V¥29®)  logw = (logy)eV*29@),
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Since

1 log y
Z — =log 1
2<p<y p og<

+o(1) = Vazg(z) +o(1) = A(z) + o(1),
say, and similarly,

Z L. lo log w +o(1) = /rag(x) + o(1) = A(x) + o(1),

p - Slogy
y<p<w

setting

w[a,b](n) = Z 1,

pn
pE[a,b]

and again using the Turan—Kubilius inequality, we have

Z(w[z,y] (n) — A(z))* < CzA(x),

> Wiyl () = A(@))? < CrA(n),

from which it follows that

(5.5) (1) — Als)| < —V/A(),
(5.6) () — A@)| < = V/AG).

Now, recall that from ([5.4)), we only need to consider those n < z for which

() = Ry ()| < /53,

T

and for which and hold. So, let us choose ¢, = 2/¢g(x), in which
case we have A(x) = /23 - g(z) = (2/e2)\/T2. Thus, assuming first that
0 < Ry(n) —wy(n) < é T2, we have pp,(n) > y and by , pm(n) < w,
provided x is large enough. On the other hand, if —é\/ﬁ < Ry(n) —wy(n)
< 0, then py,(n) <y and by , pm(n) > z, provided z is large enough.
Hence, in any case, we get

z < pm(n) < w,

which proves ([3.2)), from which (3.1]) and (3.3|) follow as well, thus completing
the proof of Theorem

6. Proof of Theorem Let = be a fixed large number. Let L, :=
{neN:|z| <n<|2x] —1} and set

pe = Concat(pm,(n) : n € Ly).
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It is clear that

(6.1) Apz) = > Mpm(n)),
neELy

(6.2) Fs(ps) = Y Fs(pm(n)) + O(x),
nel,

(6.3) AP) = lfggg +O(1).

It follows from (6.1), (6.3 and Theoremthat there exists ¢; > 0 such
that

(6.4) Apz) = c1z/log T exp(—+/z29(2)).
Given arbitrary distinct words Sy, 82 € A’B, we set
A(a) = Fp, (a) — g, (a) (a S A*D)
Our main task will be to prove that

. A(pz)
lim
z—00 \(pz)

(6.5) = 0.

This will prove that, for any word 8 € A%

Fg(pe) 1
_— — (1
Now) ok o(l) asx — oo,

and therefore the sequence Concat(p,,(n) : n € N) is D-normal, thus com-
pleting the proof of Theorem

To see how follows from , observe that, in light of the fact that,
for fixed k € N,

(6.7) > Fylpr) = Mps) = k41 = Apx) + O(1),
veAk)

(6.6)

we have, as T — 00,
Apz) — Fplpa) D" — A(p2)

Fs(pa) = —pi~ = DF
= Dk
— % Z (Fg(px) - Fw(PI)) +0(1)
vEA},
_ %Dko()\(px)) = o(Mpx));
thus proving -

Hence, we only need to prove ([6.5)).
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Now, from (6.2)), it follows that
(6.8) Alpz) = Z A(pm(n)) + O(z).

n€Lg
Let us further introduce the sets
) = {n € Ly : gpm(n) | n for some prime q € (pm(n)/3, 3pm(n))},
LY = {n € L, : log pm(n) < \/log zexp(—2y/2 g(z))}.
With this notation, in light of Lemma and , we then have

(6.9) Z log pm(n) < cxloglogx + x+/logz exp(—2y/z2 g(x))

nerL®urH
= o(zV/logz exp(—+/x2 g(2))) = o(A(px))-
Hence, setting LY = Ly \ (La LY urt )), it follows from and that
(6.10) Alpz) = Y Alpm(n)) + o(A(pa)).
neng)

(2)

Let us now write each integer n € Ly

P(a) < pm(n) < p(b).

Thus setting M = ab and given an arbitrarily small € > 0, from Theorem 1
we have

(6.11) M < 2z/el08%)

as n = apy,(n)b, where

1/2—e

Now, let us fix M = ab. It is clear that we may ignore those integers
n < x for which p,,(n)?|n since there are at most o(x) of them anyway.
Once this is done, it is clear that in the factorization n = ap,,(n)b, we have
P(a) < p(b), so that M determines a and b uniquely. Then, in light of (6.11)),
we may consider the set

v = {n € LP . n = app(n)b = Mp,,(n)}.

Let n; < --- < ny be the list of all elements of £y, and further set m; =
pm(n;) for j = 1,..., H. By construction, it is clear that m < --- < 7g,
all consecutive primes, and since x/M is large by , it follows that
TH > (3 / 2)7r 1.

Next, let K be the set of those M’s such that the corresponding set £y
contains at least one n € Lg), since the others need not be accounted
for. Hence, for ab = M, we deduce that £y contains at least 71 /(2logm)
elements, thus implying that H > 7;/(2logm ), provided z is chosen to be
large enough.
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Using Lemma [4.1] it follows that, when M € K, we have

A( n;
—Z| pm J —0 asx — co.
log pp ( n]

From this, it follows that, for M € K, there exists a function ¢, — 0 as
x — 00 such that

(6.12) S AP <ex > > Apm(n)
MeK nely MeK nely

Using (6.12)), estimate (6.5)) follows, thus completing the proof of Theo-
rem |3.2)

7. Proof of Theorem [3.3] We first write
(7.1) Eq(2x) — Eg(x) = Y logpm(n) - e(Q(pm(n))).
r<n<2z
Using the notation introduced in the proof of Theorem in the above

sum we can drop all n € L(xo) U ngl). It follows that we only need to consider
M € K. Now, for a fixed M € K, we only need to examine the sum

H
> logm; - e(Q(r;)),
j=1

where 71, ..., 7y are consecutive primes and 7z > (3/2)m. Using Lemma 3,
we then obtain

H
> tog ;- e(Q(my))| < e
j=1
Using this in , it follows that, as x — o0,
[Eq(22) ~ Eq(a)l = | >_ logpm(n) - e(@pm(m)| + o(T(2))

r<n<2z
neL( )

< e T(x) +o(T(x)) = o(T(x)),

H
Z log ﬂ'j).
j=1

as requested.

8. Final remarks. Instead of considering the middle prime factor of an
integer, that is the prime factor whose rank amongst the w(n) distinct prime
factors of an integer n is the | $w(n)]th one, we could have also studied the
prime factor whose rank is the |aw(n)|th one, for any given real number

€ (0,1). In this more general case, say with p(®(n) in place of p,,(n), the
same type of results as above would also hold, meaning in particular that
log p{® (n) would be close to log® n instead of /logn.
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