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REMARKS ON THE COMPARISON
OF WEIGHTED QUASI-ARITHMETIC MEANS

BY

GYULA MAKSA and ZSOLT PALES (Debrecen)

Abstract. We present comparison theorems for the weighted quasi-arithmetic means
and for weighted Bajraktarevi¢ means without supposing in advance that the weights are
the same.

1. Introduction. Throughout this paper N, Z, Q, R, and I will denote
the sets of all positive integers, integers, rational numbers, real numbers, and
a nonvoid open subinterval of R, respectively. Let ¢ : I — R be a continuous
and strictly monotonic function, 2 < n € N, and Ay, ..., A\, € ]0,1[ such that
> h_1 Ak = 1. The function M, \ defined on I" by

Mp(z1,. .. 20) =@ ( Zn: )\kgo(xk)>
k=1

is called a weighted quasi-arithmetic mean with generating function ¢ and
weights A1, ..., Ay. In this note we discuss the following comparison prob-
lem for these means: What properties have to be imposed upon the con-
tinuous and strictly monotonic functions ¢,v : I — R and the weights
Alyeeoy Apy 41, - -+, Uy in order that the inequality

Mo (21, ..o 2n) < My (21,00, 20)

be satisfied for all (z1,...,x,) € I"? This problem was raised and discussed
in the monograph of Hardy-Littlewood—P6lya [9], supposing in advance that
the weights are the same (see p. 66 in the second edition). However, as is
shown in this paper, this a prior: condition can be omitted.

In the last section of the paper, we consider the analogous but more
general problem for Bajraktarevi¢ means. However, to derive the necessity of
the conditions, we impose additional regularity properties of the generating
functions.

2010 Mathematics Subject Classification: Primary 39B62.
Key words and phrases: weighted quasi-arithmetic mean, weighted Bajraktarevié¢é mean,
comparison, (A, p)-convexity, A-Wright convexity.

DOI: 10.4064/cm120-1-6 [77] © Instytut Matematyczny PAN, 2010



78 GY. MAKSA AND ZS. PALES

2. Comparison of weighted quasi-arithmetic means. Our first
main result is the following comparison theorem.

THEOREM 1. Let ¢, : I — R be continuous and strictly monotonic
functions, 2 <n €N, and let Mi,..., A\p, f1,. .., fin € ]0, 1] with Y _p_ Ap =
Y p—q ke = 1. Then the inequality

(1) sol(znj el ) < wl(znjukka))
k=1 k=1

holds for all (z1,...,2,) € I™ if, and only if, 1 o ¢~ is convexr (resp.
concave) whenever 1) is increasing (resp. decreasing) and N\, = py for all

ke{l,...,n}.

Proof. First we prove the necessity. We may (and do) suppose that v is
strictly increasing and holds for all (z1,...,2,) € I™.

Reduction to (X, p1)-convezity. Let J := o(I), f := o L ke {1,...,n}
be fixed and A := A\, p = pg.

Then () # J C R is an open interval, and f : J — R is a continuous and
strictly monotonic function. With the substitutions

zp =@ Yx), xpi=¢ Yy) forfe{l,...,n}\{k}, whereuz,ycJ
inequality implies that

@ fOa+ (=N < uf@) + (- @i ey e,

that is, f is a (A, u)-convex function on J (see Kuhn [14]).

The proof of the convexity of f. Let p(u) = u? + (1 —u)?, u €]0,1[, and
for t € ]0, 1] define

ap(t) :=t and an(t) :=plam-1(t)) for m € N.
Then p : ]0,1[ — [1/2,1] and
amt1(t) < ap(t) for m €N, nlgilwam(t) =1/2 forte]0,1].
We show, by induction on m, that
(3) flamN)z + (1 = am(N)y) < am(p) (@) + (1 = am(w)) f(y)

for all z,y € J and 0 < m € Z. Indeed, is obvious for m = 0. Suppose
that 0 < m € Z and holds for m — 1, that is,

(4)  flam-1(N)z+ (1 = am-1(N))y)
< am-1 () f(x) + (1 —am-1(p)fly) (z,y€J).
Thus, by the definition of p and a,,, and by using repeatedly, for all
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z,y € J, we have
flamN)z 4+ (1 — am(N))y)
= f(p(am-1(N)z + (1 = plam-1(X)))y)
= ((am-1 (AN + (1 = am-1(A))7 + 2am 1 (A)(1 — am—1(N))y)
= f(am-1(N)(@m—1(N)z + (1 = am-1()))y)
+ (1= am—1(N)(am-1(Ny + (1 = am-1(N))z))
< am-1(p) f(@am-1(N)z + (1 = am-1(N))y)
+ (1= am—1() f(am-1(N)y + (1 = am-1(N))x)
< plam—1(w)) f(2) + (1 = plam—1(1))) f (y) = am(p) f(x) + (1 = am () f (),

which proves . Since f is continuous and lim, o ap(t) = 1/2 for all
t €]0,1], (3) implies that f is Jensen-convex, and hence convex (see [12]).

The proof of the equality N = p (A = pg, k € {1,...,n}). Since f is
convex, it is absolutely continuous. Therefore, there exists a subset A C J of
full Lebesgue measure such that f/(y) exists for all y € A. Furthermore, f’ is
integrable on any compact interval and the Newton—Leibniz formula holds.
Hence, if f’ vanished on A then f would be constant, which is impossible.
Thus there exists a point £ € A such that f/(£) # 0. Now, define the function
F on J by

F(z) = fQz+ (1= 2§ — uf(x) = (1= p)f(E):
Then it follows from that F'(z) < 0. On the other hand, F'(§) = 0. This
shows that I’ has a maximum at £. Thus

0=F'(&) =Af'(§) —nf'(§) = (A=) f(&),
whence A = p. Therefore A\ = uy for all k € {1,...,n}.
The proof of the sufficiency is straightforward. =
REMARK 2. We sketch some other possible ways of the proof of Theo-
rem . Kuhn [13], using transfinite tools, proved that if a function f: J — R
is (A, A)-convex for some 0 < A < 1, i.e.,

fOz+ (1 =Ny) SAf(2)+ (A =Nfly) (z,y€ ),
then this inequality also holds for all A € L N[0,1], where L C R is the
smallest subfield containing A. Consequently, f is Jensen-convex. The Jensen-
convexity was proved in an elementary way by Daroczy—Pales [6] using the
identity

2

It was observed by Matkowski—Pycia [I7] that this identity implies the
Jensen-convexity of (A, u)-convex functions as well. The same was obtained
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by Kominek [I0] using Rodé’s theorem (|20]). Thus, by the Bernstein—
Doetsch theorem (see [3]), (A, u)-convex functions bounded from above on
an interval of positive length are convex.

Another possibility to deduce the Jensen-convexity from the (A, u)-con-
vexity is its connection to the A-Wright-convexity. It is obvious that the
(A, p)-convex functions are also A-Wright-convex, i.e.,

) fAz+A=Ny)+fQy+ 1 -Nz) < f(z)+fly) (z,y€).
(Indeed, interchanging = and y in and adding the inequality so obtained
to (2)), we obtain ([5).) Thus the results of Maksa—Nikodem-Pales [16] (the
set of A’s for which (5)) holds is dense in [0, 1]) or Kominek [11] (f has a limit
at a point) or Olbry$ [I8] (f is measurable) or Olbry$ [19] can be applied to
prove that the (A, u)-convexity and a “weak” regularity property imply the
convexity.

There are other proofs also for A = p when the (A, u)-convex function f
is not constant. Some of them are based on a simplified version of the Rodé
theorem (J20]) given by Kuhn [I4]: If f: J — R is (A, u)-convex then, for all
T € J, there exists a function a : J — R satisfying

(6) a(Adz+ (1= Ny) = pa(z) + (1 - paly)  (z,y € J)
such that a < f and a(7) = f(7). Supposing measurability, Kominek proved
the equality A = p in [10].

Without using the Rodé theorem and measurability, Matkowski and Py-
cia showed in [I7] that if A and p are not conjugate then every (\, p)-convex
function is constant, while they are conjugate (i.e., both transcendental over
Q or both algebraic over Q and have the same minimal polynomial) then
there are non-constant additive solutions f : R — R of the equation

fAz+ A =Ny) =pfle)+ 1 -p)fly) (z,y eR).
The latter statement is also a simple consequence of Dardczy’s results on @
proved in [4].

3. Comparison of weighted Bajraktarevi¢ means. A generalization
of quasi-arithmetic means was introduced in 1963 by Bajraktarevi¢ in [1], [2]:
Given a continuous and strictly monotonic function ¢ : I — R and a positive
function w: I — Ry, 2<neN, A\j,..., A\, €]0,1] with > ) _; Ay = 1, the
mean M, y is defined on I" by

= (Shstenlotz))

> k=1 Akw (k)
In this section we consider the following general comparison problem: What
properties have to be imposed upon the continuous and strictly monotonic
functions @, : I — R, the positive function w : I — R4, and the weights

M%w;,\(xl, e
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Alyeeoy Apy 41, - .., Uy in order that the inequality

(7) My on (21, .. 2n) < My (21, ..., 20)
be valid for all (x1,...,z,) € I"?
In the case \y = py (k € {1,...,n}), necessary and sufficient conditions

for inequality @, assuming its validity for all n € N, were established by
Dar6czy and Losonczi in [5] and [I5]. Here, we investigate this inequality
with a fixed number of variables n > 2 and, a priori, we do not assume that
the condition A\, = i (k € {1,...,n}) holds.

In the particular case when w is a constant function, the above compar-
ison problem obviously reduces to the problem dealt with in the previous
section. Unfortunately, the approach used in that particular case cannot be
followed for the setting when w is nonconstant. Thus, to derive the necessity
of the conditions, we need additional regularity assumptions on the functions
p, : I - Rand w: I — Ry. Furthermore, in the proof of the necessity
below, we prove first that ur = \x for all k, and the convexity (or concavity)
of the function f := 1 o¢~! is deduced in the next step (while, in the proof
of Theorem (1} the convexity was obtained in the first step).

THEOREM 3. Let ¢, : I — R be continuous and strictly monotonic
functions, w: I — Ry be a positive function, 2 <n € N, and let A1,..., A\,
L1y pin € ]0,1[ with >0 1 Ak = Y p_q ik = 1. Assume the following
reqularity condition: There exists a point p € I such that w is continuous at
p and the function f := 1 o o~ is differentiable at ©(p) with f'(¢(p)) # 0.
Then the inequality

(8) gp—l <ZZ1 )‘kw(fk)W(ﬂﬁk)) <yl (ZZl Mkw(ﬂfk)1/1(95k))

2221 Aew (k) N 22:1 prw ()
holds for all (z1,...,x,) € I"™ if, and only if, f is convex (resp. concave)
whenever 1 is increasing (resp. decreasing) and N\, = pp for all k €
{1,...,n}.

Proof. To prove the necessity, we suppose that v is strictly increasing and
holds for all (z1,...,2,) € I". Let J := (), w := wop~ L, k € {1,...,n}
be fixed and A := A\g, p := pg. Then () # J C R is an open interval. With
the substitutions

=@ Hx), wei=¢ YHy) forfe{l,....n}\{k},
where z,y € J, inequality implies that

Aw(x)z + (1 — Nw(y)y
S ( Nu(e) (L~ Nwly) )
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By our regularity assumption on f and w, the function w : J — R is positive
and continuous at £ := ¢(p) € J; furthermore, f is differentiable at £ with
1(€) # 0. Now define the function F on J by

_ M@z + (1A= Nw@)E  pwz)f(z) + (1 = p)w(§)f(E)
r = (S )~ e
First we prove that F is differentiable at & and F'(§) = (A — u)f/(§). W

can write F' in the form F' = f o g — h, where the functions g,h : J — R are
defined by

Aw(z)z + (1 = Mw(§)§ pw(z) f (@) + (1 — pw(§) f(§)
= h = .
M= @+ @@ T @)+ (1wl
Observe that g(£) = £ and hence, by the continuity of w at &,
9@ —g§) _.ogl@)—¢& Aw(z)
T T T @ = Nu(©)
proving that g is differentiable at £ and ¢'(§) = .

On the other hand, h(§) = f(£), thus, by the continuity of w and the
differentiability of f at &, we obtain

=\,

i P2 Z0E) @) ) pow(x) flz) = f(&)
z—¢& x—& x—€ x—& z—& ,uw(:r) +(1- Iu,)u)(g) x—&
= pf'(8),

which shows that h is differentiable at & and h/(§) = uf’(€).

Combining the above properties and using the chain rule, it follows that
F is differentiable at & and F'(§) = (A — u) f/(€).

In view of inequality (9), we see that F(z) < 0 for all z € I. Thus
F (&) = 0 implies that F' has a maximum at £. Therefore,

0=F'(§) = (A= p)f'()
whence A = p and hence A\ = py, for all k € {1,...,n}.
With the notation
Aw(z)
Aw(z) + (1 = Nw(y)’
inequality can be rewritten as

fla(z,y)z+ (1 —alz,y))y) < alz,y)f(z)+ (A -alz,y) f(y) (2,5 €J).
Applying the characterization of convexity obtained in [8, Corollary 2.3|, it
follows that the function f must be convex. Thus, the proof of the necessity
is completed.
Conversely, assuming that f is convex (resp. concave) whenever 1 is
increasing (resp. decreasing) and A\, = p for all k € {1,...,n}, a standard
argument shows that inequality is valid. =

Ot(i’, y) =
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It is an open problem whether the regularity assumption from the theo-

rem above can be removed.
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