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COMPACTLY SUPPORTED COHOMOLOGY
OF SYSTOLIC 3-PSEUDOMANIFOLDS

BY

ROGER GÓMEZ-ORTELLS (Wien)

Abstract. We show that the second group of cohomology with compact supports
is nontrivial for three-dimensional systolic pseudomanifolds. It follows that groups acting
geometrically on such spaces are not Poincaré duality groups.

1. Introduction. Systolic complexes are simply connected flag simpli-
cial complexes satisfying some local combinatorial nonpositive-curvature-like
conditions. They were introduced first by Chepoi [Che00] and then, indepen-
dently (bringing them into the geometric group theory), by Januszkiewicz–
Świątkowski [JŚ06] and Haglund [Hag03]. Many properties of systolic com-
plexes resemble the ones of spaces of nonpositive curvature. Consequently,
groups acting on such complexes geometrically (i.e., cocompactly and prop-
erly discontinuously by automorphisms), called systolic groups, behave sim-
ilarly to CAT(0) groups. In contrast to CAT(0) complexes and groups, the
systolic setting is purely combinatorial, which allows one to construct explicit
examples of groups with various, often exotic, properties—see e.g. [JŚ06].
In particular, systolic groups are not fundamental groups of nonpositively
curved manifolds of dimension greater than 2 (cf. [JŚ07, Osa07, Osa08,
OŚ13]), although the dimension (cohomological or asymptotic) of systolic
groups can be arbitrarily large. Moreover, it is conjectured that systolic
groups do not contain subgroups isomorphic to fundamental groups of as-
pherical manifolds of dimension greater than 2. An attempt to establish such
a result in a particular case is the main motivation for the current paper.

Main Theorem. Let X be a locally finite systolic 3-pseudomanifold.
Then the second group of cohomology with compact supports H2

c (X;Z) is
nontrivial.

From the Main Theorem we immediately obtain the following result es-
tablishing the aforementioned conjecture in the case of 3-pseudomanifolds
(see e.g. [Dav08, Appendix F.5] for basics about Poincaré duality groups).
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Corollary. Groups acting geometrically on systolic 3-pseudomanifolds
are not Poincaré duality groups.

Notice that systolic pseudomanifolds and, more generally, chamber com-
plexes form the main source of examples of high-dimensional groups provided
by “systolic” techniques (cf. [JŚ06]). We believe that methods similar to the
ones used in our proof of the Main Theorem allow one to show that groups
acting geometrically on any chamber complex of dimension greater than 2
are not Poincaré duality groups. Note that hyperbolic systolic groups with
two-dimensional Gromov boundaries are not Poincaré duality groups since
their boundaries are not spheres (cf. [Osa08, OŚ13]).

2. Preliminaries

2.1. Systolic complexes. In this section we follow the notation of
[Osa07, JŚ06]. All simplicial complexes are finite-dimensional and locally
finite. A simplicial complex X is flag if any finite set of vertices, which are
pairwise connected by edges of X, spans a simplex of X (i.e., it is contained
in some simplex of X). A subcomplex K of X is called full (in X) if any
simplex of X spanned by a set of vertices in K is a simplex of K. Let σ and τ
be two simplices ofX. We denote by σ∗τ the join of σ and τ , i.e., the minimal
simplex of X (if it exists) containing both of them. The link of a simplex σ
ofX, denoted byXσ, is a subcomplex ofX consisting of all simplices that are
disjoint from σ and which span a simplex of X together with σ. The residue
of a simplex σ of X, denoted by Res(σ,X), is the minimal subcomplex of X
containing all simplices that contain σ. A cycle in a simplicial complex X
is a subcomplex γ of X isomorphic to some triangulation of S1. We denote
by |γ| the length of γ, i.e., the number of 1-simplices of γ. A full cycle in X
is a cycle that is full as a subcomplex of X. We define the systole of X as
sys(X) = min{|γ| : γ is a full cycle inX}. In particular, we have sys(X) ≥ 3 for
any simplicial complexX, and if there is no full cycle inX, then sys(X) =∞.
If k ≥ 4 is a natural number and X is a flag simplicial complex, then we say
that X is k-large if sys(X) ≥ k; X is locally k-large if the residue of every
simplex ofX is k-large; andX is k-systolic if it is connected, simply connected
and locally k-large. We abbreviate 6-systolic to systolic due to its importance
in this theory. The following facts are immediate (see [JŚ06, Section 1]):

Fact 2.1.

(1) A complex is locally k-large iff the link of its every nonempty simplex
has the systole at least k.

(2) A (locally) k-large complex is (locally) m-large for k ≥ m.
(3) A full subcomplex of a (locally) k-large complex is (locally) k-large.
(4) A simplicial complex is 4-large iff it is flag.
(5) For k > 4, X is k-large iff it is flag and sys(X) ≥ k.
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(6) A k-large complex is locally k-large.
(7) The universal cover X̃ of a connected, locally k-large complex X is

k-systolic.

Now let X be a systolic complex and let σ ∈ X be a simplex. The
closed combinatorial ball (resp. sphere) of radius i around σ in X, denoted
Bi(σ,X) (resp. Si(σ,X)), is the full subcomplex of X spanned by vertices
at combinatorial distance at most i (resp. exactly i) from σ. Notice that, by
Fact 2.1(3), balls and spheres are 6-large. For subcomplexes Y,Z of X, we
denote by Y − Z the full subcomplex spanned by vertices of Y not in Z.

Closed combinatorial balls of small radii in k-large complexes are isomor-
phic to ones in the corresponding universal covers (i.e., in systolic complexes):

Lemma 2.2. For a 6-large simplicial complex X and a simplex τ ∈ X,
let X̃ p−→ X with p(τ̃) = τ be the universal cover of X. Then p|

B1(τ̃ ,X̃)
:

B1(τ̃ , X̃)→ B1(τ,X) is an isomorphism.

The next lemma is fundamental for the understanding of this paper (see
[JŚ06, Section 7] and [Osa07, Lemma 2.3] for the proof of the last part).

Lemma 2.3 (Projection Lemma). For any τ ∈ Si(σ,X), the intersec-
tion ρ = Si−1(σ,X) ∩ Xτ is a single (nonempty) simplex. Moreover, Xτ ∩
Bi(σ,X) = B1(ρ,Xτ ) and Xτ ∩ Si(σ,X) = S1(ρ,Xτ ).

In the rest of the paper we call the simplex ρ, as in the above lemma,
the projection of τ on Bi−1(σ,X).

Let X be a simplicial complex and let σ ∈ X be a simplex. By the
Projection Lemma we can define an elementary contraction

πBi(σ,X) : Bi+1(σ,X)′ → Bi(σ,X)′

between barycentric subdivisions of balls by putting

πBi(σ,X)(bν) =

{
bν∩Bi(σ,X) if ν ∩Bi(σ,X) 6= ∅,
bXν∩Bi(σ,X) if ν ∩Bi(σ,X) = ∅,

for ν ∈ Bi(σ,X), and then extending it simplicially. In [JŚ06, Section 8] it is
shown that πBi(σ,X) is a deformation retraction and πBi(σ,X)(Bi+1(σ,X) −
Bi−1(σ,X)) ⊂ Si(σ,X). The combination of such maps gives a deformation
retraction hSi(σ,X) : X −Bi−1(σ,X)→ Si(σ,X), implying the following:

Theorem 2.4 ([JŚ06, Theorem 4.1]). Let X be a finite-dimensional sys-
tolic complex. Then X is contractible.

Remark 2.5. It is well known that every closed surface can be triangu-
lated. However, the sphere and projective plane do not admit 6-large trian-
gulations (see [JŚ06, Example 1.8(5)]). Any other surface admits a 6-large
triangulation (see [JŚ06, Example 1.8(3)]).
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The fact that there is no k-large triangulation of the 2-sphere for k ≥ 6
implies that no triangulation of a manifold of dimension greather than 2
is 6-large, since 2-spheres would occur as links of some simplices of such
triangulation (see [JŚ06, Example 1.8(5)]).

2.2. Systolic pseudomanifolds. A simplicial complex X is called a
simplicial pseudomanifold of dimension n (or shortly n-pseudomanifold) if it
is a union of n-simplices such that every (n−1)-simplex is contained in exactly
two n-simplices (cf. [JŚ06]). Let τ be a subsimplex of a maximal simplex σ
of dimension n. We say that τ has codimension k if its dimension is (n− k).

Lemma 2.6. Let X be an n-pseudomanifold and let σ be a k-simplex
of X. Then Xσ is an (n− k − 1)-pseudomanifold.

Proof. First we show that Xσ is the union of (n − k − 1)-simplices. By
definition, Xσ = {τ ∈ X | τ ∩ σ = ∅ and σ ∗ τ is a simplex of X}. Take
τ ∈ Xσ. SinceX is an n-pseudomanifold, σ∗τ ⊆ ρ, where ρ is some n-simplex
of X. Let ρ = σ ∗ τ ′, where τ ′ ∩ σ = ∅. Since n = dim ρ = dim(σ ∗ τ ′) =
dimσ + dim τ ′ + 1 = k + dim τ ′ + 1, it follows that dim τ ′ = n − k − 1.
Therefore every simplex τ ∈ Xσ is contained in an (n− k − 1)-simplex, and
thus Xσ is the union of (n− k − 1)-simplices.

Now we show that every codimension 1 simplex of Xσ is contained in
exactly two (n − k − 1)-simplices. Let ω be a codimension 1 simplex of
Xσ. Therefore dimω = n − k − 2 and dim(ω ∗ σ) = dimω + dimσ + 1 =
n−k−2+k+1 = n−1. Since X is an n-pseudomanifold, there exist exactly
two n-simplices α, β that contain ω ∗ σ. Now we take α′ and β′ such that
α′ ∩ (ω ∗ σ) = ∅, β′ ∩ (ω ∗ σ) = ∅ and α = (ω ∗ σ) ∗ α′, β = (ω ∗ σ) ∗ β′.
Note that α′ ∗ ω and β′ ∗ ω both belong to Xσ. Note also that n = dimα =
dim(σ ∗α′ ∗ω) = k+ dim(α′ ∗ω) + 1, and therefore dim(α′ ∗ω) = n− k− 1.
Similarly, dim(β′ ∗ ω) = n− k − 1.

Finally, it remains to show that these two simplices are the only two
(n− k − 1)-simplices of Xσ. If there existed an (n− k − 1)-simplex γ ∈ Xσ

containing ω such that γ 6= α′ ∗ ω and γ 6= β′ ∗ ω, then γ ∗ σ, α and β would
be three n-simplices of X containing ω ∗ σ, a contradiction.

Spheres in n-pseudomanifolds are (n− 1)-pseudomanifolds (compare e.g.
[Osa07, Lemma 4.1]). For simplicity in the following two lemmas we prove
it only for dimensions 2 and 3.

Lemma 2.7. Let X be a systolic pseudomanifold of dimension 2. Then
Sk(σ,X) is a one-dimensional pseudomanifold for all k ≥ 1.

Proof. First we show that Sk(σ,X) is at most one-dimensional. Suppose
there exists a 2-simplex τ ∈ Sk(σ,X). By the Projection Lemma, the pro-
jection of τ on Bk−1(σ,X) is a nonempty simplex ρ = Sk−1(σ,X) ∩Xτ . It
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means that ρ ⊂ Xτ , and by definition of the link, τ ∗ ρ must be a simplex
of X. But dim(τ ∗ ρ) = 2 + 1 + dim(ρ) > 2 = dim(X), a contradiction.

Now we show that every simplex τ of Sk(σ,X) is contained in some
1-simplex. We have seen that τ can just have dimensions 0 or 1. If it has
dimension 1, we are done. Suppose it has dimension 0. By the Projection
Lemma, Xτ ∩Sk(σ,X) = S1(ρ,Xτ ), where ρ = Sk−1(σ,X)∩Xτ . Since Xτ is
a 6-large (by Fact 2.1(3)) 1-pseudomanifold (by Lemma 2.6), it is a union of
cycles. Therefore S1(ρ,Xτ ) consists of two vertices, say v and w. Thus τ ∗ v
is a 1-simplex of Sk(σ,X) containing τ .

Moreover, τ ∗v and τ ∗w are the only two maximal simplices of Sk(σ,X)
that contain the codimension 1 simplex τ of Sk(σ,X).

Lemma 2.8. Let X be a systolic pseudomanifold of dimension 3. Then
Sk(σ,X) is a two-dimensional pseudomanifold for all k ≥ 1.

Proof. To see that Sk(σ,X) is at most two-dimensional, the proof is
analogous to that in the previous lemma.

We show that every simplex τ of Sk(σ,X) is contained in some 2-simplex.
Now τ can have dimension 0, 1 and 2. If it has dimension 2, we are done.
Suppose it has dimension 0. By the Projection Lemma, Xτ ∩ Sk(σ,X) =
S1(ρ,Xτ ), where ρ = Sk−1(σ,X)∩Xτ . Now Xτ is a 6-large (by Fact 2.1(1))
2-pseudomanifold (by Lemma 2.6). By Fact 2.1(7) its universal cover X̃τ

is systolic, and by Lemma 2.2 S1(ρ,Xτ ) is isomorphic to S1(ρ, X̃τ ). There-
fore by Lemma 2.7 S1(ρ,Xτ ) is a 1-pseudomanifold. The span of one of its
1-simplices, call it τ ′, with τ is a 2-simplex of Sk(σ,X).

The proof for dim τ = 1 is exactly the same as the part of the proof of
Lemma 2.7 for dim τ = 0.

2.3. Cohomology with compact supports. In this paper we consider
only simplicial cohomology. For cohomology with compact supports we follow
the approach of [Dav08, Appendix G.2]. Finite subcomplexes of X form a
directed set under inclusion. To each finite subcomplex K ⊂ X we associate
the group H i(X,X−K;Z), with a fixed i and a coefficient group Z. For each
inclusion K ⊂ L of finite subcomplexes, we have the inclusion X − L i

↪→
X − K and the associated natural homomorphism H i(X,X − K;Z)

i∗−→
H i(X,X −L;Z). The cohomology group H i

c(X;Z) equals, by definition, the
resulting limit group lim−→H i(X,X −K;Z). Each element of this limit group
is represented by a cocycle in Ci(X,X−K;Z) for some finite subcomplex K;
such a cocycle is zero in lim−→H i(X,X−K;Z) iff it is zero in Ci(X,X−L;Z)
for some finite subcomplex L ⊃ K, which means it is the coboundary of
some cochain in Ci−1(X,X − L;Z).



108 R. GÓMEZ-ORTELLS

3. Proof of the Main Theorem. We now come to the main goal of
this paper. Before that, we prove an important lemma:

Lemma 3.1. If Y is a 6-large 2-pseudomanifold, then H1(Y ;Z) 6= {0}.
Proof. Let S be the disjoint union of all 2-simplices of Y . Consider the

map f : S → Y such that f(x) = x. Now let S̄ = S/∼ be the quotient
space where we identify 1-simplices τ and τ ′ of S in the following way: for
x ∈ τ ⊆ σ(1) and x′ ∈ τ ′ ⊆ σ′(1) (σ, σ′ ⊆ S), x ∼ x′ if f(x) = f(x′) and
f [τ ] = f [τ ′]. Observe that ∼ is an equivalence relation since each edge of
Y belongs to exactly two triangles. Consider the map i : S̄ → Y such that
i([x]∼) = x for x ∈ σ. This map is of course well defined.

Fig. 1. Diagram of a 6-large 2-pseudomanifold Y and the spaces S and S̄ formed from it,
together with the maps between them

We now show that S̄ is a surface. The space S̄ is a simplicial complex
being a union of 2-simplices, and by the construction, each 1-simplex is
contained in exactly two 2-simplices. Therefore it is a pseudomanifold. Since
S̄ is finite, the link of every vertex, being a one-dimensional manifold (by
Lemma 2.6), can only be a union of circles. It is easy to observe that such a
link has to be connected and therefore it is just one circle. Thus we conclude
that S̄ is a surface. One can easily see that S̄ is 6-large and that the map
i : S̄ → Y is locally injective.

Given a cocycle ϕ̄ ∈ Z1(S̄;Z), suppose [ϕ̄] ∈ H1(S̄;Z) is nonzero. We
define a cochain ϕ in C1(Y ;Z) as

ϕ(i([τ ]∼)) := ϕ̄([τ ]∼) for an edge [τ ]∼ ∈ S̄.
This is well defined since i is a bijection on the set of edges. We show that
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ϕ is a cocycle. Consider a triangle σ ∈ Y . Let [σ]∼ be a triangle in S̄ with
i([σ]∼) = σ, ∂[σ]∼ = [τ1]∼ + [τ2]∼ + [τ3]∼ and i([τi]∼) = τi for i ∈ {1, 2, 3}.
Then we have

δϕ(σ) = ϕ(∂σ) = ϕ(τ1 + τ2 + τ3) = ϕ(τ1) + ϕ(τ2) + ϕ(τ3)

= ϕ̄([τ1]∼) + ϕ̄([τ2]∼) + ϕ̄([τ3]∼)

= ϕ̄([τ1]∼ + [τ2]∼ + [τ3]∼) = ϕ̄(∂[σ]∼) = δϕ̄([σ]∼) = 0.

Finally we show that [ϕ] ∈ H1(Y ;Z) is nontrivial. Suppose that ϕ = δα for
some α ∈ C0(Y ;Z). We define an ᾱ ∈ C0(S̄;Z) as ᾱ([v]∼) := α(i([v]∼)).
Then ϕ̄([τ ]∼) = ϕ(i([τ ]∼)) = δα(i([τ ]∼)) = α(∂i([τ ]∼)) = α(i([v1]∼)) −
α(i([v2]∼)) = ᾱ([v1]∼)− ᾱ([v2]∼), where [τ ]∼ = [v1]∼[v2]∼ and i([vi]∼) = vi.
This is a contradiction since ϕ̄ is not a coboundary.

Since S̄ is 6-large, by Remark 2.5, it can only be a connected sum of tori
(a single torus included) or a connected sum of RP2 (at least two projective
planes). In this case it is known that S̄ has nontrivial first cohomology group.
So there exists [ϕ̄] 6= 0 in H1(S̄;Z), thus [ϕ] 6= 0 in H1(Y ;Z).

Finally, we have all the necessary tools to prove the main theorem of this
paper.

Theorem 3.2. Let X be a locally finite systolic 3-pseudomanifold. Then
H2

c (X;Z) 6= {0}.
Proof. To simplify the notation, we denote the ball and sphere of radius

k around a fixed simplex σ ∈ X by Bk and Sk respectively.
Given the long exact sequence of cohomology groups

· · · → H1(X;Z)
i∗−→ H1(X−Bk;Z)

δ−→ H2(X,X−Bk;Z)
j∗−→ H2(X;Z)→ · · ·

we know that H1(X;Z) = {0} and H2(X;Z) = {0} since X is contractible
(by Theorem 2.4). Therefore we have the sequence

· · · → 0
i∗−→ H1(X −Bk;Z)

δ−→ H2(X,X −Bk;Z)
j∗−→ 0→ · · · .

In this situation, δ is an isomorphism, which means that H1(X − Bk;Z) '
H2(X,X −Bk;Z).

Now, by the Projection Lemma and by the discussion following it, for
πSk := πBk |S′k+1

, we have the following commutative diagram:

Sk+2

πSk+1

��

X −Bk+1

hSk+2oo
� _

��
Sk+1 X −Bk

hSk+1oo

Therefore, the induced diagram of cohomology maps is commutative with
the maps h∗Sk : H1(Sk;Z)→H1(X−Bk−1;Z) being isomorphisms. It follows
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that
H2

c (X;Z) = lim−→H2(X,X −Bk;Z) = lim−→H1(Sk;Z),

where the last limit is over the directed set defined by πSk .
So our problem reduces to work on the cohomology group of pseudosur-

faces Sk. By Lemma 2.8 each Sk is a pseudosurface and, by Lemma 3.1,
H1(Sk;Z) is nontrivial. Thus all we need to prove is that given a cocycle in
Sk different from zero, it can be mapped to Sk+1 by the induced (by pro-
jection) homomorphism of cohomology groups so that its image is nontrivial
too. For that we use the contraction πSk : S′k+1 → S′k between barycentric
subdivisions of spheres. For the induced map

π∗Sk : H1(S′k;Z)→ H1(S′k+1;Z)

we want to prove that a cocycle ϕ̃ ∈ Z1(S′k+1;Z) defined as ϕ̃ := π∗Sk(ϕ) is
nontrivial, if the cocycle ϕ ∈ Z1(S′k;Z) is nontrivial.

Suppose that ϕ̃ = δα̃ for some α̃ ∈ C0(S′k+1;Z). We show that in this
case we can construct an α ∈ C0(S′k;Z) such that ϕ = δα, reaching a
contradiction. We define such an α in S′k in three steps:

(i) We define α on all the vertices of S′k corresponding to barycenters of
triangles in Sk. Consider a triangle τ in Sk. Since X is a 3-pseudomanifold,
the link Xτ consists of two vertices ṽ1 and ṽ2. By the Projection Lemma,
Sk−1 ∩ Xτ is a single (nonempty) simplex. Thus one of the vertices of the
link, say ṽ2, belongs to Sk−1. Therefore the other vertex ṽ1 must belong
to Sk+1. We can see this situation in Figure 2, where the barycenter of the
triangle is named v. We define α(v) := α̃(ṽ1).

Fig. 2. Link of a triangle τ ∈ Sk

(ii) We define α on all the vertices of S′k corresponding to barycenters
of edges in Sk. Consider an edge e. Since Sk is a pseudosurface, e belongs
to two triangles τ1 and τ2. Let w be the barycenter of e. By Lemma 2.6,
the link of this edge is a finite 1-pseudomanifold, thus a disjoint union of
circles. By the Projection Lemma, only one of those circles intersects Bk,
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resulting in an interval. The vertices of the circle outside this interval belong
to Sk+1 and span (in Xe) a path L = (ṽ1, . . . , ṽm), where ṽ1 and ṽm span a
simplex with τ1 and τ2 respectively. Note that m ≥ 2 due to the fact that X
is systolic. Let L′ = (ṽ1, w̃1, ṽ2, w̃2, . . . , w̃m−1, ṽm) ⊆ S′k+1 be the barycentric
subdivision of L (see Figure 3).

Fig. 3. Link of an edge e ∈ Sk

We define the value of α in w as α(w) := α̃(w̃1). We have to check that
α(w) is well defined. For this it is enough to show that α̃(w̃1) = α̃(w̃m−1).
Observe that πSk projects all the vertices of L′ different from ṽ1 and ṽm
to w. That gives ϕ̃(w̃1ṽ2) = · · · = ϕ̃(ṽm−1w̃m−1) = 0. This means that
0 = ϕ̃(w̃1ṽ2) = δα̃(w̃1ṽ2) = α̃(ṽ2) − α̃(w̃1), thus α̃(ṽ2) = α̃(w̃1). Applying
the same argument to the rest of the edges yields α̃(w̃1) = α̃(ṽ2) = · · · =
α̃(ṽm−1) = α̃(w̃m−1). Thus α(w) is well defined.

Furthermore, we use the fact that πSk projects the edges ṽ1w̃1 and
w̃m−1ṽm onto the edges v1w and wvm respectively, to obtain

ϕ(v1w) = ϕ̃(ṽ1w̃1) = δα̃(ṽ1w̃1) = α̃(w̃1)− α̃(ṽ1) = α(w)− α(v1).(1)

Fig. 4. Triangle 4uvw ∈ S′k

(iii) We define α on all the vertices u of Sk. Consider a triangle 4uu′u′′,
and let w be the barycenter of uu′ and v the barycenter of the triangle (see
Figure 4).We define the value ofα in u asα(u) := ϕ(wu)+α(w). To check that
this is well defined, it is enough to verify that ϕ(wu) +α(w) = ϕ(vu) +α(v)



112 R. GÓMEZ-ORTELLS

(see Figure 4). Since ϕ is a cocycle, we have δϕ = 0, and thus by (1) we
obtain
0 = δϕ(uvw) = ϕ(wu) + ϕ(vw) + ϕ(uv) = ϕ(wu) + α(w)− α(v)− ϕ(vu).

Therefore α is well defined.
In the three steps above we defined the cochain α satisfying, by (1)

and by the definition in (iii), the equation δα = ϕ. Therefore the proof
is completed.
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