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Abstract. Let pm(n) stand for the middle prime factor of the integer n ≥ 2. We first
establish that the size of log pm(n) is close to

√
logn for almost all n. We then show how

one can use the successive values of pm(n) to generate a normal number in any given base
D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime
factor function.

1. Introduction. Given an integer D ≥ 2, a D-normal number is an
irrational number ξ such that any preassigned sequence of l digits occurs in
the D-ary expansion of ξ at the expected frequency, namely 1/Dl.

In a series of recent papers, we constructed large families of D-normal
numbers using the distribution of the values of the largest prime factor func-
tion P (n) (see for instance [2], [3] and [4]). We also showed [5] how one can
use the large prime divisors of an integer to construct normal numbers. Re-
cently, we proved [6] that the concatenation of the successive values of p(n),
the smallest prime factor of n, in a given base D ≥ 2, yields a D-normal
number.

Given an integer n ≥ 2, write it as n = pα1
1 · · · p

αk
k , where p1 < · · · < pk

are its distinct prime factors and α1, . . . , αk are positive integers. We let
pm(n) = pmax(1,bk/2c) and say that pm(n) is the “middle” prime factor of n.
Recently, De Koninck and Luca [7] showed that as x→∞,∑

n≤x

1

pm(n)
=

x

log x
exp

(
(1 + o(1))

√
2 log log x log log log x

)
,

thus answering in part a question raised by Paul Erdős.

Here, we first establish that the size of log pm(n) is, for almost all n, close
to
√

log n, and then we show how one can use the middle prime factor of an
integer to generate a normal number in any given base D ≥ 2. Finally, we
study the behavior of exponential sums involving the middle prime factor
function.
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2. Notation. The letters p, q and π, with or without subscript, will
always denote prime numbers. The letter c, with or without subscript, will
always denote a positive constant, but not necessarily the same at each
occurrence.

Let D ≥ 2 be a fixed integer and let A = AD = {0, 1, . . . , D − 1}. Given
an integer t ≥ 1, an expression of the form i1 . . . it, where each ij ∈ AD,
is called a word of length t. Given a word α, we shall write λ(α) = t to
indicate that α is a word of length t. We shall also use the symbol Λ to
denote the empty word. For each t ∈ N, we let At = AtD stand for the set of
words of length t over A, while A∗ = A∗D will stand for the set of all words
over A regardless of their length, including the empty word Λ. Observe that
the concatenation of two words α, β ∈ A∗, written αβ, also belongs to A∗.
Finally, given a word α and a subword β of α, we will denote by Fβ(α) the
number of occurrences of β in α, that is, the number of pairs of words µ1, µ2

such that µ1βµ2 = α.
Given a positive integer n, we write its D-ary expansion as

n = ε0(n) + ε1(n)D + · · ·+ εt(n)Dt,

where εi(n) ∈ A for 0 ≤ i ≤ t and εt(n) 6= 0. To this representation we
associate the word

n = ε0(n)ε1(n) . . . εt(n) ∈ At+1.

For convenience, if n ≤ 0, we will write n = Λ. Observe that the number of
digits of such a number n will thus be λ(n) = b(log n)/logDc+ 1.

Finally, given a sequence of integers a(1), a(2), . . . , we will say that

the concatenation of their D-ary digit expansions a(1) a(2) . . . , denoted

Concat(a(n) : n ∈ N), is a D-normal sequence if the number 0.a(1) a(2) . . .
is a D-normal number.

3. Main results

Theorem 3.1. Let g(x) be a function which tends to infinity with x but
arbitrarily slowly. Set x2 = log log x. Then, as x→∞,

1

x
#

{
n ∈ [x, 2x] : e−

√
x2 g(x) ≤ log pm(n)√

log x
≤ e
√
x2 g(x)

}
→ 1,(3.1)

1

x
#

{
n ≤ x : e−

√
x2 g(x) ≤ log pm(n)√

log x
≤ e
√
x2 g(x)

}
→ 1.(3.2)

Analogously, as x→∞,

(3.3)
1

x
#
{
n ≤ x :

∣∣log log pm(n)− 1
2x2

∣∣ ≤ √x2 g(x)
}
→ 1.

Theorem 3.2. The sequence Concat(pm(n) : n ∈ N) is D-normal in
every basis D ≥ 2.
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From here on, we will be using the standard notation e(y) := exp(2πiy).
We now introduce the sum

T (x) :=
∑
n≤x

log pm(n).

Theorem 3.3. Consider the real-valued polynomial Q(x) = αkx
k + · · ·

+α1x, where at least one of the coefficients αk, . . . , α1 is irrational, and set

EQ(x) :=
∑
n≤x

log pm(n) · e(Q(pm(n))).

Then,
EQ(x) = o(T (x)) (x→∞).

Remark 3.4. Observe that Theorem 3.3 includes the interesting case
Q(x) = αx, where α is an arbitrary irrational number.

4. Preliminary results

Lemma 4.1. Given a positive integer k, let β1 and β2 be distinct words
belonging to AkD. Let c0 > 0 be an arbitrary number and consider the inter-
vals

Jw := [w,w + w/logc0 w] (w > 1).

Further, let π(Jw) stand for the number of prime numbers belonging to the
interval Jw. Then

1

π(Jw)

∑
p∈Jw

|Fβ1(p)− Fβ2(p)|
log p

→ 0 as w →∞.

Proof. This result is a consequence of Theorem 1 in the paper of Bassily
and Kátai [1].

Lemma 4.2. Let

Ex :=
∑
n≤x

qpm(n)|n
pm(n)/3<q<3pm(n)

log pm(n).

Then there exists a positive constant c such that

Ex ≤ cx log log x.

Proof. We have

Ex ≤
∑
p≤x

log p
∑
qpr≤x

p/3<q<3p

1 ≤ x
∑
p≤x

log p

p

∑
p/3<q<3p

1

q

≤ c1x
∑
p≤x

1

p
≤ c2x log log x.
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Lemma 4.3. Let Q(x) = αkx
k+· · ·+α1x be a real-valued polynomial such

that at least one of its coefficients αk, . . . , α1 is irrational. If p1 < p2 < · · ·
stands for the sequence of primes, then∑

n≤x
e(Q(pn)) = o(x) as x→∞.

Proof. For a proof of this result, see Chapters 7 and 8 in the book of
I. M. Vinogradov [8].

5. Proof of Theorem 3.1. Let

(5.1) y = exp
(√

log x), so that log log y = 1
2x2.

Then set

ωy(n) =
∑
p|n
p<y

1, Ry(n) =
∑
p|n
p>y

1, ∆y(n) = ωy(n)−Ry(n).

It is well known that, if εx → 0 arbitrarily slowly as x→∞, then

1

x
#

{
n ≤ x : |ω(n)− x2| >

1

εx

√
x2

}
→ 0 as x→∞.

On the other hand, from the Turán–Kubilius inequality and in light of our
choice of y given by (5.1), we have∑

n≤x

(
ωy(n)− 1

2x2

)2
=
∑
n≤x
|ωy(n)− log log y|2 = O(xx2).

Secondly, ∣∣Ry(n)− 1
2x2

∣∣2 ≤ (|ω(n)− x2|+
∣∣ωy(n)− 1

2x2

∣∣)2
≤ 2
(
(ω(n)− x2)2 +

(
ωy(n)− 1

2x2

)2)
,(5.2)

where we used the basic inequality (a + b)2 ≤ 2(a2 + b2) valid for all real
numbers a and b. Then, summing both sides of (5.2) for n ≤ x, we obtain,
for some positive constant C,

(5.3)
∑
n≤x
|∆y(n)|2 ≤

∑
n≤x

2
∣∣ωy(n)− 1

2x2

∣∣2 +
∑
n≤x

2
∣∣Ry(n)− 1

2x2

∣∣2 ≤ Cxx2.

It follows from (5.3) that

(5.4) |∆y(n)| ≤ 1

εx

√
x2 for all but at most o(x) integers n ≤ x.

Let us now choose z and w so that

log z = (log y)e−
√
x2 g(x), logw = (log y)e

√
x2 g(x).
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Since ∑
z<p<y

1

p
= log

log y

log z
+ o(1) =

√
x2 g(x) + o(1) = A(x) + o(1),

say, and similarly,∑
y<p<w

1

p
= log

logw

log y
+ o(1) =

√
x2 g(x) + o(1) = A(x) + o(1),

setting

ω[a,b](n) :=
∑
p|n

p∈[a,b]

1,

and again using the Turán–Kubilius inequality, we have∑
n≤x

(ω[z,y](n)−A(x))2 ≤ CxA(x),

∑
n≤x

(ω[y,w](n)−A(x))2 ≤ CxA(x),

from which it follows that

|ω[z,y](n)−A(x)| ≤ 1

εx

√
A(x),(5.5)

|ω[y,w](n)−A(x)| ≤ 1

εx

√
A(x).(5.6)

Now, recall that from (5.4), we only need to consider those n ≤ x for which

|ωy(n)−Ry(n)| ≤ 1

εx

√
x2,

and for which (5.5) and (5.6) hold. So, let us choose εx = 2/g(x), in which
case we have A(x) =

√
x2 · g(x) = (2/εx)

√
x2. Thus, assuming first that

0 ≤ Ry(n)− ωy(n) < 1
εx

√
x2, we have pm(n) > y and by (5.6), pm(n) < w,

provided x is large enough. On the other hand, if − 1
εx

√
x2 ≤ Ry(n)−ωy(n)

≤ 0, then pm(n) ≤ y and by (5.5), pm(n) > z, provided x is large enough.
Hence, in any case, we get

z ≤ pm(n) ≤ w,

which proves (3.2), from which (3.1) and (3.3) follow as well, thus completing
the proof of Theorem 3.1.

6. Proof of Theorem 3.2. Let x be a fixed large number. Let Lx :=
{n ∈ N : bxc ≤ n ≤ b2xc − 1} and set

ρx := Concat(pm(n) : n ∈ Lx).
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It is clear that

λ(ρx) =
∑
n∈Lx

λ(pm(n)),(6.1)

Fβ(ρx) =
∑
n∈Lx

Fβ(pm(n)) +O(x),(6.2)

λ(p) =
log p

logD
+O(1).(6.3)

It follows from (6.1), (6.3) and Theorem 3.1 that there exists c1 > 0 such
that

(6.4) λ(ρx) ≥ c1x
√

log x exp(−
√
x2g(x)).

Given arbitrary distinct words β1, β2 ∈ AkD, we set

∆(α) := Fβ1(α)− Fβ2(α) (α ∈ A∗D).

Our main task will be to prove that

(6.5) lim
x→∞

∆(ρx)

λ(ρx)
= 0.

This will prove that, for any word β ∈ AkD,

(6.6)
Fβ(ρx)

λ(ρx)
− 1

Dk
= o(1) as x→∞,

and therefore the sequence Concat(pm(n) : n ∈ N) is D-normal, thus com-
pleting the proof of Theorem 3.2.

To see how (6.6) follows from (6.5), observe that, in light of the fact that,
for fixed k ∈ N,

(6.7)
∑
γ∈Ak

D

Fγ(ρx) = λ(ρx)− k + 1 = λ(ρx) +O(1),

we have, as x→∞,

Fβ(ρx)− λ(ρx)

Dk
=
Fβ(ρx)Dk − λ(ρx)

Dk

=
Fβ(ρx)Dk −

∑
γ∈Ak

D
Fγ(ρx) +O(1)

Dk

=
1

Dk

∑
γ∈Ak

D

(Fβ(ρx)− Fγ(ρx)) +O(1)

=
1

Dk
Dko(λ(ρx)) = o(λ(ρx)),

thus proving (6.6).
Hence, we only need to prove (6.5).
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Now, from (6.2), it follows that

(6.8) ∆(ρx) =
∑
n∈Lx

∆(pm(n)) +O(x).

Let us further introduce the sets

L(0)
x = {n ∈ Lx : qpm(n) |n for some prime q ∈ (pm(n)/3, 3pm(n))},

L(1)
x = {n ∈ Lx : log pm(n) ≤

√
log x exp(−2

√
x2 g(x))}.

With this notation, in light of Lemma 4.2 and (6.4), we then have∑
n∈L(0)

x ∪L
(1)
x

log pm(n) ≤ cx log log x+ x
√

log x exp(−2
√
x2 g(x))(6.9)

= o(x
√

log x exp(−
√
x2 g(x))) = o(λ(ρx)).

Hence, setting L
(2)
x = Lx \ (L

(0)
x ∪ L(1)

x ), it follows from (6.8) and (6.9) that

(6.10) ∆(ρx) =
∑
n∈L(2)

x

∆(pm(n)) + o(λ(ρx)).

Let us now write each integer n ∈ L(2)
x as n = apm(n)b, where

P (a) ≤ pm(n) ≤ p(b).

Thus setting M = ab and given an arbitrarily small ε > 0, from Theorem 1
we have

(6.11) M ≤ 2x/e(log x)1/2−ε
.

Now, let us fix M = ab. It is clear that we may ignore those integers
n ≤ x for which pm(n)2 |n since there are at most o(x) of them anyway.
Once this is done, it is clear that in the factorization n = apm(n)b, we have
P (a) < p(b), so that M determines a and b uniquely. Then, in light of (6.11),
we may consider the set

EM := {n ∈ L(2)
x : n = apm(n)b = Mpm(n)}.

Let n1 < · · · < nH be the list of all elements of EM , and further set πj =
pm(nj) for j = 1, . . . ,H. By construction, it is clear that π1 < · · · < πH ,
all consecutive primes, and since x/M is large by (6.11), it follows that
πH > (3/2)π1.

Next, let K be the set of those M ’s such that the corresponding set EM
contains at least one n ∈ L

(2)
x , since the others need not be accounted

for. Hence, for ab = M , we deduce that EM contains at least π1/(2 log π1)
elements, thus implying that H ≥ π1/(2 log π1), provided x is chosen to be
large enough.
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Using Lemma 4.1, it follows that, when M ∈ K, we have

1

H

H∑
j=1

|∆(pm(nj))|
log pm(nj)

→ 0 as x→∞.

From this, it follows that, for M ∈ K, there exists a function εx → 0 as
x→∞ such that

(6.12)
∑
M∈K

∑
n∈EM

|∆(pm(n))| < εx
∑
M∈K

∑
n∈EM

λ(pm(n)).

Using (6.12), estimate (6.5) follows, thus completing the proof of Theo-
rem 3.2.

7. Proof of Theorem 3.3. We first write

(7.1) EQ(2x)− EQ(x) =
∑

x≤n≤2x

log pm(n) · e(Q(pm(n))).

Using the notation introduced in the proof of Theorem 3.2, in the above

sum we can drop all n ∈ L(0)
x ∪L(1)

x . It follows that we only need to consider
M ∈ K. Now, for a fixed M ∈ K, we only need to examine the sum

H∑
j=1

log πj · e(Q(πj)),

where π1, . . . , πH are consecutive primes and πH > (3/2)π1. Using Lemma 3,
we then obtain ∣∣∣ H∑

j=1

log πj · e(Q(πj))
∣∣∣ ≤ εx∣∣∣ H∑

j=1

log πj

∣∣∣.
Using this in (7.1), it follows that, as x→∞,

|EQ(2x)− EQ(x)| =
∣∣∣ ∑
x≤n≤2x

n∈L(2)
x

log pm(n) · e(Q(pm(n)))
∣∣∣+ o(T (x))

≤ εxT (x) + o(T (x)) = o(T (x)),

as requested.

8. Final remarks. Instead of considering the middle prime factor of an
integer, that is the prime factor whose rank amongst the ω(n) distinct prime
factors of an integer n is the b1

2ω(n)cth one, we could have also studied the
prime factor whose rank is the bαω(n)cth one, for any given real number
α ∈ (0, 1). In this more general case, say with p(α)(n) in place of pm(n), the
same type of results as above would also hold, meaning in particular that
log p(α)(n) would be close to logα n instead of

√
log n.
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[1] N. L. Bassily and I. Kátai, Distribution of consecutive digits in the q-ary expansions
of some sequences of integers, J. Math. Sci. 78 (1996), 11–17.
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