VOL. 135

2014

NO. 1

ON CONTINUITY AT ZERO OF THE MAXIMAL OPERATOR FOR A SEMIFINITE MEASURE

ΒY

SEMYON LITVINOV (Hazleton, PA)

Abstract. For a sequence of linear maps defined on a Banach space with values in the space of measurable functions on a semifinite measure space, we examine the behavior of its maximal operator at zero.

1. Introduction and preliminaries. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Denote by \mathcal{M}_0 (resp. \mathcal{M}) the linear space of equivalence classes of all (respectively, a.e. finite) real or complex valued measurable functions on Ω . If X is a given set and $a_n : X \to \mathcal{M}$ is a sequence of maps, denote

$$a^{\star}(f)(\omega) = \sup_{n} |a_n(f)(\omega)|, \quad f \in X, \, \omega \in \Omega.$$

The mapping $a^* : X \to \mathcal{M}_0$ is called the *maximal operator* associated with the family $\{a_n\}$. For a fixed $f \in X$, the function $a^*(f)$ is called a *maximal function* of the sequence $\{a_n(f)\}$.

If X is a Banach space, behavior of the maximal operator near $0 \in X$ plays an important role in the study of a.e. convergence of sequences $\{a_n(f)\}, f \in X$; see Theorem 1.2 below.

Let τ_{μ} be the *measure topology* on \mathcal{M} , that is, the topology defined by the following fundamental system of neighborhoods of $0 \in \mathcal{M}$:

$$\mathcal{N}(\epsilon, \delta) = \{ f \in \mathcal{M} : \mu\{\omega : |f(\omega)| > \delta \} \le \epsilon \}, \quad \epsilon, \delta > 0.$$

It is well-known and easy to see that $(\mathcal{M}, \tau_{\mu})$ is a complete metrizable topological vector space [5].

REMARK 1.1. Note that if for some $f \in X$ the sequence $\{a_n(f)\}$ converges a.e., then clearly $a^*(f) < \infty$ a.e., that is, $a^*(f) \in \mathcal{M}$.

The classical Banach Principle can be stated as follows (see [3], and also [1]):

²⁰¹⁰ Mathematics Subject Classification: Primary 28A20.

Key words and phrases: maximal operator, Banach Principle, semifinite measure, local measure topology.

THEOREM 1.2. Assume that $\mu(\Omega) < \infty$. Let X be a Banach space, and let $a_n : X \to \mathcal{M}$ be a sequence of τ_{μ} -continuous linear maps. Consider the following conditions:

- (A) $\{a_n(f)\}$ converges a.e. for every $f \in X$;
- (B) $a^{\star}(f) \in \mathcal{M}$ for every $f \in X$;
- (C) the maximal operator $a^* : X \to \mathcal{M}$ is τ_{μ} -continuous at $0 \in X$;
- (D) the set $\{f \in X : \{a_n(f)\} \text{ converges a.e.}\}$ is closed in X.

Then the implications $(A) \Rightarrow (B) \Rightarrow (C) \Rightarrow (D)$ hold. If, in addition, the sequence $\{a_n(f)\}$ converges a.e. for every f in a dense subset of X, then conditions (A)-(D) are equivalent.

In particular, we have the following which is the crucial statement of Theorem 1.2.

THEOREM 1.3. Assume $\mu(\Omega) < \infty$. Let X be a Banach space, and let $a_n : X \to \mathcal{M}$ be a sequence of τ_{μ} -continuous linear maps. If $\sup_n |a_n(f)| < \infty$ a.e. for all $f \in X$, then the maximal operator $a^* : X \to \mathcal{M}$ is τ_{μ} -continuous at $0 \in X$.

One can ask what happens if the measure in question is not finite. In what follows we will show that Theorem 1.3 does not hold even when $\Omega = \mathbb{R}$ (with Lebesgue measure), but remains valid for a semifinite measure if the measure topology is replaced by the so-called local measure topology which is then weaker than the measure topology.

2. An example. The example below shows that if μ is not finite but is σ -finite, then Theorem 1.3 fails to hold.

EXAMPLE 2.1. Let Ω be the set of real numbers endowed with Lebesgue measure μ . Take X to be the set of all continuous real valued functions on \mathbb{R} that vanish outside the interval (0, 1). Equipped with the norm $||f|| = \max_{\omega \in \mathbb{R}} |f(\omega)|$, X is a Banach space. For every $n \in \mathbb{N}$ define a linear map $a_n : X \to \mathcal{M} = \mathcal{M}(\mathbb{R})$ by the formula

$$a_n(f)(\omega) = nf(n(\omega - n)), \quad f \in X.$$

Then a_n is clearly continuous in $\|\cdot\|$, hence in τ_{μ} . Furthermore, since, for every $f \in X$, the function $a_n(f)$ vanishes outside the interval (n, n + 1/n), we have $a_n(f)(\omega) \to 0$ for all $\omega \in \mathbb{R}$. In particular, given $f \in X$, the maximal function $a^*(f)$ is finite everywhere. Therefore $a^*(f) \in \mathcal{M}$ for every $f \in X$.

Next, fix $\gamma > 0$, and let $0 \neq f \in X$ be such that $||f|| < \gamma$. Then, for some $\lambda > 0$,

$$\mu\{\omega: |f(\omega)| > \lambda\} = \Delta > 0.$$

Take $\delta > 0$. If $n \geq \delta/\lambda$, we have

$$\mu\{\omega: |a_n(f)(\omega)| > \delta\} \ge \mu\{\omega: |f(n(\omega - n))| > \lambda\}$$
$$= \mu\{\omega: |f(n\omega)| > \lambda\} = \Delta/n.$$

Therefore, since the intervals (n, n + 1/n) do not overlap, we can write

$$\mu\Big\{\omega: \sup_{n\geq\delta/\lambda}|a_n(f)(\omega)|>\delta\Big\}\geq \Delta\bigg(\frac{1}{n}+\frac{1}{n+1}+\cdots\bigg).$$

Thus, given $\gamma > 0$, for every $0 \neq f \in X$ with $||f|| < \gamma$ and every $\delta > 0$, we have

$$\mu\{\omega: a^{\star}(f)(\omega) > \delta\} = \infty,$$

and we conclude that the maximal operator $a^* : X \to \mathcal{M}$ is not τ_{μ} continuous at $0 \in X$.

3. Theorem 1.3 for a semifinite measure. Assume now that μ is *semifinite*, that is, any subset of Ω of infinite measure contains a subset of non-zero finite measure.

The local measure topology t_{μ} on \mathcal{M} can be defined by the following fundamental system of neighborhoods of $0 \in \mathcal{M}$:

 $\mathcal{N}(\epsilon, \delta, F) = \{f \in \mathcal{M} : \mu\{\omega \in F : |f(\omega)| > \delta\} \le \epsilon\}, \quad \epsilon, \delta > 0, \ 0 < \mu(F) < \infty.$ The t_{μ} -topology is strictly weaker than τ_{μ} , in general. However, if $\mu(\Omega) < \infty$, the distinction between these topologies disappears. (\mathcal{M}, t_{μ}) is a complete Hausdorff topological vector space that is not metrizable unless μ is σ -finite. For a detailed account on semifinite measure spaces and the local measure topology, see [2].

Let

$$\mathcal{L}^{\infty} = \Big\{ f \in \mathcal{M} : \|f\|_{\infty} = \operatorname{ess\,sup}_{\omega \in \Omega} |f(\omega)| < \infty \Big\}.$$

One can verify the following.

PROPOSITION 3.1. For any $\epsilon, \delta > 0$, and F with $0 < \mu(F) < \infty$,

$$\mathcal{N}(\epsilon, \delta, F) = \{ f \in \mathcal{M} : \| f \chi_E \|_{\infty} \le \delta \text{ for some } E \subset F \text{ with } \mu(F \setminus E) \le \epsilon \}.$$

The proof of the next fact can be found in [1].

LEMMA 3.2. Let X be a topological space, and let $a_n : X \to \mathcal{M}$ be a sequence of t_{μ} -continuous maps. Then, given any $\epsilon > 0$ and $E \in \mathcal{A}$, the set

 $X_L = \{ f \in X : \|a^*(f)\chi_G\|_{\infty} \le L \text{ for some } G \subset E \text{ with } \mu(E \setminus G) \le \epsilon \}$ is closed in X for every L > 0.

Denote

$$\mathcal{A}^f_+ = \{ F \in \mathcal{A} : 0 < \mu(F) < \infty \}.$$

PROPOSITION 3.3. If $f \in \mathcal{M}_0$, then the following conditions are equivalent:

- (i) $f \in \mathcal{M};$
- (ii) for every $F \in \mathcal{A}^f_+$ and $\epsilon > 0$ there exists a set $E \subset F$ with $\mu(F \setminus E) \leq \epsilon$ such that $y\chi_E \in \mathcal{L}^{\infty}$.

Proof. (i) \Rightarrow (ii): We have $f_F = |f|\chi_F < \infty$ a.e. Therefore, if $F_N = \{\omega \in F : f_F(\omega) > N\}$, $N \in \mathbb{N}$, then $\lim_{N\to\infty} \mu(F_N) = 0$, hence $\mu(F_{N_0}) \le \epsilon$ for some N_0 . Setting $E = F \setminus F_{N_0}$, we obtain $\mu(F \setminus E) \le \epsilon$ and $f_F(\omega) \le N$ for every $\omega \in E$. Consequently, $f\chi_E = f_F\chi_E \in \mathcal{L}^\infty$.

The implication (ii) \Rightarrow (i) is obvious.

Now we can extend Theorem 1.3 to the case of semifinite measure.

THEOREM 3.4. Let $(X, \|\cdot\|)$ be a Banach space, and let $a_n : X \to \mathcal{M}$ be a sequence of t_{μ} -continuous linear maps. If $\sup_n |a_n(f)| < \infty$ a.e. for all $f \in X$, then the maximal operator $a^* : X \to \mathcal{M}$ is t_{μ} -continuous at $0 \in X$.

Proof. Fix $\epsilon, \delta > 0$ and $F \in \mathcal{A}^f_+$. By Proposition 3.1, we need to show that there is $\gamma > 0$ such that $||f|| < \gamma$ implies that

$$\|a^{\star}(f)\chi_E\|_{\infty} \le \delta$$

for some $E \subset F$ with $\mu(F \setminus E) \leq \epsilon$.

For $L \in \mathbb{N}$ define

 $X_L = \{ f \in X : \|a^*(f)\chi_G\|_{\infty} \le L \text{ for some } G \subset F \text{ with } \mu(F \setminus G) \le \epsilon/2 \}.$

By Lemma 3.2, the sets X_L are closed, while $a^*(f) = \sup_n |a_n(f)| < \infty$ a.e. for all $f \in X$ together with Proposition 3.3 implies that

$$X = \bigcup_{L} X_{L}.$$

By the Baire category theorem, there exists L_0 such that X_{L_0} contains a non-empty open set. Thus, there are $f_0 \in X$ and $\nu > 0$ such that, given $f \in X$ with $||f - f_0|| < \nu$, one can present a set $G \subset F$ with $\mu(F \setminus G) \le \epsilon/2$ satisfying

$$\|a^{\star}(f)\chi_G\|_{\infty} \leq L_0.$$

Consequently, if $||f|| < \nu$, we can find E' and E'' such that $\mu(F \setminus E') \le \epsilon/2$, $\mu(F \setminus E'') \le \epsilon/2$, and

$$|a^{\star}(f+f_0)\chi_{E'}||_{\infty} \le L_0, \ ||a^{\star}(f_0)\chi_{E''}||_{\infty} \le L_0.$$

Defining $E = E' \cap E''$, we obtain $\mu(F \setminus E) \leq \epsilon$ and also

$$\|a^{\star}(f)\chi_E\|_{\infty} \le \|a^{\star}(f+f_0)\chi_E\|_{\infty} + \|a^{\star}(f_0)\chi_E\|_{\infty} \le 2L_0.$$

If m > 0 is chosen such that $2L_0/m \le \delta$, then $||f|| < \gamma = \nu/m$ implies $||mf|| < \nu$, hence

$$||a^{\star}(f)\chi_E||_{\infty} \leq \delta.$$

The following lemma can also be found in [1].

LEMMA 3.5. Let (X, +) be a semigroup, and let $a_n : (X, +) \to (\mathcal{M}, +)$ be a sequence of homomorphisms. Suppose that $f \in X$ is such that, given $F \in \mathcal{A}^f_+$, there exist a sequence $\{f_k\} \subset X$ and a set $E \subset F$ with $\mu(E) > 0$ satisfying

- (a) the sequence $\{a_n(f+f_k)\}\$ converges a.e. for each k;
- (b) $||a^{\star}(f_k)\chi_E||_{\infty} \to 0 \text{ as } k \to \infty.$

Then the sequence $\{a_n(f)\}\$ also converges a.e.

As an application of Theorem 3.4 we derive the following corollary.

COROLLARY 3.6. Let X and $\{a_n\}$ be as in Theorem 3.4. If $\sup_n |a_n(f)| < \infty$ a.e., then the set

$$C = \{ f \in X : \{a_n(f)\} \text{ converges a.e.} \}$$

is closed in X.

Proof. Take any $F \in \mathcal{A}^f_+$ and fix $\epsilon > 0$ such that $\epsilon < \mu(F)$. By Theorem 3.4, given any $k \in \mathbb{N}$, there is $\gamma_k > 0$ for which $||x|| < \gamma_k$ implies

$$\|a^{\star}(f)\chi_{E_k}\|_{\infty} \le 1/k$$

for some $E_k \subset F$ with $\mu(F \setminus E_k) \leq \epsilon/2^k$.

Pick $f \in \overline{C}$. Then, given $k \in \mathbb{N}$, there is $g_k \in C$ such that $||g_k - f|| < \gamma_k$. Therefore, denoting $f_k = g_k - f$ and letting $E = \bigcap_{k=1}^{\infty} E_k$, we obtain $\mu(F \setminus E) \le \epsilon$, hence $\mu(E) > 0$ since $\mu(F) > \epsilon$. Also, $f + f_k = g_k \in C$ for each k and

$$||a^{\star}(f_k)\chi_E||_{\infty} \le 1/k \to 0 \quad \text{as } k \to \infty$$

By Lemma 3.5, $f \in C$, implying $\overline{C} = C$.

REMARK 3.7. As was carried out in [4] for a finite measure, Theorem 3.4 and Corollary 3.6 can be proved in the case where X is a topological group of second Baire category.

REMARK 3.8. The main reason for deriving Corollary 3.6 from Theorem 3.4 here is to show that the t_{μ} -continuity, a weaker condition than τ_{μ} -continuity, of the maximal operator at zero is sufficient for the closedness of the set *C*. Alternatively, Corollary 3.6 can be derived directly from Theorem 1.2 as follows.

If we define

$$a_n^{F'}(f) = a_n(f)\chi_F, \quad F \in \mathcal{A}_+^f,$$

then, for a given $F \in \mathcal{A}^f_+$, $a^F_n : X \to \mathcal{M}(F)$ is a sequence of τ_{μ} -continuous linear maps such that $(a^F)^*(f) \in \mathcal{M}(F)$ for every $f \in X$. By Theorem 1.2,

the set

$$C_F = \{ f \in X : \{ a_n^F(f) \} \text{ converges a.e.} \}$$

is closed in X.

Clearly
$$C \subset \bigcap_{F \in \mathcal{A}^f_+} C_F$$
. If $f \in \bigcap_{F \in \mathcal{A}^f_+} C_F$ and
$$D = \{ \omega \in \Omega : \{ a_n(f)(\omega) \} \text{ does not converge} \},$$

then $D \in \mathcal{A}$. Suppose that $\mu(D) > 0$ and take $F \subset D$ such that $F \in \mathcal{A}_{+}^{f}$. Since $f \in C_{F}$, the sequence $\{a_{n}^{F}(f)\}$ converges a.e., contrary to the definition of D. Therefore $\mu(D) = 0$, hence $f \in C$, which implies that $C = \bigcap_{F \in \mathcal{A}_{+}^{f}} C_{F}$. Thus C is closed in X.

REFERENCES

- V. Chilin and S. Litvinov, A Banach principle for L[∞] with semifinite measure, J. Math. Anal. Appl. 379 (2011), 360–366.
- [2] D. H. Fremlin, Measure Theory, Vol. 2: Broad Foundations, Torres Fremlin, Colchester, 2003.
- [3] A. Garsia, Topics in Almost Everywhere Convergence, Lectures in Adv. Math. 4, Markham, 1970.
- S. Litvinov, The Banach Principle for topological groups, Atti Sem. Mat. Fis. Univ. Modena Reggio Emilia 53 (2005), 323–330.
- [5] K. Yosida, Functional Analysis, Grundlehren Math. Wiss. 123, Springer, 1968.

Semyon Litvinov Department of Mathematics Pennsylvania State University Hazleton 76 University Drive Hazleton, PA 18202, U.S.A. E-mail: snl2@psu.edu

Received 23 January 2014

(6143)