VOL. 120

2010

NO. 1

PRODUCT OF THREE NUMBERS BEING A SQUARE AS A RAMSEY PROPERTY

ΒY

M. SKAŁBA (Warszawa)

Abstract. For any partition of a set of squarefree numbers with relative density greater than 3/4 into two parts, at least one part contains three numbers whose product is a square. Also generalizations to partitions into more than two parts are discussed.

We start with the following result:

THEOREM 1. If a set $\mathcal{A} \subseteq \mathbb{N}$ consists entirely of squarefree numbers and has lower asymptotic density

$$\delta^*(\mathcal{A}) = \liminf_{x \to \infty} \frac{1}{x} \sum_{n \in \mathcal{A}, n \le x} 1 > \frac{3}{4} \cdot \frac{6}{\pi^2}$$

then for any partition $\mathcal{A}_1, \mathcal{A}_2$ of \mathcal{A} (i.e., $\mathcal{A}_1 \cup \mathcal{A}_2 = \mathcal{A}$ and $\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset$) there exist $j \in \{1, 2\}$ and $a, b, c \in \mathcal{A}_j$ such that

$$abc = \Box$$

REMARK. The constant $(3/4) \cdot (6/\pi^2)$ is optimal as the following example shows. Let $\Omega(n)$ count the number of prime factors of n. Define

> $\mathcal{A}_1 = \{ n \in \mathbb{N} \mid n \text{ squarefree and } \Omega(n) \equiv 1 \pmod{2} \},\$ $\mathcal{A}_2 = \{ n \in \mathbb{N} \mid n \text{ squarefree and } \Omega(n) \equiv n \equiv 0 \pmod{2} \}.$

It is well known that

$$\delta^*(\mathcal{A}_1) = \frac{1}{2} \cdot \frac{6}{\pi^2}$$
 and $\delta^*(\mathcal{A}_2) = \frac{1}{4} \cdot \frac{6}{\pi^2}$

and obviously no three numbers in either \mathcal{A}_1 or \mathcal{A}_2 give a square product.

For the proof of the theorem we need a lemma.

LEMMA 1. Let V be a finite-dimensional vector space over \mathbb{F}_2 and \mathcal{B} a subset of V not containing the vector $\vec{0}$. If

(1)
$$|\mathcal{B}| > \left(1 - \frac{1}{2^k}\right) \cdot |\mathbf{V}|$$

²⁰¹⁰ Mathematics Subject Classification: Primary 11A05, 05C55.

Key words and phrases: square products, Ramsey numbers.

then there exist $\beta_1, \ldots, \beta_{k+1}$ satisfying the condition

(2)
$$\forall_{\emptyset \neq J \subseteq \{1, \dots, k+1\}} \qquad \sum_{j \in J} \beta_j \in \mathcal{B}.$$

Proof. For k = 0 there is nothing to prove. Assuming that the lemma is proved for k we consider $\mathcal{B} \subset \mathbf{V}$ with $\vec{0} \notin \mathcal{B}$ such that

$$\mathcal{B}| > \left(1 - \frac{1}{2^{k+1}}\right) \cdot |\mathbf{V}|.$$

By the inductive assumption there exist $\beta_1, \ldots, \beta_{k+1}$ satisfying (2). Now define

$$\mathcal{B}_S := \mathcal{B} + \sum_{j \in S} \beta_j \quad \text{for all } S \subseteq \{1, \dots, k+1\},$$

 $(\mathcal{B}_{\emptyset} := \mathcal{B})$ and observe that

$$\Big|\bigcup_{S\subseteq\{1,\ldots,k+1\}}\mathbf{V}\setminus\mathcal{B}_S\Big|<\sum_{S\subseteq\{1,\ldots,k+1\}}|\mathbf{V}\setminus\mathcal{B}_S|<2^{k+1}\cdot\frac{|\mathbf{V}|}{2^{k+1}},$$

which implies

$$\bigcap_{S\subseteq\{1,\ldots,k+1\}}\mathcal{B}_S\neq\emptyset.$$

Now choose β_{k+2} from the above set and observe that it works.

Proof of Theorem 1. For $\mathcal{C} \subseteq \mathbb{N}$ and $n \in \mathbb{N}$ let

$$\tau(n,\mathcal{C}) = \sum_{d|n,\,d\in\mathcal{C}} 1.$$

Moreover let SF denote the set of all squarefree positive integers. By Corollary 2 of [1] there exists $m \in \mathbb{N}$ such that

$$\tau(m, \mathcal{A}) > \frac{3}{4} \cdot \tau(m, \mathcal{SF}).$$

Let n be the greatest squarefree divisor of m. Then every squarefree divisor of m is a divisor of n and we obtain

(3)
$$\tau(n,\mathcal{A}) > \frac{3}{4}\tau(n).$$

Now let **V** be the set of all positive divisors of n equipped with the structure of a vector space over \mathbb{F}_2 as follows. For $d_1, d_2, d_3 \in \mathbf{V}$ we have $d_1 \oplus d_2 = d_3$ if and only if $\mathrm{sf}(d_1d_2) = d_3$, where $\mathrm{sf}(r)$ stands for the squarefree kernel of r. We can apply Lemma for k = 2 to the set $\mathcal{B} := \mathbf{V} \cap \mathcal{A}$ in virtue of the inequality (3). Hence, there are positive divisors $\beta_1, \beta_2, \beta_3$ of n such that

(4)
$$\mathcal{C} := \{\beta_1, \beta_2, \beta_3, \mathrm{sf}(\beta_1\beta_2), \mathrm{sf}(\beta_1\beta_3), \mathrm{sf}(\beta_2\beta_3), \mathrm{sf}(\beta_1\beta_2\beta_3)\} \subset \mathcal{B}$$

Put additionally

$$\mathbf{V}' = \mathcal{C} \cup \{\vec{0}\}$$

and

$$\mathcal{B}' = \begin{cases} \mathcal{A}_1 \cap \mathcal{C} & \text{if } |\mathcal{A}_1 \cap \mathcal{C}| \ge 4, \\ \mathcal{A}_2 \cap \mathcal{C} & \text{if } |\mathcal{A}_2 \cap \mathcal{C}| \ge 4. \end{cases}$$

Now we distinguish three cases. If $|\mathcal{B}'| = 4$ and \mathcal{B}' contains a triple of "vectors" $\gamma_1, \gamma_2, \gamma_3$ that is linearly dependent then $\gamma_1 \gamma_2 \gamma_3 = \Box$ and we are done. If $|\mathcal{B}'| = 4$ but all triples of \mathcal{B}' are linearly independent then necessarily $\prod_{\gamma \in \mathcal{B}'} = \Box$, hence $\prod_{\gamma \in \mathcal{C} \setminus \mathcal{B}'} = \Box$ and $|\mathcal{C} \setminus \mathcal{B}'| = 7 - 4 = 3$ and we are happy again. Finally, if $|\mathcal{B}'| \ge 5$ then we apply the Lemma for k = 1 to \mathbf{V}' and \mathcal{B}' and obtain $\gamma_1, \gamma_2 \in \mathcal{B}'$ such that also $\mathrm{sf}(\gamma_1 \gamma_2) \in \mathcal{B}'$. Now $\gamma_1 \gamma_2 \mathrm{sf}(\gamma_1 \gamma_2) = \Box$.

A direct generalization of Theorem 1 to three components $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ of $\mathcal{A} \subseteq S\mathcal{F}$ having sufficiently high density is somehow problematic. Using the above method the following result can be easily proved:

THEOREM 2. If a set $\mathcal{A} \subseteq \mathbb{N}$ consists entirely of squarefree numbers and has lower asymptotic density

$$\delta^*(\mathcal{A}) = \liminf_{x \to \infty} \frac{1}{x} \sum_{n \in \mathcal{A}, n \le x} 1 > \frac{7}{8} \cdot \frac{6}{\pi^2}$$

then for any partition $\{A_1, A_2, A_3\}$ of A there exist $j \in \{1, 2, 3\}$ and $a, b, c, d, f \in A_j$ such that

$$abcdf = \Box$$
.

But if we insist on three factors giving a square, a direct generalization of our argument does fail. Namely, take $\mathbf{V} = \mathbb{F}_{16}^* = \langle g \rangle$ with g a generator. It has a unique subgroup \mathcal{H}_1 of index 3. Put further $\mathcal{H}_2 = g\mathcal{H}_1$ and $\mathcal{H}_3 = g^2\mathcal{H}_1$. For each fixed $j \in \{1, 2, 3\}$ all the elements of \mathcal{H}_j sum up to $\vec{0}$, but no three have vanishing sum. We use this idea to prove the following negative result:

THEOREM 3. There exists a set $\mathcal{A} \subseteq \mathbb{N}$ consisting entirely of squarefree numbers with natural asymptotic density

$$\delta^*(\mathcal{A}) = \frac{15}{16} \cdot \frac{6}{\pi^2}$$

and its partition $\{A_1, A_2, A_3\}$ such that for each $j \in \{1, 2, 3\}$ and $a, b, c \in A_j$,

 $abc \neq \Box$.

Proof. We will work with $\mathbb{F}_{16} = \mathbb{F}_2[x]/(x^4 + x^3 + 1)$ and use the table on p. 435 of [2] which gives the coordinates of the powers of the generator x in the basis $1, x, x^2, x^3$. So we define

$$\begin{aligned} \mathcal{H}_1 &= \{1, x^3, x^6, x^9, x^{12}\} \\ &= \{(1, 0, 0, 0), (0, 0, 0, 1), (1, 1, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0)\}, \end{aligned}$$

$$\begin{aligned} \mathcal{H}_2 &= \{x, x^4, x^7, x^{10}, x^{13}\} \\ &= \{(0, 1, 0, 0), (1, 0, 0, 1), (1, 1, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0)\}, \\ \mathcal{H}_3 &= \{x^2, x^5, x^8, x^{11}, x^{14}\} \\ &= \{(0, 0, 1, 0), (1, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1,), (0, 0, 1, 1)\}. \end{aligned}$$

Moreover we define completely multiplicative functions

$$f_1, f_2, f_3, f_4 : \mathcal{SF} \to \{-1, 1\}$$

by giving their values for primes p:

$$f_1(p) = -1 \quad \text{for all } p \in \mathbb{P},$$

$$f_2(p) = \begin{cases} -1 & \text{for } p = 2, \\ 1 & \text{for } p \neq 2, \end{cases}$$

$$f_3(p) = \begin{cases} -1 & \text{for } p \equiv 3 \pmod{4}, \\ 1 & \text{for } p \not\equiv 3 \pmod{4}, \\ 1 & \text{for } p \not\equiv 3 \pmod{4}, \\ 1 & \text{for } p \equiv \pm 3 \pmod{8}, \\ 1 & \text{for } p \not\equiv \pm 3 \pmod{8}. \end{cases}$$

After these preparations we put

$$\mathcal{A}_{j} = \left\{ n \in \mathcal{SF} \mid \left(\frac{1 - f_{k}(n)}{2}\right)_{1 \leq k \leq 4} \in \mathcal{H}_{j} \right\}$$

and $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$. The set $\mathcal{B} = \mathcal{SF} \setminus \mathcal{A}$ is easily identifiable as

$$\mathcal{B} = \{ n \in \mathcal{SF} \mid \forall 1 \le k \le 4, \ f_k(n) = 1 \}$$

= $\{ n \in \mathcal{SF} \mid \Omega(n) \equiv 0 \pmod{2} \text{ and } n \equiv 1 \pmod{8} \}.$

and so has the relative density 1/16. Therefore \mathcal{A} has the required density 15/16 and its partition defined above has the property of *omitting triples with square product*.

We finish our note with the corresponding positive result:

THEOREM 4. If a set $\mathcal{A} \subseteq \mathbb{N}$ consists entirely of squarefree numbers and has lower asymptotic density

$$\delta^*(\mathcal{A}) > \frac{15}{16} \cdot \frac{6}{\pi^2}$$

then for any partition $\{A_1, A_2, A_3\}$ of A there exist $j \in \{1, 2, 3\}$ and $a, b, c \in A_j$ such that

$$abc = \Box$$

Proof. Again, by Corollary 2 of [1] there exists $m \in \mathbb{N}$ such that

$$au(m, \mathcal{A}) > \frac{15}{16} \cdot \tau(m, \mathcal{SF}).$$

Let n be the greatest squarefree divisor of m. Then every squarefree divisor of m is a divisor of n and we obtain

(5)
$$\tau(n,\mathcal{A}) > \frac{15}{16}\tau(n).$$

Using similarly Lemma 1 we find five distinct divisors β_1, \ldots, β_5 of n such that

$$\gamma_J := \operatorname{sf}\left(\prod_{j\in J} \beta_j\right) \in \mathcal{A}\setminus\{1\} \quad \text{for } \emptyset \neq J \subseteq \{1,\ldots,5\}.$$

We now consider the graph with 31 vertices γ_J and colour the edge $\gamma_J\gamma_K$ using colour j ($j \in \{1, 2, 3\}$) if and only if $\mathrm{sf}(\gamma_J\gamma_K) \in \mathcal{A}_j$. By the Ramsey theorem and the classical result R(3, 3, 3) = 17 < 31 we obtain at least one monochromatic triangle $\gamma_J\gamma_K\gamma_L$. This means that if we put

$$a = \mathrm{sf}(\gamma_J \gamma_K), \quad b = \mathrm{sf}(\gamma_K \gamma_L), \quad c = \mathrm{sf}(\gamma_J \gamma_L),$$

then $a, b, c \in \mathcal{A}_j$ and obviously $abc = \Box$.

Using the relatively new estimate [3]

and reasoning along the same lines one can prove

THEOREM 5. If a set $\mathcal{A} \subseteq \mathbb{N}$ consists entirely of squarefree numbers and has lower asymptotic density

$$\delta^*(\mathcal{A}) > \frac{31}{32} \cdot \frac{6}{\pi^2}$$

then for any partition $\{A_1, A_2, A_3, A_4\}$ of A there exist $j \in \{1, 2, 3, 4\}$ and $a, b, c \in A_j$ such that $abc = \Box$

$$abc = \Box$$
.

The constant 31/32 is probably not optimal but we do not know any example.

REFERENCES

- L. Hajdu, A. Schinzel and M. Skałba, Multiplicative properties of sets of positive integers, Arch. Math. (Basel) 93 (2009), 269–276.
- [2] W. Lipski and W. Marek, Combinatorial Analysis, PWN, Warszawa, 1986 (in Polish).
- [3] S. P. Radziszowski, Small Ramsey numbers, Electronic J. Combin. 1 (1994), Dynamic Survey 1, 30 pp.

M. Skałba Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland E-mail: skalba@mimuw.edu.pl

(5239)