PRODUCT OF THREE NUMBERS BEING A SQUARE AS A RAMSEY PROPERTY

BY
M. SKAモBA (Warszawa)

Abstract

For any partition of a set of squarefree numbers with relative density greater than $3 / 4$ into two parts, at least one part contains three numbers whose product is a square. Also generalizations to partitions into more than two parts are discussed.

We start with the following result:
Theorem 1. If a set $\mathcal{A} \subseteq \mathbb{N}$ consists entirely of squarefree numbers and has lower asymptotic density

$$
\delta^{*}(\mathcal{A})=\liminf _{x \rightarrow \infty} \frac{1}{x} \sum_{n \in \mathcal{A}, n \leq x} 1>\frac{3}{4} \cdot \frac{6}{\pi^{2}}
$$

then for any partition $\mathcal{A}_{1}, \mathcal{A}_{2}$ of \mathcal{A} (i.e., $\mathcal{A}_{1} \cup \mathcal{A}_{2}=\mathcal{A}$ and $\mathcal{A}_{1} \cap \mathcal{A}_{2}=\emptyset$) there exist $j \in\{1,2\}$ and $a, b, c \in \mathcal{A}_{j}$ such that

$$
a b c=\square
$$

Remark. The constant (3/4) $\cdot\left(6 / \pi^{2}\right)$ is optimal as the following example shows. Let $\Omega(n)$ count the number of prime factors of n. Define

$$
\begin{aligned}
& \mathcal{A}_{1}=\{n \in \mathbb{N} \mid n \text { squarefree and } \Omega(n) \equiv 1(\bmod 2)\}, \\
& \mathcal{A}_{2}=\{n \in \mathbb{N} \mid n \text { squarefree and } \Omega(n) \equiv n \equiv 0(\bmod 2)\} .
\end{aligned}
$$

It is well known that

$$
\delta^{*}\left(\mathcal{A}_{1}\right)=\frac{1}{2} \cdot \frac{6}{\pi^{2}} \quad \text { and } \quad \delta^{*}\left(\mathcal{A}_{2}\right)=\frac{1}{4} \cdot \frac{6}{\pi^{2}},
$$

and obviously no three numbers in either \mathcal{A}_{1} or \mathcal{A}_{2} give a square product.
For the proof of the theorem we need a lemma.
Lemma 1. Let \mathbf{V} be a finite-dimensional vector space over \mathbb{F}_{2} and \mathcal{B} a subset of \mathbf{V} not containing the vector $\overrightarrow{0}$. If

$$
\begin{equation*}
|\mathcal{B}|>\left(1-\frac{1}{2^{k}}\right) \cdot|\mathbf{V}| \tag{1}
\end{equation*}
$$

then there exist $\beta_{1}, \ldots, \beta_{k+1}$ satisfying the condition

$$
\begin{equation*}
\forall \emptyset \neq J \subseteq\{1, \ldots, k+1\} \quad \sum_{j \in J} \beta_{j} \in \mathcal{B} . \tag{2}
\end{equation*}
$$

Proof. For $k=0$ there is nothing to prove. Assuming that the lemma is proved for k we consider $\mathcal{B} \subset \mathbf{V}$ with $\overrightarrow{0} \notin \mathcal{B}$ such that

$$
|\mathcal{B}|>\left(1-\frac{1}{2^{k+1}}\right) \cdot|\mathbf{V}|
$$

By the inductive assumption there exist $\beta_{1}, \ldots, \beta_{k+1}$ satisfying (2). Now define

$$
\mathcal{B}_{S}:=\mathcal{B}+\sum_{j \in S} \beta_{j} \quad \text { for all } S \subseteq\{1, \ldots, k+1\}
$$

$\left(\mathcal{B}_{\emptyset}:=\mathcal{B}\right)$ and observe that

$$
\left|\bigcup_{S \subseteq\{1, \ldots, k+1\}} \mathbf{V} \backslash \mathcal{B}_{S}\right|<\sum_{S \subseteq\{1, \ldots, k+1\}}\left|\mathbf{V} \backslash \mathcal{B}_{S}\right|<2^{k+1} \cdot \frac{|\mathbf{V}|}{2^{k+1}}
$$

which implies

$$
\bigcap_{S \subseteq\{1, \ldots, k+1\}} \mathcal{B}_{S} \neq \emptyset
$$

Now choose β_{k+2} from the above set and observe that it works.
Proof of Theorem 1. For $\mathcal{C} \subseteq \mathbb{N}$ and $n \in \mathbb{N}$ let

$$
\tau(n, \mathcal{C})=\sum_{d \mid n, d \in \mathcal{C}} 1
$$

Moreover let $\mathcal{S F}$ denote the set of all squarefree positive integers. By Corollary 2 of [1] there exists $m \in \mathbb{N}$ such that

$$
\tau(m, \mathcal{A})>\frac{3}{4} \cdot \tau(m, \mathcal{S} \mathcal{F})
$$

Let n be the greatest squarefree divisor of m. Then every squarefree divisor of m is a divisor of n and we obtain

$$
\begin{equation*}
\tau(n, \mathcal{A})>\frac{3}{4} \tau(n) \tag{3}
\end{equation*}
$$

Now let \mathbf{V} be the set of all positive divisors of n equipped with the structure of a vector space over \mathbb{F}_{2} as follows. For $d_{1}, d_{2}, d_{3} \in \mathbf{V}$ we have $d_{1} \oplus d_{2}=d_{3}$ if and only if $\operatorname{sf}\left(d_{1} d_{2}\right)=d_{3}$, where $\operatorname{sf}(r)$ stands for the squarefree kernel of r. We can apply Lemma for $k=2$ to the set $\mathcal{B}:=\mathbf{V} \cap \mathcal{A}$ in virtue of the inequality (3). Hence, there are positive divisors $\beta_{1}, \beta_{2}, \beta_{3}$ of n such that

$$
\begin{equation*}
\mathcal{C}:=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \operatorname{sf}\left(\beta_{1} \beta_{2}\right), \operatorname{sf}\left(\beta_{1} \beta_{3}\right), \operatorname{sf}\left(\beta_{2} \beta_{3}\right), \operatorname{sf}\left(\beta_{1} \beta_{2} \beta_{3}\right)\right\} \subset \mathcal{B} \tag{4}
\end{equation*}
$$

Put additionally

$$
\mathbf{V}^{\prime}=\mathcal{C} \cup\{\overrightarrow{0}\}
$$

and

$$
\mathcal{B}^{\prime}= \begin{cases}\mathcal{A}_{1} \cap \mathcal{C} & \text { if }\left|\mathcal{A}_{1} \cap \mathcal{C}\right| \geq 4 \\ \mathcal{A}_{2} \cap \mathcal{C} & \text { if }\left|\mathcal{A}_{2} \cap \mathcal{C}\right| \geq 4\end{cases}
$$

Now we distinguish three cases. If $\left|\mathcal{B}^{\prime}\right|=4$ and \mathcal{B}^{\prime} contains a triple of "vectors" $\gamma_{1}, \gamma_{2}, \gamma_{3}$ that is linearly dependent then $\gamma_{1} \gamma_{2} \gamma_{3}=\square$ and we are done. If $\left|\mathcal{B}^{\prime}\right|=4$ but all triples of \mathcal{B}^{\prime} are linearly independent then necessarily $\prod_{\gamma \in \mathcal{B}^{\prime}}=\square$, hence $\prod_{\gamma \in \mathcal{C} \backslash \mathcal{B}^{\prime}}=\square$ and $\left|\mathcal{C} \backslash \mathcal{B}^{\prime}\right|=7-4=3$ and we are happy again. Finally, if $\left|\mathcal{B}^{\prime}\right| \geq 5$ then we apply the Lemma for $k=1$ to \mathbf{V}^{\prime} and \mathcal{B}^{\prime} and obtain $\gamma_{1}, \gamma_{2} \in \mathcal{B}^{\prime}$ such that also $\operatorname{sf}\left(\gamma_{1} \gamma_{2}\right) \in \mathcal{B}^{\prime}$. Now $\gamma_{1} \gamma_{2} \operatorname{sf}\left(\gamma_{1} \gamma_{2}\right)=\square$.

A direct generalization of Theorem 1 to three components $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$ of $\mathcal{A} \subseteq \mathcal{S} \mathcal{F}$ having sufficiently high density is somehow problematic. Using the above method the following result can be easily proved:

TheOrem 2. If a set $\mathcal{A} \subseteq \mathbb{N}$ consists entirely of squarefree numbers and has lower asymptotic density

$$
\delta^{*}(\mathcal{A})=\liminf _{x \rightarrow \infty} \frac{1}{x} \sum_{n \in \mathcal{A}, n \leq x} 1>\frac{7}{8} \cdot \frac{6}{\pi^{2}}
$$

then for any partition $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}\right\}$ of \mathcal{A} there exist $j \in\{1,2,3\}$ and a, b, c, $d, f \in \mathcal{A}_{j}$ such that

$$
a b c d f=\square
$$

But if we insist on three factors giving a square, a direct generalization of our argument does fail. Namely, take $\mathbf{V}=\mathbb{F}_{16}^{*}=\langle g\rangle$ with g a generator. It has a unique subgroup \mathcal{H}_{1} of index 3 . Put further $\mathcal{H}_{2}=g \mathcal{H}_{1}$ and $\mathcal{H}_{3}=g^{2} \mathcal{H}_{1}$. For each fixed $j \in\{1,2,3\}$ all the elements of \mathcal{H}_{j} sum up to $\overrightarrow{0}$, but no three have vanishing sum. We use this idea to prove the following negative result:

THEOREM 3. There exists a set $\mathcal{A} \subseteq \mathbb{N}$ consisting entirely of squarefree numbers with natural asymptotic density

$$
\delta^{*}(\mathcal{A})=\frac{15}{16} \cdot \frac{6}{\pi^{2}}
$$

and its partition $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}\right\}$ such that for each $j \in\{1,2,3\}$ and a, b, $c \in \mathcal{A}_{j}$,

$$
a b c \neq \square .
$$

Proof. We will work with $\mathbb{F}_{16}=\mathbb{F}_{2}[x] /\left(x^{4}+x^{3}+1\right)$ and use the table on p. 435 of [2] which gives the coordinates of the powers of the generator x in the basis $1, x, x^{2}, x^{3}$. So we define

$$
\begin{aligned}
\mathcal{H}_{1} & =\left\{1, x^{3}, x^{6}, x^{9}, x^{12}\right\} \\
& =\{(1,0,0,0),(0,0,0,1),(1,1,1,1),(1,0,1,0),(1,1,0,0)\}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{H}_{2} & =\left\{x, x^{4}, x^{7}, x^{10}, x^{13}\right\} \\
& =\{(0,1,0,0),(1,0,0,1),(1,1,1,0),(0,1,0,1),(0,1,1,0)\} \\
\mathcal{H}_{3} & =\left\{x^{2}, x^{5}, x^{8}, x^{11}, x^{14}\right\} \\
& =\{(0,0,1,0),(1,1,0,1),(0,1,1,1),(1,0,1,1,),(0,0,1,1)\}
\end{aligned}
$$

Moreover we define completely multiplicative functions

$$
f_{1}, f_{2}, f_{3}, f_{4}: \mathcal{S F} \rightarrow\{-1,1\}
$$

by giving their values for primes p :

$$
\begin{aligned}
& f_{1}(p)=-1 \quad \text { for all } p \in \mathbb{P}, \\
& f_{2}(p)= \begin{cases}-1 & \text { for } p=2, \\
1 & \text { for } p \neq 2\end{cases} \\
& f_{3}(p)= \begin{cases}-1 & \text { for } p \equiv 3(\bmod 4), \\
1 & \text { for } p \not \equiv 3(\bmod 4),\end{cases} \\
& f_{4}(p)= \begin{cases}-1 & \text { for } p \equiv \pm 3(\bmod 8) \\
1 & \text { for } p \not \equiv \pm 3(\bmod 8)\end{cases}
\end{aligned}
$$

After these preparations we put

$$
\mathcal{A}_{j}=\left\{n \in \mathcal{S \mathcal { F }} \left\lvert\,\left(\frac{1-f_{k}(n)}{2}\right)_{1 \leq k \leq 4} \in \mathcal{H}_{j}\right.\right\}
$$

and $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}$. The set $\mathcal{B}=\mathcal{S F} \backslash \mathcal{A}$ is easily identifiable as

$$
\begin{aligned}
\mathcal{B} & =\left\{n \in \mathcal{S \mathcal { F }} \mid \forall 1 \leq k \leq 4, f_{k}(n)=1\right\} \\
& =\{n \in \mathcal{S \mathcal { F }} \mid \Omega(n) \equiv 0(\bmod 2) \text { and } n \equiv 1(\bmod 8)\}
\end{aligned}
$$

and so has the relative density $1 / 16$. Therefore \mathcal{A} has the required density $15 / 16$ and its partition defined above has the property of omitting triples with square product.

We finish our note with the corresponding positive result:
THEOREM 4. If a set $\mathcal{A} \subseteq \mathbb{N}$ consists entirely of squarefree numbers and has lower asymptotic density

$$
\delta^{*}(\mathcal{A})>\frac{15}{16} \cdot \frac{6}{\pi^{2}}
$$

then for any partition $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}\right\}$ of \mathcal{A} there exist $j \in\{1,2,3\}$ and a, b, c $\in \mathcal{A}_{j}$ such that

$$
a b c=\square .
$$

Proof. Again, by Corollary 2 of [1] there exists $m \in \mathbb{N}$ such that

$$
\tau(m, \mathcal{A})>\frac{15}{16} \cdot \tau(m, \mathcal{S F})
$$

Let n be the greatest squarefree divisor of m. Then every squarefree divisor of m is a divisor of n and we obtain

$$
\begin{equation*}
\tau(n, \mathcal{A})>\frac{15}{16} \tau(n) \tag{5}
\end{equation*}
$$

Using similarly Lemma 1 we find five distinct divisors $\beta_{1}, \ldots, \beta_{5}$ of n such that

$$
\gamma_{J}:=\operatorname{sf}\left(\prod_{j \in J} \beta_{j}\right) \in \mathcal{A} \backslash\{1\} \quad \text { for } \emptyset \neq J \subseteq\{1, \ldots, 5\}
$$

We now consider the graph with 31 vertices γ_{J} and colour the edge $\gamma_{J} \gamma_{K}$ using colour $j(j \in\{1,2,3\})$ if and only if $\operatorname{sf}\left(\gamma_{J} \gamma_{K}\right) \in \mathcal{A}_{j}$. By the Ramsey theorem and the classical result $R(3,3,3)=17<31$ we obtain at least one monochromatic triangle $\gamma_{J} \gamma_{K} \gamma_{L}$. This means that if we put

$$
a=\operatorname{sf}\left(\gamma_{J} \gamma_{K}\right), \quad b=\operatorname{sf}\left(\gamma_{K} \gamma_{L}\right), \quad c=\operatorname{sf}\left(\gamma_{J} \gamma_{L}\right)
$$

then $a, b, c \in \mathcal{A}_{j}$ and obviously $a b c=\square$.
Using the relatively new estimate [3]

$$
R(3,3,3,3)<63
$$

and reasoning along the same lines one can prove
TheOrem 5. If a set $\mathcal{A} \subseteq \mathbb{N}$ consists entirely of squarefree numbers and has lower asymptotic density

$$
\delta^{*}(\mathcal{A})>\frac{31}{32} \cdot \frac{6}{\pi^{2}}
$$

then for any partition $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}\right\}$ of \mathcal{A} there exist $j \in\{1,2,3,4\}$ and $a, b, c \in \mathcal{A}_{j}$ such that

$$
a b c=\square .
$$

The constant $31 / 32$ is probably not optimal but we do not know any example.

REFERENCES

[1] L. Hajdu, A. Schinzel and M. Skałba, Multiplicative properties of sets of positive integers, Arch. Math. (Basel) 93 (2009), 269-276.
[2] W. Lipski and W. Marek, Combinatorial Analysis, PWN, Warszawa, 1986 (in Polish).
[3] S. P. Radziszowski, Small Ramsey numbers, Electronic J. Combin. 1 (1994), Dynamic Survey 1, 30 pp .
M. Skałba

Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: skalba@mimuw.edu.pl

