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ON CONTINUITY AT ZERO OF THE MAXIMAL OPERATOR
FOR A SEMIFINITE MEASURE

BY

SEMYON LITVINOV (Hazleton, PA)

Abstract. For a sequence of linear maps defined on a Banach space with values in
the space of measurable functions on a semifinite measure space, we examine the behavior
of its maximal operator at zero.

1. Introduction and preliminaries. Let (Ω,A, µ) be a measure space.
Denote by M0 (resp. M) the linear space of equivalence classes of all (re-
spectively, a.e. finite) real or complex valued measurable functions on Ω. If
X is a given set and an : X →M is a sequence of maps, denote

a?(f)(ω) = sup
n
|an(f)(ω)|, f ∈ X, ω ∈ Ω.

The mapping a? : X →M0 is called the maximal operator associated with
the family {an}. For a fixed f ∈ X, the function a?(f) is called a maximal
function of the sequence {an(f)}.

If X is a Banach space, behavior of the maximal operator near 0 ∈ X
plays an important role in the study of a.e. convergence of sequences {an(f)},
f ∈ X; see Theorem 1.2 below.

Let τµ be the measure topology on M, that is, the topology defined by
the following fundamental system of neighborhoods of 0 ∈M:

N (ε, δ) = {f ∈M : µ{ω : |f(ω)| > δ} ≤ ε}, ε, δ > 0.

It is well-known and easy to see that (M, τµ) is a complete metrizable topo-
logical vector space [5].

Remark 1.1. Note that if for some f ∈ X the sequence {an(f)} con-
verges a.e., then clearly a?(f) <∞ a.e., that is, a?(f) ∈M.

The classical Banach Principle can be stated as follows (see [3], and
also [1]):
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Theorem 1.2. Assume that µ(Ω) <∞. Let X be a Banach space, and
let an : X → M be a sequence of τµ-continuous linear maps. Consider the
following conditions:

(A) {an(f)} converges a.e. for every f ∈ X;
(B) a?(f) ∈M for every f ∈ X;
(C) the maximal operator a? : X →M is τµ-continuous at 0 ∈ X;
(D) the set {f ∈ X : {an(f)} converges a.e.} is closed in X.

Then the implications (A)⇒(B)⇒(C)⇒(D) hold. If, in addition, the se-
quence {an(f)} converges a.e. for every f in a dense subset of X, then
conditions (A)–(D) are equivalent.

In particular, we have the following which is the crucial statement of
Theorem 1.2.

Theorem 1.3. Assume µ(Ω) < ∞. Let X be a Banach space, and let
an : X →M be a sequence of τµ-continuous linear maps. If supn |an(f)|<∞
a.e. for all f ∈ X, then the maximal operator a? : X →M is τµ-continuous
at 0 ∈ X.

One can ask what happens if the measure in question is not finite. In
what follows we will show that Theorem 1.3 does not hold even when Ω = R
(with Lebesgue measure), but remains valid for a semifinite measure if the
measure topology is replaced by the so-called local measure topology which
is then weaker than the measure topology.

2. An example. The example below shows that if µ is not finite but is
σ-finite, then Theorem 1.3 fails to hold.

Example 2.1. Let Ω be the set of real numbers endowed with Lebesgue
measure µ. Take X to be the set of all continuous real valued functions
on R that vanish outside the interval (0, 1). Equipped with the norm ‖f‖ =
maxω∈R |f(ω)|, X is a Banach space. For every n ∈ N define a linear map
an : X →M =M(R) by the formula

an(f)(ω) = nf(n(ω − n)), f ∈ X.

Then an is clearly continuous in ‖ · ‖, hence in τµ. Furthermore, since, for
every f ∈ X, the function an(f) vanishes outside the interval (n, n + 1/n),
we have an(f)(ω)→ 0 for all ω ∈ R. In particular, given f ∈ X, the maximal
function a?(f) is finite everywhere. Therefore a?(f) ∈M for every f ∈ X.

Next, fix γ > 0, and let 0 6= f ∈ X be such that ‖f‖ < γ. Then, for some
λ > 0,

µ{ω : |f(ω)| > λ} = ∆ > 0.
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Take δ > 0. If n ≥ δ/λ, we have

µ{ω : |an(f)(ω)| > δ} ≥ µ{ω : |f(n(ω − n))| > λ}
= µ{ω : |f(nω)| > λ} = ∆/n.

Therefore, since the intervals (n, n+ 1/n) do not overlap, we can write

µ
{
ω : sup

n≥δ/λ
|an(f)(ω)| > δ

}
≥ ∆

(
1

n
+

1

n+ 1
+ · · ·

)
.

Thus, given γ > 0, for every 0 6= f ∈ X with ‖f‖ < γ and every δ > 0, we
have

µ{ω : a?(f)(ω) > δ} =∞,
and we conclude that the maximal operator a? : X → M is not τµ-
continuous at 0 ∈ X.

3. Theorem 1.3 for a semifinite measure. Assume now that µ is
semifinite, that is, any subset of Ω of infinite measure contains a subset of
non-zero finite measure.

The local measure topology tµ on M can be defined by the following
fundamental system of neighborhoods of 0 ∈M:

N (ε, δ, F )={f ∈M : µ{ω∈F : |f(ω)| > δ} ≤ ε}, ε, δ > 0, 0 < µ(F ) <∞.
The tµ-topology is strictly weaker than τµ, in general. However, if µ(Ω) <∞,
the distinction between these topologies disappears. (M, tµ) is a complete
Hausdorff topological vector space that is not metrizable unless µ is σ-finite.
For a detailed account on semifinite measure spaces and the local measure
topology, see [2].

Let

L∞ =
{
f ∈M : ‖f‖∞ = ess sup

ω∈Ω
|f(ω)| <∞

}
.

One can verify the following.

Proposition 3.1. For any ε, δ > 0, and F with 0 < µ(F ) <∞,

N (ε, δ, F ) = {f ∈M : ‖fχE‖∞ ≤ δ for some E ⊂ F with µ(F \ E) ≤ ε}.
The proof of the next fact can be found in [1].

Lemma 3.2. Let X be a topological space, and let an : X → M be a
sequence of tµ-continuous maps. Then, given any ε > 0 and E ∈ A, the set

XL = {f ∈ X : ‖a?(f)χG‖∞ ≤ L for some G ⊂ E with µ(E \G) ≤ ε}
is closed in X for every L > 0.

Denote

Af+ = {F ∈ A : 0 < µ(F ) <∞}.
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Proposition 3.3. If f ∈M0, then the following conditions are equiva-
lent:

(i) f ∈M;

(ii) for every F ∈ Af+ and ε > 0 there exists a set E ⊂ F with µ(F \E)
≤ ε such that yχE ∈ L∞.

Proof. (i)⇒(ii): We have fF = |f |χF < ∞ a.e. Therefore, if FN =
{ω ∈ F : fF (ω) > N}, N ∈ N, then limN→∞ µ(FN ) = 0, hence µ(FN0) ≤ ε
for some N0. Setting E = F \ FN0 , we obtain µ(F \ E) ≤ ε and fF (ω) ≤ N
for every ω ∈ E. Consequently, fχE = fFχE ∈ L∞.

The implication (ii)⇒(i) is obvious.

Now we can extend Theorem 1.3 to the case of semifinite measure.

Theorem 3.4. Let (X, ‖ · ‖) be a Banach space, and let an : X → M
be a sequence of tµ-continuous linear maps. If supn |an(f)| <∞ a.e. for all
f ∈ X, then the maximal operator a? : X →M is tµ-continuous at 0 ∈ X.

Proof. Fix ε, δ > 0 and F ∈ Af+. By Proposition 3.1, we need to show
that there is γ > 0 such that ‖f‖ < γ implies that

‖a?(f)χE‖∞ ≤ δ
for some E ⊂ F with µ(F \ E) ≤ ε.

For L ∈ N define

XL = {f ∈ X : ‖a?(f)χG‖∞ ≤ L for some G ⊂ F with µ(F \G) ≤ ε/2}.
By Lemma 3.2, the sets XL are closed, while a?(f) = supn |an(f)| <∞ a.e.
for all f ∈ X together with Proposition 3.3 implies that

X =
⋃
L

XL.

By the Baire category theorem, there exists L0 such that XL0 contains a
non-empty open set. Thus, there are f0 ∈ X and ν > 0 such that, given
f ∈ X with ‖f − f0‖ < ν, one can present a set G ⊂ F with µ(F \G) ≤ ε/2
satisfying

‖a?(f)χG‖∞ ≤ L0.

Consequently, if ‖f‖ < ν, we can find E′ and E′′ such that µ(F \E′) ≤ ε/2,
µ(F \ E′′) ≤ ε/2, and

‖a?(f + f0)χE′‖∞ ≤ L0, ‖a?(f0)χE′′‖∞ ≤ L0.

Defining E = E′ ∩ E′′, we obtain µ(F \ E) ≤ ε and also

‖a?(f)χE‖∞ ≤ ‖a?(f + f0)χE‖∞ + ‖a?(f0)χE‖∞ ≤ 2L0.

If m > 0 is chosen such that 2L0/m ≤ δ, then ‖f‖ < γ = ν/m implies
‖mf‖ < ν, hence

‖a?(f)χE‖∞ ≤ δ.
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The following lemma can also be found in [1].

Lemma 3.5. Let (X,+) be a semigroup, and let an : (X,+) → (M,+)
be a sequence of homomorphisms. Suppose that f ∈ X is such that, given

F ∈ Af+, there exist a sequence {fk} ⊂ X and a set E ⊂ F with µ(E) > 0
satisfying

(a) the sequence {an(f + fk)} converges a.e. for each k;
(b) ‖a?(fk)χE‖∞ → 0 as k →∞.

Then the sequence {an(f)} also converges a.e.

As an application of Theorem 3.4 we derive the following corollary.

Corollary 3.6. Let X and {an} be as in Theorem 3.4. If supn |an(f)|
<∞ a.e., then the set

C = {f ∈ X : {an(f)} converges a.e.}

is closed in X.

Proof. Take any F ∈ Af+ and fix ε > 0 such that ε < µ(F ). By Theo-
rem 3.4, given any k ∈ N, there is γk > 0 for which ‖x‖ < γk implies

‖a?(f)χEk
‖∞ ≤ 1/k

for some Ek ⊂ F with µ(F \ Ek) ≤ ε/2k.
Pick f ∈ C. Then, given k ∈ N, there is gk ∈ C such that ‖gk − f‖ < γk.

Therefore, denoting fk = gk−f and letting E =
⋂∞
k=1Ek, we obtain µ(F \E)

≤ ε, hence µ(E) > 0 since µ(F ) > ε. Also, f + fk = gk ∈ C for each k and

‖a?(fk)χE‖∞ ≤ 1/k → 0 as k →∞.

By Lemma 3.5, f ∈ C, implying C = C.

Remark 3.7. As was carried out in [4] for a finite measure, Theorem
3.4 and Corollary 3.6 can be proved in the case where X is a topological
group of second Baire category.

Remark 3.8. The main reason for deriving Corollary 3.6 from The-
orem 3.4 here is to show that the tµ-continuity, a weaker condition than
τµ-continuity, of the maximal operator at zero is sufficient for the closed-
ness of the set C. Alternatively, Corollary 3.6 can be derived directly from
Theorem 1.2 as follows.

If we define

aFn (f) = an(f)χF , F ∈ Af+,

then, for a given F ∈ Af+, aFn : X →M(F ) is a sequence of τµ-continuous
linear maps such that (aF )?(f) ∈ M(F ) for every f ∈ X. By Theorem 1.2,
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the set
CF = {f ∈ X : {aFn (f)} converges a.e.}

is closed in X.
Clearly C ⊂

⋂
F∈Af

+
CF . If f ∈

⋂
F∈Af

+
CF and

D = {ω ∈ Ω : {an(f)(ω)} does not converge},
then D ∈ A. Suppose that µ(D) > 0 and take F ⊂ D such that F ∈ Af+.
Since f ∈ CF , the sequence {aFn (f)} converges a.e., contrary to the definition
of D. Therefore µ(D) = 0, hence f ∈ C, which implies that C =

⋂
F∈Af

+
CF .

Thus C is closed in X.
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