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ON CONTINUITY AT ZERO OF THE MAXIMAL OPERATOR
FOR A SEMIFINITE MEASURE

BY

SEMYON LITVINOV (Hazleton, PA)

Abstract. For a sequence of linear maps defined on a Banach space with values in
the space of measurable functions on a semifinite measure space, we examine the behavior
of its maximal operator at zero.

1. Introduction and preliminaries. Let ({2, .4, 1) be a measure space.
Denote by My (resp. M) the linear space of equivalence classes of all (re-
spectively, a.e. finite) real or complex valued measurable functions on 2. If
X is a given set and a, : X — M is a sequence of maps, denote

@*(Nw) = suplan(W), S € X, we D,

The mapping a* : X — My is called the maximal operator associated with
the family {a,}. For a fixed f € X, the function a*(f) is called a mazimal
function of the sequence {a,(f)}.

If X is a Banach space, behavior of the maximal operator near 0 € X
plays an important role in the study of a.e. convergence of sequences {a,(f)},
f € X; see Theorem [I.2] below.

Let 7, be the measure topology on M, that is, the topology defined by
the following fundamental system of neighborhoods of 0 € M:

N d)={feM:p{w:|f(w) >0} <€}, €06>0.

It is well-known and easy to see that (M, 7,) is a complete metrizable topo-
logical vector space [5].

REMARK 1.1. Note that if for some f € X the sequence {a,(f)} con-
verges a.e., then clearly a*(f) < oo a.e., that is, a*(f) € M.

The classical Banach Principle can be stated as follows (see [3], and
also [1]):
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THEOREM 1.2. Assume that p1(§2) < co. Let X be a Banach space, and
let ap, : X — M be a sequence of 1,-continuous linear maps. Consider the
following conditions:

(A) {an(f)} converges a.e. for every f € X;

(B) a*(f) € M for every f € X;

(C) the mazimal operator a* : X — M is 1,-continuous at 0 € X ;
(D) the set {f € X : {an(f)} converges a.e.} is closed in X.

Then the implications (A)=(B)=(C)=(D) hold. If, in addition, the se-
quence {a,(f)} converges a.e. for every f in a dense subset of X, then
conditions (A)—(D) are equivalent.

In particular, we have the following which is the crucial statement of
Theorem

THEOREM 1.3. Assume u(f2) < co. Let X be a Banach space, and let
an : X = M be a sequence of 1,-continuous linear maps. If sup,, |a,(f)| <oo
a.e. for all f € X, then the mazimal operator a* : X — M is 7,-continuous
at 0 e X.

One can ask what happens if the measure in question is not finite. In
what follows we will show that Theorem [I.3] does not hold even when 2 = R
(with Lebesgue measure), but remains valid for a semifinite measure if the
measure topology is replaced by the so-called local measure topology which
is then weaker than the measure topology.

2. An example. The example below shows that if x4 is not finite but is
o-finite, then Theorem fails to hold.

EXAMPLE 2.1. Let {2 be the set of real numbers endowed with Lebesgue
measure u. Take X to be the set of all continuous real valued functions
on R that vanish outside the interval (0,1). Equipped with the norm || f|| =
maxyer |f(w)|, X is a Banach space. For every n € N define a linear map
an : X - M = M(R) by the formula

an(f)(w) =nf(n(w—-mn), feX.

Then a,, is clearly continuous in | - ||, hence in 7,. Furthermore, since, for
every f € X, the function a,(f) vanishes outside the interval (n,n + 1/n),
we have a,(f)(w) — 0 for all w € R. In particular, given f € X, the maximal
function a*(f) is finite everywhere. Therefore a*(f) € M for every f € X.

Next, fix v > 0, and let 0 # f € X be such that || f|| < . Then, for some
A >0,

p{w: |fw)] > A =A>0.
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Take 6 > 0. If n > §/\, we have

pfw s lan(f)(w)[ > 6} =2 pfw : [f(n(w —n))| > A}
— pfw: |f(w)] > A} = Afn.
Therefore, since the intervals (n,n + 1/n) do not overlap, we can write
1 1
: n 2 —_— —_— DY .
wlo: s lan(N@)1> )= a(5 4 g+

Thus, given v > 0, for every 0 # f € X with ||f|| < v and every § > 0, we
have

i{w: a*(f)(w) > 5} = o,
and we conclude that the maximal operator a* : X — M is not 7,-
continuous at 0 € X.

3. Theorem 1.3 for a semifinite measure. Assume now that pu is
semifinite, that is, any subset of {2 of infinite measure contains a subset of
non-zero finite measure.

The local measure topology t,, on M can be defined by the following
fundamental system of neighborhoods of 0 € M:

N, o, F)={feM:p{weF :|f(w)| >} <€}, €6>0,0<pu(F)<occ.

The t,-topology is strictly weaker than 7, in general. However, if 1(£2) < oo,
the distinction between these topologies disappears. (M,t,) is a complete
Hausdorff topological vector space that is not metrizable unless p is o-finite.
For a detailed account on semifinite measure spaces and the local measure
topology, see [2].

Let

£ = {f € M:||f]loc = esssup | f(w)| < oo}
wef?
One can verify the following.
PROPOSITION 3.1. For any €,d > 0, and F with 0 < pu(F) < oo,
N(e, 0, F)={f eM:|fxellec <0 for some E C F with u(F\ E) < €}.

The proof of the next fact can be found in [I].

LEMMA 3.2. Let X be a topological space, and let a, : X — M be a
sequence of t,-continuous maps. Then, given any € >0 and E € A, the set

X ={feX :|[a*(f)xclloo < L for some G C E with u(E\ G) < €}
is closed in X for every L > 0.

Denote
Al ={FeA:0< u(F) < oo}
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ProrosiTiON 3.3. If f € My, then the following conditions are equiva-
lent:

(i) feM;

(ii) for every F € Ai and € > 0 there exists a set E C F with u(F \ E)

< e such that yxg € L.

Proof. (i)=-(ii): We have fp = |f|xr < oo a.e. Therefore, if Fy =
{we F: fr(w) > N}, N €N, then limy_,00 u(Fn) = 0, hence u(Fy,) < €
for some Ny. Setting E = F'\ Fy,, we obtain u(F \ £) < e and fp(w) < N
for every w € E. Consequently, fxg = frxg € L.

The implication (ii)=-(i) is obvious. =

Now we can extend Theorem [L.3] to the case of semifinite measure.

THEOREM 3.4. Let (X,|| - ||) be a Banach space, and let a,, : X — M

be a sequence of t,-continuous linear maps. If sup,, |an(f)| < 0o a.e. for all
[ € X, then the maximal operator a* : X — M is t,-continuous at 0 € X.

Proof. Fix ¢,§ > 0 and F € Ai. By Proposition E we need to show
that there is v > 0 such that || f|| <« implies that
la*(f)xEelle <6
for some E C F with u(F\ E) <e.
For L € N define
X ={feX:|la*(f)xclloo <L for some G C F with u(F \ G) < €¢/2}.

By Lemma [3.2] the sets X, are closed, while a*(f) = sup,, |an(f)| < oo a.e.
for all f € X together with Proposition [3.3] implies that

X:UXL.
L

By the Baire category theorem, there exists Lo such that X, contains a
non-empty open set. Thus, there are fy € X and v > 0 such that, given
f € X with ||f — fol|l < v, one can present a set G C F with pu(F\ G) < ¢/2
satisfying
la*(f)xcllos < Lo-

Consequently, if || f|| < v, we can find E’ and E” such that u(F\ E') < €/2,
p(F\ E") <e€/2, and

la*(f + fo)xerllso < Lo, lla*(fo)xerlleo < Lo-
Defining F = E' N E”, we obtain u(F \ E) < e and also

la*(f)xElloo < lla*(f + fo)xElloo + lla*(fo)XxElloo < 2Lo.

If m > 0 is chosen such that 2Ly/m < §, then |f|| < v = v/m implies
lmf]| < v, hence
la*(f)xElloo < 0. m
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The following lemma can also be found in [I].

LEMMA 3.5. Let (X,4) be a semigroup, and let a, : (X,+) = (M, +)
be a sequence of homomorphisms. Suppose that f € X is such that, given
F e Ai, there exist a sequence {fr} C X and a set E C F with u(E) > 0
satisfying

(a) the sequence {an(f + fr)} converges a.e. for each k;

(b) lla*(fx)xElloc = 0 as k — oo.

Then the sequence {a,(f)} also converges a.e.
As an application of Theorem [3.4] we derive the following corollary.

COROLLARY 3.6. Let X and {a,} be as in Theorem[3.4] If sup,, |an(f)|
< o0 a.e., then the set

C={feX:{an(f)} converges a.e.}

1s closed in X.

Proof. Take any F € .Ai and fix € > 0 such that € < p(F'). By Theo-
rem given any k € N, there is 75 > 0 for which ||z| < v implies

la*(F)xeylloo < 1/k

for some Ej, C F with u(F \ Ey) < ¢/2".

Pick f € C. Then, given k € N, there is g;, € C such that ||gr — f|| < V&.
Therefore, denoting fi, = gy — f and letting E = (), E), we obtain pu(F\E)
<€, hence p(E) > 0 since u(F) > €. Also, f + fr = gr € C for each k and

la*(fi)xelle <1/k—0  as k — oo.
By Lemma f €O, implying C =C. =

REMARK 3.7. As was carried out in [4] for a finite measure, Theorem
and Corollary [3.6] can be proved in the case where X is a topological
group of second Baire category.

REMARK 3.8. The main reason for deriving Corollary from The-
orem here is to show that the t,-continuity, a weaker condition than
T,-continuity, of the maximal operator at zero is sufficient for the closed-
ness of the set C. Alternatively, Corollary [3.6] can be derived directly from
Theorem [1.2] as follows.

If we define

af(f) = an(f)xr, FeAl,

then, for a given F € Ai, al’ : X — M(F) is a sequence of 7,-continuous
linear maps such that (af)*(f) € M(F) for every f € X. By Theorem [1.2
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the set
Cr={f € X :{al(f)} converges a.c.}

is closed in X.
Clearly CcC mFeAi Cr. Iff S ﬂFEAf_ CFr and

D ={we 2:{an(f)(w)} does not converge},

then D € A. Suppose that p(D) > 0 and take F' C D such that F' € Ai.
Since f € Cr, the sequence {a’ (f)} converges a.e., contrary to the definition
of D. Therefore p(D) = 0, hence f € C, which implies that C' = ﬂFeAi Cr.
Thus C is closed in X.
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